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1. INTRODUCTION

The set of all sequences x = (x;) with x;, € C forall k € N ={0,1, 2, ... } is represented with w, where C
is a family of all complex numbers. The set w becomes a vector space over C under point-wise addition
and scalar multiplication. Every vector subspace X of w is called a sequence space.

We use the notations [, ¢, ¢, and L, for the classical sequence spaces of all bounded, convergent, null and

absolutely p-summable sequences, respectively, where 0 < p < 0. Also, the symbols bv and bv, stand
for the spaces consisting of all sequences x = (x;) such that (x, — xx4+1) € l; and intersection of the
spaces bv and c, respectively.

A sequence space X with a linear topology is called a K-space provided each of the maps p;: X — C defined
by p;(x) = x; is continuous for all i € N. It is assumed that w is always endowed with its locally convex
topology generated by the sequence {p, }n=o Of seminorms on w where p,(x) = |x,|,n =0,1,2, ... AK-
space X is called an FK-space provided X is a complete linear metric space. An FK-space whose topology
is normable is called a BK-space [1].

The classical sequence spaces [, ¢ and ¢, equipped with the usual sup-norm defined by || x|l = sup|x|
keN

are BK-spaces. Also, L, is a BK-space with its [,,-norm defined by

1
had p
= p
lxll, <§ e )
k=0

where 1 < p < o. In case of 0 < p < 1, [,, is a complete p-normed space according to the usual p-norm

defined by
Il = ) el
k=0

(see [2]).
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To use the theory of matrix transformation was motivated by special and classical results in summability
theory which were obtained by Cesaro, Borel, Norlund, Riesz and others. Because of the most general linear
operator on one sequence space into another is actually given by an infinite matrix, matrix transformations
are of great interest in the study of sequence spaces.

For an infinite matrix A = (a,,;) and a sequence x = (x;), n, k € N of complex numbers, the A-transform
of x = (x;) is written by y = Ax and is defined by

(00)

Yn = (Ax)y, = Z Ank Xk (1.1)

k=0

for all n € N and each of these series being assumed convergent. A sequence x = (x;) is said to be A-
summable to [ if Ax converges to [, which is called A-limit of x [3].

Given two sequence spaces X and Y, the set of all infinite matrices A = (a,,;) such that Ax € Y forall x €
X is denoted by (X: 7).

For an arbitrary sequence space X, the set X, is called matrix domain of an infinite matrix A = (a,;) and
is defined by

Xy ={x=() Ew: Ax € X} (1.2)
which is a sequence space also.

We write bs and cs for the sequence spaces of all bounded and convergent series, respectively. By using
the notation (1.2) and summation matrix S = (s,), the sequence spaces bs and cs are defined by

bs = {x =(x;) Ew: (Z xk> € loo} = (lo)s

k=0

CS={X=(XR)EW1< xk)€c}=cs
k=0

respectively, where S = (s,,;) is defined by

< _{1 , 0<k<n
nk =10 , k>n

and

NIE

foralln, k € N.

A matrix A = (ayy) is called a triangle if a,,; = 0 for k > n and a,,, # 0 for all n € N. Also a triangle
matrix A = (a,; ) uniquely has an inverse A~ which is a triangle matrix.

In the next sections, unless stated otherwise, the summation without limits runs from 0 to oo and any term
with negative subscript is assumed equal to zero, such that x_; = 0.

To define new sequence spaces, most of time, many authors use the notion of the matrix domain of an
infinite matrix. For example: (), and cy, in [4], X, and X, in [5], 7, 75 and 77 in [6], ¢o(4), c(4) and
Lo (D) in [7], co(A%),c(A?) and 1 (A?) in [8], co(A™), c(A™) and I, (A™) in [9], r%(p, B™) in [10],
co(B),c(B),ls(B) and L,(B) in [11].

In this work, we introduce the sequence spaces l{}(Gm) and 12(G™) derived by the domain of the
composition of m-th order generalized difference matrix and lambda matrix. Moreover, we determine some
topological properties and examine inclusion relations related to these spaces. Furthermore, we give
Schauder basis for the space l;}(Gm). Finally, we determine a-, §- and y- duals of the spaces l{}(Gm) and

1A (G™).
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2. THE SEQUENCE SPACES I4(6™) AND I4,(6™)
In this section, we define the sequence spaces l,’}(Gm) and I12,(G™). Also, we determine some topological
properties related to these spaces.

By using the matrix domain of lambda matrix A = (4,), the sequence spaces l,’} and 12 are first introduced
by M. Mursaleen and A. K. Noman in [12] and [13]. They defined the sequence spaces [} and 12, as follows:

n
1
A_z (A — Ag—1)xk
n
=0 k=0

p
< o0

s

lp

where 0 < p < o and

l{}oz{xz(xk)Ew: sup

n
1
A_Z(Ak — Ag—1)xg
neN |/in =

respectively, where A = (4,) consist of positive reals such that
0<Ay <A< and lim A, =00

k—co

and the lambda matrix A = (4,,,) is defined by

L P
Ak = An ’ -
0 , k>n

for all n, k € N. Afterwards, F. Basar and A. Karaisa followed them and improved their work by defining
the sequence spaces L3 (B) and I4,(B) in [14]. The sequence spaces [} (B) and I2,(B) are defined by

o]

2(B) ={x=(x) ew Z

p
< o0

.

respectively, where B = B(b4, b,) is called double band(generalized difference) matrix and is defined by

Z(Ak M) (Bre + by 1)

where 0 < p < o and

neN

n
1
1(B) = {x = () €Wt sup | =" (e = ) (Bre + by-1)
ny—

bl ) k=n
by =3b, , k=n-1
0 , otherwise

foralln, k € N.

For given two non-zero real numbers r and s, m-th order generalized difference matrix G™(r,s) =
(gm (r,s)) is defined by
g (r,5) = (n _kl) m-ntk=1gn=k = max{O,n-m+1}<k<n
0 , otherwise

for all n,k € N and m € N, = {2,3,4, ...} [10]. Here we want to point out that G2(r,s) = B(by, b,),
G3(r,s) = B(by, by, b3), G*(r,s) = B(by, by, b3, by), ... where B(by, by), B(by, by, b3), B(by, by, bz, by),

.. are double band(generalized difference), triple band, quadruple band, ...matrix, respectively. Moreover,
G™(1,—-1) = A™, G3(1,—1) = A? and G%(1,—1) = A . So, our results obtained from the matrix domain
of the m-th order difference matrix G™(r,s) = (g,’{}c(r, s)) are more general and more extensive than the
results on the matrix domain of B(b,, b,), B(by, by, b3), B(by, by, b3, by), ..., A™, A% and A.
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For a given arbitrary sequence x = (x;), the G™(r, s)-transform of x is the sequence & = (&) and is
defined by

m-1
m—1 —9—
Sk = Z( 9 )Tm 15 x5
9=0

forall k € N.

Now, by considering the sequence é = (&) defined above, we define the sequence spaces l{,L(Gm) and
12 (G™) by means of m-th order generalized difference matrix and lambda matrix as follows:

n
1
A_Z (A — Ak—1)8k
n
k=0

14
< ©

s

If we consider the notation (1.2), the sequence spaces l{}(Gm) and 14 (G™) are redefined by
BG™ = (15)m and 15G™ = (13) jm (2.1)

respectively. Moreover, by using a same way, we can redefine the sequence spaces l;}(Gm) and 1A (G™)
by means of the infinite matrix T™(r, s) = (t,’{}f (r, s)) as follows:

e = (l,,)Tm and 14(G™) = (lop) pma (2.2)

BEm ={x=@ew: )
n=0

where 0 < p < oo and

1AM = {x = (x;) Ew: sup

neN

n
1
= (= A
n
k=0

respectively.

respectively, where the infinite matrix T™4(r,s) = (t,’{}{’l(r,s)) that is composition of m-th order
generalized difference matrix and lambda matrix is defined by

m-—1

1 m—1 —9—
— ( )Tm 97157 Ngews — Akro-1) D k<n-—-m+2
An Y
9=0
1 m—1 1
m — - —
Z ya (19 _ 1)rm 19519 1(An—m+19+1 - An—m+19) v k=n—m+2
m—
1 —
P (m 1) rm_19+1519_2(/1n—m+19+1 - /1n—m+19) » k=n-m+3
An 9—2
mi _ 9=2

tnk -

™ A1 = An—2) + (n = Dr™2s(A, = An-y)

F) ’ k=n-1
n
rm_l(ln - An—l) k
2 ’ -n
()n , k>n

\
foralln,k € Nand m € N,.

For a given arbitrary sequence x = (x;,), the T™*-transform of x is defined by
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k m-1
1 m— 1
Vi = (Tmlx)k = A—Z(Aj - Aj—l) z ( 9 rm- - 1519x] 9 (23)
kj=0 9=0
or
-m+1m-1
1” m=1y m-o- P = Age)
j=0 9=0 k
forall k € N.

Theorem 2.1 The following statements hold.

@ Incaseof 0<p <1, l{}(Gm) is a complete p-normed space according to its p-norm defined by

Ixllgmy = I = > (), [
n=0

(b)Incaseof 1 <p < o, l,’}(Gm) is a BK-space with its [,-norm defined by

2 N 2 [P %
Illgomy = [Tl =( D |(Tm), |
n=0

(c) The sequence space 4 (G™) is a BK-space according to its sup-norm defined by
x m = |[|[T™x|| = sup [(T™x
Ixlli omy = 7™, = sup|(7x), |

Proof It is known that [,, is a complete p-normed space with its p-norm and a BK-space with its [,,-norm
incase of 0 <p < 1andincaseof 1< p < oo, respectively. Also, the sequence space [, equipped with
its usual sup-norm is a BK-space. Moreover, (2.2) holds and T™(r, s) = (t Ar, s)) is a triangle matrix.
By combining these five facts and Theorem 4.3.12 of Wilansky [3], we deduce that (a), (b) and (c) hold.
This step completes the proof.

Theorem 2.2 Inthe event of 0 < p < oo, the sequence space lz’}(Gm) is linearly isomorphic to the sequence
space L,, namely [} (G™) = ,.

Proof For the proof, the existence of a linear bijection between lz’}(Gm) and [, is necessary. We define a
transformation L such that L: [} (G™) — L, , L(x) = T™*x. Then, it is clear that L(x) = T™*x € ,, for all
x € l,’}(Gm). Also, it is trivial that L is a linear transformation and x = 6 whenever L(x) = 6. Because of
this L is injective.

Moreover, given a sequence y = (yy) € [,,, we define a sequence x = () such that

k
_ 1 m+k—j—2 "f i M
x"_rm—lz( m—2 -3) Z< D /1—/1

j=0 i=j-1
for all k € N and m € N,. Then, for every k € N, we obtain

m—1 k 1
z m— 1) m-9-1.9 Z k—i_ T
( sOeg = ) (=1)
9=0 Y i=k—1 l Ak 1

If we consider the equality above, we obtain

m-—1

n
1 m— 1 -
(Tmlx)n = Z;(Ak — A-1) Z) ( 9 rm Y s
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k=0 i=k-1
n k
— 1 k—i
=172, D, (U,
k=0i=k-1

for all n € N. So, T™*x =y and since y € ,, we conclude that T™*x € 1. This shows that x € [}(G™)
and L(x) = y. Thus L is surjective. From the Theorem 2.1, we have

LGy, = T[], = lIxllzgm)

forall x € l;}(Gm) and 0 < p < oo. So, L is norm preserving. As a results of these L is a linear bijection.

This last step shows that l;}(Gm) and ,, are linearly isomorphic in case of 0 < p < oo. This step completes
the proof.

Theorem 2.3 The sequence space l,’}(Gm) is not a Hilbert space whenever p € [1, ©)\{2}.
Proof From the Theorem 2.1 (b), we know that 14(G™) is a BK-space with its I,-norm defined by
||x||l%(cm) = ||Tm’1x||lz, where [,-norm can be obtained from an inner product on [, such that
1 1
llxll g gmy = (2, %)z = (T4, T™ %)}
for all x € I2(G™). If we consider this fact, we deduce that 14 (G™) is a Hilbert space.

Now, by taking into account p € [1,00)\{2}, we define two sequences b = (by) and d = (d},) as follows:

( rrr:ll—l , k=0
by, =« r-I—(i—r:m)s , k=1

1 k-2[¢2 _ _ A _

e I G B G BT (| I

and

( rm—l_l k=0

- [ 1] k=1
— 2
B I e T b e I

forall k € Nand m € N,. Then we write
T™p =(1,1,0,0,..) and T™d = (1,-1,0,0,...)

If we consider the norm of the space l;}(Gm), we obtain
2 2 _ 210 _ 2 2
”b + d”l%(Gm) + ”b - d”l%((;m) =8 #2p =2 (”b”l%(Gm) + ”d”l%(Gm))

whenever p € [1,0)\{2}. So, the parallelogram equality does not hold. As a result of this, the norm of
l,’}(Gm) can not be obtained from an inner product. Thus the space l;}(Gm) is not a Hilbert space whenever
p € [1,)\{2}. This step completes the proof.
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3. SOME INCLUSION RELATIONS

In this section, we examine some inclusion relations related to the sequence spaces l{}(Gm) and I3 (G™),
where 0 < p < oo,

Theorem 3.1 The inclusion l,’}(Gm) c Z{}(Gm) strictly holds in the meantime 0 < p < g < .

Proof Given an arbitrary sequence x = (x;) € l{}(Gm). In case of 0 < p < g < oo, we know that the
inclusion 1, c I, holds. If x € I2(G™), then T™x € 1,. By considering these two results, we conclude
that T™x € 1, namely x € I2(G™). So, we have [(G™) c I2(G™).

Now, we define a sequence u = (uy) as follows:

j
-2 kJ Ll(l+1)p
)(=5) Z D~ A=A

e
AN
~.
ntvqw
o
3

i=j-1

1

for all k € N. Then we obtain T™y = ( ) € I\, that is u € I2(G™)\IA(G™). As a consequence,

(k+1)P
the inclusion I}(G™) < I2(G™) is strict. This step completes the proof.
Theorem 3.2 The inclusions [}(G™) c c§(G™) < c*(G™) c I4(G™) are strict, where 0 < p < o and
c{}(Gm) = (co)pma and cAHG™) = cryma are defined in [15].
Proof We know the fact that the inclusions 1, < ¢, © ¢ < [, hold. By considering a similar way as used
in the proof of Theorem 3.1, one can easily obtain that the inclusions [}(G™) c c{(G™) c c*(G™)
12(G™) hold.
Now, we define three sequences x = (xi), ¥y = (yx) and z = (z;) as follows:

k

e (Y 3 ot
k T'm_l_ m-—2 ){j—;{j—l
Jj=0 i=j-1

k

:E: 1n-+] —-2 f)’

— r

and
k

s k—j 4
" Z = 1)1,1 —,1

j=0 i=j—-1

for all k € N. Then we obtain T™*x = ( > € co\lp, T™y =(1,1,1,..) €Ec\¢o and T™z =

(k+1)P
((—1)%) € Iy, \c, thatis x € cF(G™NIA(G™), y € cAH(G™)\cd (G™) and z € I4,(G™)\c*(G™). Hence the
inclusions I2(G™) c c$(G™) c cA(G™) c 14(G™) strictly hold. This step completes the proof.

Theorem 3.3 The inclusion I, < 14 (G™) is strict.

Proof For a given arbitrary sequence x = (xi) € lo,, we write

= Tmﬂ.
Il gmy = sup |(7%x), |

1 m-—
E E ~9-1.9
= sup |— rmVsVxi_g
keN [Ak — a
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1 k m-1
-1 —9—
2 o4 2 (Mg Db
-1
s( (™5 )l ﬁ|>||x||msupA Z(A A1)

< _1 m19119|) |x||

<
This shows that x = (x;,) € I4(G™), namely the inclusion I, < I4(G™) holds.

Let us define a sequence u = (uy,) as follows:

3

HMH gM

k 2 o
m+—
i)

for all k € N with |§| > 1. It is obvious that u = (uy) € lw. But T™u = (1,1,1,...) € L, that is u =
(uy,) € I4(G™). Thus the inclusion I, < I (G™) strictly holds. This step completes the proof.

Theorem 3.4 If the inclusion ,, c lA(Gm) holds, then the sequence ( ) €l,,where 0 <p < oo,

Proof We assume that the inclusion [, c l;}(Gm) holds for 0 < p < oo. Itisclear thate® = (1,0,0,...) €
L,. Then, by assumption, we conclude that e(® € I2(G™), that is T™*e(®) € L,,. This shows that

D
1,00 P = jme l)
Z|(Tm e )k| = [r™ 1/10|Z(/1k

namely, ( ) € 1, , where 0 < p < co. This step completes the proof.

4. SCHAUDER BASIS AND a-, - AND y-DUALS

In this section, we give the Schauder basis for the sequence space l,’}(Gm). Also, we determine a-, §- and
y-duals of the sequence spaces [}(G™) and I4,(G™).

Let (X, ]|l .]lx) be a normed space. A set {x,: x; € X,k € N} is called a Schauder basis for X if for every
x € X there exist unique scalars uy , k € N, such that x = Y;, uyxy; i.e.,

n
X = Z HieXy
k=0 X

— 0

asn — oo,

We know that the sequence {e "} is a Schauder basis for 1,, , where e®) is a sequence with 1 in k-th place
and zeros elsewhere. Because of the transformation L defined in the proof of Theorem 2.2 is an
isomorphism; the inverse image of {e )} is a Schauder basis for I2(G™).

So, we can give the following theorem.

Theorem 4.1 Let g; = {T™*x}, for all k € N. Define a sequence h(ij(r,s) = {Antiy (7, )} as
following:
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( m+n—k—2 m+n—k—3

1 (‘E)n_k "o )Ak+( noz ) k<n
i rmoZ\ (A — Ak—1) S(Aks1 — i) '
hn(k)(r, S) = A
k
, k=

™M1 (A — Ak—1) "
\ 0 , k>n

for all fixed k € N. Then the sequence {hE’,ﬁ’)l(r, s)}kEN is a Schauder basis for the space l{}(Gm) and every
X € l{} (G™) has a unique representation of the form

X = Z okh?,gl(r, s)

k
If we consider the results of Theorem 2.1 (b) and Theorem 4.1, we can give next result.

Corollary 4.2 The sequence space l;}(Gm) is separable for 1 < p < co.
Given arbitrary sequence spaces X and Y, the set M(X,Y) defined by
MXY)={y=yr€Ew:xy = (xyr) €Y forall x = (x) € X} (4.1)

is called the multiplier space of X and Y. For a sequence space Z with Y c Z c X, one can easily observe
that M(X,Y) c M(Z,Y) and M(X,Y) c M(X, Z) hold, respectively.

By using the sequence spaces 4, cs and bs and the notation (4.1), the a-, - and y-duals of a sequence
space X are defined by

X*=M(X,1,),XF = M(X,cs) and XY = M(X, bs)
respectively.
Now we write some properties which will be needed in the next lemma.

q
sup Z Anie| < o0 (4.2)
Kkex k Inek
sup ) |ang| < o (4.3)
keN
n
lim a,; exists forallk €N (4.4)
n—-oo
sup ) |ang|? < oo (4.5)
neN
K
sup |a,| < oo (4.6)
kneN
lim Z |ank — lim ankl =0 (4.7)
n—->oo k n—-oo

where F denotes the collection of all finite subsets of N and % + i =1.

Theorem 4.3 (see [16]) Given an infinite matrix A = (a,;), the following hold:
(i) A = (ank) € (Ly:ly) for 1 < p < 00 & (4.2) holds,
(i) A = (ank) € (41: ;) & (4.3) holds,
(iii) A = (ang) € (Ip:c) for 1 <p < 00 & (4.4) and (4.5) hold,
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(V) A = (@) € (Iy:¢) & (4.4) and (4.6) hold,
W) A = (a) € (Ly: ©) © (4.4), (4.5) and (4.7) hold with g = 1,
(Vi) A = (ang) € (Ip:le) for 1 < p < 00 & (4.5) holds,
Wii) A4 = (@) € (y: Ly) © (4.6) holds.

Theorem 4.4 Define the sets v]™(r, s) and vJ**(r, s) as follows:

2 4

nekK

q
<oo}

v (r,s) = {a = (ay) Ew: supZ|d | < 00}

v (r,s) = {a = (ay) Ew : sup
KEF

and

where the matrix D™ = (d Ar, s)) is defined via the sequence a = (a,) by

m+n—k—2 m+n—k—3
: ( S)H( m = 2 )Ak+( moz ) K
—(—= — =~ a, , <n
R r r (A — Age-1) S(Age+1 — Ak)
i (r,s) =+ 1
n
, k=
Py — Ap) "
\ 0 , k>n

for all n,k € N and m € N,. Then, {l;}(Gm)] = v™(r,s)for1 < p < o and {ll(Gm)} = v (r, s).

Proof Given a = (a,,) € w, we consider the sequence x = (x,,) defined by

n

1 m+n—k-— 2 Snk e—i M
xn=rm—12( m—2 Z( 1 L p— - -y (4.8)

k=0

for alln € N and m € N,. Then, we obtain

n

k
_ 1 m4+n—k—2\/_ S\"¥ i A
N (N R |G B I e e

k=0 i=k-1

= DM (y)
for all n € N and m € N,. Hence, we conclude that ax = (a,x,) € l; whenever x = (x;) € l{}(Gm) if
and only if D™y €I, whenever y = (y)) € L, that is a = (a;) € {l;}(Gm)}“ if and only if D™ €
(1,:14). If we consider this and Theorem 4.3 (i), we deduce that {l{}(Gm)} = v (r,s) for 1 <p < oo,
By using a similar way, we obtain that a = (a;) € {l’l(Gm)}a if and only if D™* € (1;:1,). If we consider
this and Theorem 4.3 (ii), we deduce that {l’l(Gm)} = v (r, s). This step completes the proof.

Theorem 4.5 Define the sets v7**(r, 5), vi™ (1, s), vI¥A(r, 5), v (r, 5) and v (r, s) as follows:

0] _ s n—j
vgn’l(r, s)=<{a=(ay) Ew z mtn- ] 2) (— ;) a; exists Vk €N

n—-1
v (r,s) = {a = (ag) Ew: sup2|b{{"1(n)|q < 00}
neN =0



Mustafa Cemil BISGIN | GU J Sci, 30(1):381-393(2017) 391

v (r,s) = {a = (ai) Ew : sup |b,’;’l’1(n)| < 00}
n,keN

vP(r,s) = {a = (@) €w: lim > [bpien)| = Zlb:ﬂl}
k k

and
Y q
o705 == @ € sy 2 <)
where
m+n—j—2 m+n—j—3
=il 3 (7 (Come ), Uonz ),
§ klrm-z r r(Ak — A1) S(Ak+1 — A) J
j=k+1
ag
+Ak I:Tm_l(lk - Ak—l):l

forall k <nand
br = lim b ().
Then, the following hold:
(@) {I2G™) = v (r,5) N v (r,5) N vIA(r,s), for 1 < p < oo,
) {Z(6™) = v, s) N v (r,s) N vIA(r, s) with g = 1,
© {1AE™Y = v (r,5) N vMA(r, s) N vl (r, s) 0 VG, s) with g = 1,
@) {12(6™Y} = v (r,s) nvA(r,s), for 1 < p < oo,

©) (6™} = vI'(r,s) N vl (r,s) with g = 1.

Proof For an arbitrary sequence a = (a;) € w, by taking into account the sequence x = (x;) that is
defined with the relation (4.8), we obtain

n

Zn = Z A Xk

k=0

n 1 k k—j j 1

m+k—j—2\/ S\ z i i
= 2 —1)y-i—"L

Z T'm_l_ ( m-—2 )( T') | o ( ) Aj—lj_lyl A

k=0 j=0 i=j—1

n-1
An

= b (n)yy + a
kz=0 k ( )yk rm_l(ln_ln_l) nyn

= Up*(y)

for all n € N, where the matrix U™ = (urf{‘,{l(r, s)) is defined as follows:
( bt (n) , k<n
ul(r,s) = 4 n

T I N R
0 , k>n

k=n
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foralln,k € Nand m € N,. Then,
(d) ax = (axxi) € cs whenever x = (x;) € [}(G™) if and only if U™y € ¢ whenever y = (y;) € L,
that is a = (a;) € {13(G™} if and only if U™ € (L,:c). If we combine this fact and Theorem 4.3 (iii),
we obtain

N m+n—j—2\/_ S\"/ .

Z( m—2 )( r) a; exists Vk € N

j=k

n-1

supZ|b,§"’1(n)|q < o
neN =0

and

q

A
n <

PRy — Ane) ™

sup
neN

As a consequence, these three results show that

(12G™) = vl (r,s) NV (r,5) N VI (r,5)
forl <p < co.

(b), (c), (d) and (e) can be proven by using a similar way. So, to avoid the repetition of similar statements,
we omit the details. This step completes the proof.

5. CONCLUSION

By considering the definitions of m-th order generalized difference matrix and the lambda matrix, one can

observe that G2(r,s) = B(by,by), G3(r,s) = B(by, by, b3), G*(r,s) = B(by, by, bs,by), ... where
B(by,by), B(by, by, b3), B(by, by, bs,b,), ... are double band(generalized difference), triple band,
quadruple band, ...matrix, respectively. Moreover, G™(1,—1) = A™, G3(1,—1) = A2and G?(1,-1) = A
. Furthermore, if we take 4, =n + 1 and 4,, = B, in the definition of the lambda matrix, we obtain the
Cesaro mean of order one and the Riesz mean matrix which are defined by

— , 0<k<n p [, 0<k<n
Cpg = ntl and Tk = Pn
0o , k>n o , k>n

respectively, where p, > 0,p,, =0 (n > 1) and B, = X.}—, Pk SO, the results obtained from the matrix
domain of the composition of m-th order generalized difference matrix and lambda matrix are more general
and more comprehensive than the others that we have mentioned above.

As we finalize our work, we would like to mention that in the next one, we will focus on geometric
properties of the space lﬁ (G™) and matrix classes related to the spaces l{}(Gm) and 12 (G™).
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