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Abstract

In this paper, some equalities and inequalities involving the Riemannian curvature
invariants are obtained on 3-semi slant submanifolds of cosymplectic 3-space forms. Obtained
relations for 3-semi slant submanifolds are examined on 3-slant, invariant, and totally real

submanifolds.
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Kosimplektik 3-Uzay Formlarimin Altmanifoldlar1 Uzerinde Chen-tipi Esitsizlikler
Oz
Bu calismada kosimplektik 3-uzay formlarinin 3-semi slant altmanifoldlar1 iizerine
Riemann egrilik invaryantlar1 igeren bazi esitlik ve esitsizlikler elde edilmistir. 3-semi slant alt

manifoldlar i¢in elde edilen bagintilar, 3-slant, invaryant ve total reel altmanifoldlar iizerinde

incelenmisgtir.
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1. Introduction

The concept of contact 3 —manifolds was originated by Y. Kuo [1] and C. Udriste [2],
independently. With the introduction of this concept, some classifications of contact 3 —
manifolds were presented by many authors. For mathematical and physical applications of

contact 3 — manifolds, we refer to [3-9], etc.

After the definition of Chen's slant submanifolds (cf. [10]), the problem of studying the
geometry of slant submanifolds attracted a lot of attention. From this viewpoint, these
submanifolds of almost contact metric 3 — manifolds were investigated by Malek and Balgeshir

in[11,12].

In the submanifold theory, the problem of finding basic relationships between curvature
invariants is one of the most basic and interesting problems. In order to compare the curvature
invariants of a Riemannian manifold and its submanifold, several inequalities were established
by Chen [13-16], etc. Later, this problem has been studied by many authors in various
submanifolds [17-24], etc.

In the first section of this study, some main formulas and notations for a Riemannian
manifold and its submanifolds are expressed. In the second section, the definitions of contact 3 —
manifolds and their submanifolds are given. An example of 3 —semi-slant submanifolds is
presented. In the third section, some relations involving Ricci curvatures of cosymplectic 3 —
space forms and their 3 —semi-slant, 3 —slant, invariant, and totally real submanifolds are
examined. In the fourth section, some relations involving scalar curvatures and sectional
curvatures of cosymplectic 3 —space forms and their 3 —semi-slant, 3 —slant, invariant and

totally real submanifolds are obtained.

2. Preliminaries

Let (M ,&)be a m—dimensional Riemannian manifold. The sectional curvature of

[T=Span{Y,Z} is formulated by

S(R(Y,Z)Z,Y)
gY.Vg(Z2,2)-g(Y,Z)*’

K(YAZ)=

where R is the Riemannian curvature tensor field of (M ,Z). Let {61,62,.. em} be an ortho-

b

normal basis of Tp M at pE M. The Ricci curvature for e,l€{l,2,...,m} is formulated by
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ﬁic(e,)zilz'(e,/\ej) (1)

Jj#l
and the scalar curvature at a point p € M is defined by

f(p)= Y, K(ene). )

INV<j<m

Let IT be an n—dimensional subsection of Tp]\;[ Mn=m,11 =T p]\;[ . Let us choose

an orthonormal basis {el,ez,...,en} of I1 . Then n—Ricci curvature of e,, t€{l,2,...,n}, is

formulated by

ﬁicnn (e)= Zk(et ne;)
J#t

3)

and n — scalar curvature of I1, is formulated by

7, (D)= Y, K(ene). @)

INV<j<n

We note that if n=m, then Ric,, (e,)= Ric, . (e,) and 7, (p) =7, ;(p)-
n p n P

Assume that (M,g) is a k—dimensional submanifold of (M ,&). The Gauss and

Weingarten formulas are formulated by

VxY=V,Y+0o(X,Y) (5)
and

VxY=-A4,X+VyN, (6)

where X,Y € TpM N is a unit normal  vector, V.Y, 4, X e TpM and
o(X,Y),VyNe T, "M . Here, o is the second fundamental form, A, is the shape operator

and V" is the normal connection of M. It is well known that o is associated to A, by the

following formula:
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g(o(X,Y),N) =g(4,X,Y). ()

Denote the Riemannian curvature tensor of M by R . The Gauss equation is formulated

by
gRX,Y)ZW)=gR(X,Y)ZW)+ & (X, W),0(Y,Z))- &(c(X,Z),0(Y,W)) (8)

for any X,Y,Z,WeTpM.

Let {el,ez, .. .,ek} be an orthonormal basis of 7, M . The main curvature vector field h is

formulated by

1 k
h:zZa(e,,e,). ()]

M is said to be totally geodesic if o =0, and it is said to be minimal if #=0. M is totally

umbilical if and only if o (X,Y)=g(X,Y)n is satisfied forall X,Y € T, M .

Let {ek+1,ek+2,...,em} be an orthonormal basis of 7T pLM and e, belongs to

{ek+l,ek+2,...,em } Denote the intrinsic sectional curvature by K(e, Ae;). In view of (8), if we

put

k
o, =g(o(ese;).e) and ol = X" 2(a(ee). 0(ee,). (10)
1,71
then we find
K(el/\ej)zlz(e,/\ej)+ Z(af,o-j.j—(a;f). (11)

s=k+1

From (11), it follows that

2

20(p) =27 (T M) +n |1 o, (12)
where
#HrM)= > K,
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Moreover, there exists the following relation:

m m k
Z (0], — 0y —"'—U}ik)z +2 Z Z(O-lxj)z

1
2.5 s=k+l j=2

ol = 34° I +
(13)
=23 Y (o0 - (@),
s=k+12<I<j<k

For the basic concepts dealing with Riemannian manifolds, we refer to [16].

The relative null space at a point p in M is given by [14]
N, ={X eT,M|o(X,Y)=0forall Y e T,M}. (14)
We note that N ) is also said to be the kernel of o at p [25].

The Chen invariant J§,, for a Riemannian submanifold A is formulated by [26]

0, (p) =7(p)—inf(K)(p), (15)
where inf(K)(p) =inf{K(IT):I1 is a plane}.

3. Submanifolds of Contact 3-Space Forms

Definition 1. [1] A differentiable manifold M admitting an almost contact 3 — structure

(&15M59,)1e12.3, 1 said to be an almost contact 3 — structure manifold. An almost contact 3—
structure manifold is denoted by (M, &;,77,,90,),c123-

For (M, 151> D) e 2.3, the following relations hold:

@GS =—08=6, MY, =-Nng =1, ns =0 (16)
and

P o, =186 ==pop+18¢, =9, (17)

where ([, j,n) is a cyclic permutation of (1,2,3).1f (M, ., includes a Riemannian

)15{1,2,3}

metric g given by

93



Giilbahar & Erkan (2023) ADYU J SCI, 13(1&2), 89-109

gY,p2)=g(Y,Z)-n{)n(2) (18)

forany Y,ZeT M, then (M,g,&,17,,0,),cq1,3 18 said to be an almost contact metric 3—

structure manifold. From the Eq. (18), we have

g(pY,2)=-g(Y,p2). (19)
(M 28585 M5, eq1.2.3 18 called a cosymplectic 3 — manifold if

Vo, =0 (20)
is satisfied. It is said to be a Sasakian 3 — manifold if

Vy@)Z = 3V, 2)& - n(2)Y @1)

is provided.

In a similar manner to the concept of holomorphic sectional curvature on Hermitian or

contact metric manifolds, we can state the concept of ¢, —holomorphic sectional curvature on

(M, g’, é:“?]],(p, )16{1’2’3} in such a way:

Definition 2. [11] A plane II is said to be a ¢, —section if there exists a unit vector
XeT, M orthogonal to &, where {X ;0 X } is an orthonormal basis on Il for some

le {1, 2,3}. The ¢, —holomorphic sectional curvature of a ¢, —section is defined by
K(X npX)=ER(X,0,X)pX, X).

A cosymplectic 3 — manifold (M ,2,8,1,,9, becomes a cosymplectic 3 — space

)16{1,2,3}
form if it is of constant ¢, —holomorphic sectional curvature ¢. A cosymplectic 3 — space form

is shown by M (c).

If M (c)is a cosymplectic 3 — space form, then the Riemannian curvature is satisfied the

following relation [1]:
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R(X,Y,Z,W) =§{g(X, W)g(Y,Z)-g(X,Z)g(Y, W)

+> [8(X,0W)g(Y,0,2)-g(X,0,2)g(Y,. 0, W)

n=1

-28(X,0,V)e(Z, W) —g(X. W)n,(Y)n,(Z)
+g(X,Z)n, (X )n,W)—-g(¥,2)n,(X)n,(W)
+g(Y, W)n,(X)n,(2)],

(22)

forany X,Y,Z,W eM.

Assume that (M, g) isa k — dimensional submanifold of (M, &, &5 P iqin.3, - Forany
vector field X in T pM , we can write ¢, X as follows:

pX=PX+FX, (23)
where AX € T,M and F,X T, M for [{1,2,3}.

We can express the following:

2 L 2
|5 = 2. &(Pe;.e,) (24)
Jj.n=1
and
2 k 2
|PX| =D g(RX.e,). (25)

n=l1

(M, g) is said to be invariant if F =0 and it is said to be totally real if P =0for each
[ €{1,2,3}. Furthermore, (M,g) becomes 3—slant if for each /€ {l,2,3}, the angle &

between ¢, X and the tangent space 7, M is constant for every p in M and every X # 0 which

is not linearly dependent by &, [12].

We remark that a 3 — slant submanifold becomes invariant when & =0 and it becomes

T
totally real if € = —. Furthermore, the following classification could be stated:
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Definition 3. [12] A submanifold (M, g) is said to be a 3 — semi-slant submanifold if we

have three orthogonal distributions D, D, , D, where D, = Span {é‘l s (53} and the following

cases occur:
i) TM =D, @D, @D,
ii) ¢,(D,) =D,, VI 6{1,2,3},
iii) D, is 3—slant with & # 0.

It is clear that (M,g) is 3—slant if D, =0 and it becomes an invariant submanifold if

0=0.
Example 1. Let us consider 11— dimensional Euclidean space E'". If we define

¢l ((xi)ie{l,...,ll}) = (—XZ, Xl ° _xg’ .X'4, —X7 ) _-xg, x5 ) XG, 0, _'xll , xlo)
®, ((xi)ie{l,...Jn) = (=X =5, X, Xy, =X, —Xg, X5, X, X1, 0, X ),

®, ((Xi)ie{l,...,ll}) = (X5, =X;, X3, =Xy, =X, —Xg, X5, Xg5 =X, Xg, 0)

such that & =0x,, & =0x,,, & =0x,, and 717,, 1, , 1, are duals of &, &,, &, respectively.

We find (E'', S15M1s®))eq123; 1S an almost contact 3 — structure manifold.

Let us define the following submanifold of (E'', S P)iepon:

M ={(u,,u,,u,,u,,ucosa,usinc,u,cos fB,usinf,u, ,ug,u,)},
7 : .
where a, § €0, 5) . In this case, we obtain

Y =0x, Y,=0x,, Y,=0x, Y, =0x,,
Y, = cosa Ox, +sina Ox,, Y, =cosp Ox,+sinf Ox,,
G =0x%, & =0x, & =0,

and

N, =—sina Ox, +cosa Ox,, N, =-sinf3 0x, +cosf 0Ox,,
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where .M =Span{Y,,Y,,Y,,Y,.Y,,Y,,&.,,, &}, T, M =Span{N,,N,} and {0x,,...,0x,}
is the natural basis of E''. If we put D, =Span{},Y,.Y,,Y,}, D, =Span{Y,,Y,} and

D, =Span{¢,,&,,&,}, then M becomes 3 — semi invariant with @ = |a —,B|
4. Inequalities Involving Ricci Curvatures

Let us indicate the set of all unit vectors in 7'M by T; M.

Theorem 1. [27] Let M be a k — dimensional submanifold of (M ,&). The following

cases hold:

i) Forany X € T;M, we get
Ric(X) < ilf |4l + Ric, ,, (X). (26)
Here EichM (X) is the k — Ricci curvature of X e T;M.

i) The equality case of (26) occurs for X € T)M if and only if

o(X,Z2)=0, foreachZ 1 X,
20(X, X) = kh(p).

iii) The equality case of (26) occurs for each X € Tp1 M if and only if either p is a totally

geodesic point or p is a totally umbilical point for £ =2.

From Theorem 1, we can state:

Corollary 1. [28] For any Riemannian submanifold, any two of the below three cases refer

to the other one:

i) X satisfies the equality case of (26).
ii) 7(p)=0.

iii) X € N,
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Now, we assume that {51,52,53}3 tangentto M and X € Tpl M throughout this paper.

Lemma 1. For any k — dimensional submanifold of M (c). We find

K(e, N ej) = %{1 + z[3g(})nel’ej)2 —ﬂf(ej) _775(@1)]}’ (27)
Ric, ,,(X)= g{m ~4)+ 2[3 PX| +(2 —k)n,f(X)]}, (28)
7 (D) = g{(k—lxk -6)+3) IR, ||2}- (29)

Proof. From (22), we have

E(R(ee e ) = {glene)gle e = g(ene)gle )

3
+Zl[g(€,,¢n€z)g(ej,¢ne,~)—g(e,,qonej)g(e,»,so,,e;)

—2g(e,0,e,)8(e;,0,6)—g(e,e)n,(e)n,(e)
+g(e,en,(e)n,(e)—gle;e)n,(e)m,(e)
+g(e_; .e)m,(e)n, (ej )]} )

which is equivalent to (27). In view of (1) and (27), we find

Ricf,,M(el)=§{(k—1)+z{3zg(ael,e_,)2 +(2—k)zn5(el)}}

n=1

Putting e, = X and using (25) in the last equation, we obtain (28). From (2) and (28), we get

Pe

prM(p>=§{k<k—4)+ZZ[3

I=1 n=1

[+ (2—k)n5(e,)]}.

Considering (24) in the last equation, we obtain (29).

In view of Theorem 1 and (28), we obtain

Theorem 2. For any k — dimensional submanifold of M (c), we have the following cases:
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i) Forany X € T;M, we get

Ric(X) < ilf I + %{(k —4)+ 2[3 PX[ +(2 —k)n:(X)}}. (30)

n=1

ii) The equality case of (30) occurs for X € T ; M if and only if

o(X,Z2)=0, foreach Z 1 X,

(X, X) = %h(m.

iii) The equality case of (30) occurs for each X € T;M if and only if p is a totally

geodesic point.

From Theorem 2, we immediately have

Corollary 3. For k — dimensional submanifold of M/ (), any two of the below three cases

refer to the other one:

i) X satisfies the equality case of (30).

i) 7(p) =0.

iii) Xe N .

Definition 4. Let D be a distribution on M .

i) If 0(X,Z) =0 is satisfied for all X, Z €D, then M is said to be D — geodesic.

ii) If there exists a smooth function A on M satisfying o(X,Z)=Ag(X,Z) for each

X,Z €D, then M is called D —umbilical.

Theorem 3. For any k — dimensional 3 — semi-slant submanifold, the following cases

occur:

i) For every unit X €D,, we get

Ric(X) < ikz (A +§(k+5). 31)
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ii) The equality case of (31) is true for each X e D, at p € Mif and only if M is D, —

geodesic.

iii) For every unit ¥ e D, , we get
Ric(Y) S%k2 ||h||2 +%{(k—4)+9cos2 ). (32)

iv) The equality case of (32) is true for all X €D, at p € M if and only if M is D, —

geodesic.

Proof. If X €D,, we obtain

3k
PX| =1, 7,(X)=0 and > >'n,(e,)=3.

n=l j=1

Using these facts in (28), we obtain (31). The equality case of (31) occurs for each X D), if and

only if 0(X,Z)=0 forall X,Z eD,. This implies that M is D, —geodesic.

If X belongs to D,, we obtain

3k
PnX||2:3cosz¢9, 1,(X)=0 and zzUn(ej):3.

n=1 j=1

23:
n=1

Using these facts in (29), we obtain (32). The equality case of (32) occurs for each Y €D, if and

only if o(Y,Z)=0 forall Y,Z €D, . This implies that M is D, —geodesic.
In view of Theorem 3, we find
Theorem 4. For any k — dimensional submanifold of M (¢), we find the following cases:

i) For the Ricci tensor S of M , we have the following table:

Table 1:
M Inequality
1 2 C
(1) | 3= stant S£(1k2||h|| L {k—ay9e0s e}j .
(2) | invariant §< sz 1 +§(k + 5)) g.
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(3) | totally real S< (%kz ||h||2 +%(k - I)Jg.

ii) The equality case of (1) —(3) occurs ifand only if M is a totally geodesic submanifold.
5. Inequalities Involving Scalar Curvatures

Lemma 2. [29]If q,,...,q, (k > l)are real numbers, then

1(<& 2 ,
%[Z a,j <>a (33)
is satisfied. The equality case of (33) occurs if and only if @, =a, =---=aq,.

Theorem 5. For any k — dimensional submanifold of A/ (c). Then

k k _1 2 C 3 2

r(p) < k(k-1) 5 )||h|| +§{(k ~(k-6)+3) ||| } (34)
n=1

is satisfied. The equality case of (34) is true for p in M if and only if p is a totally umbilical

point.

Proof. Assume that e, is parallel to 7i(p) and e,,...,e, diagonalize Aek - In this case,

we can write

4, = diag(al"l”,ofz+ L. .,G,fk”) (35)
and
k
A4, = (a,j.), traced, = Zaf, =0 (36)
) &) l:l

foreach [, j=1,...,k and s =k +2,...,m . From (12), (35) and (36), we get
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F,

Lol -Se - S Se e

s=k+21,j=1

3
20(p) = %{(k—l)(k—6)+3z
n=1
Considering Lemma 2, we arrive at
2 E k+132
k”h” = Z(O-// . (38)
I=1

From (37) and (38), the eq. (34) could be obtained. If the equality situation of (34) occurs, from

Lemma 2, we find
k+l _ _k+l o __k+l _
o, =0, =--=0, and AeA_ =0.

The last equation implies that p is a totally umbilical point. The other direction of proof is easy

to follow.

For any k- dimensional 3—semi-slant submanifold of A (c), we put dimD, =s,,

dimD, =5, and k =s, +s, + 3. Then, we have the following:

Theorem 6. For any k — dimensional 3 — semi-slant submanifold of M (c), we find

7(p) < @”h”z +§{(k —~1)(k—6)+9(s, +2+s5, cos’ O)}. (39)

The equality case of (39) is true for p in M if and only if p is a totally umbilical point.

Proof. If M is 3 — semi-slant, it can be found

3
Z”Pn ||2 =3s,+6+3s,c08” 0. (40)

n=l1
Considering (40) in Theorem 5, the proof is easy to follow.

As aresult of Theorem 6, we also have the following:

Corollary 4. For any k — dimensional submanifold M of M (c),
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1) we have the following table:

Table 2:

M Inequality

(1) | 3=slant | 7(p)< (k- )||h|| +§{(k 1)(k—6)+9((s, +s,)cos’ 0 +2)}.

(2) | invariant 7(p) < ( )"h” ; {(k=D(k+3)}.

(3) | totally real (p) < ( 2_ )"h"2 + % {k* =7k +24}.

ii) the equality case of (1)-(3) for each case is satisfied if and only if p is a totally

umbilical point.

Proof. If M is 3 — slant, then it can be obtained

+5,)c0s” O +6. (41)

n=1
Putting (41) in (34), we get the first case of Table 2.

Consider the fact that ¢,&, = ¢, if M is invariant, then we find

+5,)+6=3(k-1). (42)

n=1
Putting (42) in (34), we get the second case of Table 2.

Considering the fact that ¢,&, = ¢, if M is totally real, then we find

2

=6. (43)

n

Putting (43) in (34), we get the third case of Table 2.

The proof of ii) is easy to follow from Theorem 6.

Theorem 7. For any k — dimensional submanifold of M (c), we have
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2}. (44)

The equality case of (44) occurs for p in M if and only if p is a totally geodesic point.

L,

7(p)< %kz I +§{(k—1)(k—6)+3z3:

Proof. The proof'is easy to follow by (12) and (29).

As a result of Theorem 7, we find the following:

Corollary 5. For any k — dimensional 3 — semi-slant submanifold of A/ (c), we have
1
T (p) < Ekz ||h||2 + % {(k=1)(k=6)+9(s, +2+5, cos’ 0)}. (45)

The equality case of (45) occurs for p in M if and only if p is a totally geodesic point.

Corollary 6. For any k — dimensional submanifold of A/ (o),

1) we have the following table:

Table 3:

M Inequality

(1) | 3—slant ‘r(p) < %kz ||h||2 +%{(k —~1)(k—6)+9((s, +5,)cos” O+2)}.

() | invariant | 7(p)< %kz I + % ((k—1)(k+3)}.

(3) | totally real z'(p) < %kz ||h||2 +§{k2 —T7k+24}.

ii) The equality case of (1)-(3) occurs if and only if p is a totally geodesic point.
We need the following lemma for later uses:

Lemma 3. Let q,,...,a,,a (k> 2) be real numbers satisfying

(Zaj - (k_1)@a; +aj. )

I=1

Then
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2a,a, 2 a
is satisfied if and only if we find
a+a,=a,=--=aq,.

Let {e,...,e,} be an orthonormal basis and I1=Span{e,,e,}. We define

Pl

2 k
= g(Pee) 47
jt=3

Then we have

Theorem 8. Let M be a k — dimensional (k > 3) submanifold of M (c). Then, for each

point p € M and each ¢, —plane section Il =Span{e,,e,} such that ge =e,, we have

7(p)-K(e ne,) < k2 (k=2)

(1)

I +§{(k2 ~Tk+4)+3

Pl .

2
}. (48)

The equality case (48) occurs at p in M if and only if there exists an orthonormal basis

{ek e .,em} of T :M such that the shape operators Aex take the following forms:

a 0 0
e = 0 b 0 , (49)
0 0 (a+b)l,,
c, d, 0
4, =ld;, -, 0 |, selk+2,...m}. (50)
o 0 0,

Proof. Assume that 7i(p) is in the direction of ¢, ,, and ¢,,...,¢, diagonalize 4, .In this

case, A, take the forms (35) and (36). Thus, we can write
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(Zo,’;”j =(k—l)(2(al'j“)2+ D (o) + i Z(O';)z+a)j (51)

I#j=1 s=k+21,j=1

such that
c 2y kK (k=2),,p
w=2t(p)——{(k=1)(k-6)+3|P| i ——=||A| - 52
()= Gk =1k =6) 3B}~ == (52
Applying Lemma 3 to (51), we find
k m k
20105 2w+ Y (o) + D D (0)) (53)
I#j=1 s=k+21,j=1

Using (53) in (27), it also follows that

K(e ney) 2 %{1 + B3g(p,e.¢,)" —n,(e) -1, (ez)]}

n=1

1 N s s 1 N s s
too+ Y YA +(03) '+ D (o) +0y)’ (54)
2 s=k+2 j>2 2 s=k+2

m

EDINCH,

s=k+21,j>2

or we have

3
1
K(e ney) Z%{1+Z[3g(¢nel’82)2 _773(@1)_775(62)]}"‘50)' (55)

n=1
In view of (52) and (55), we get (48).
If the equality case of (48) occurs, then we find

=0y =0,  j=n+l..k,
o, =0, l,j=n+1,... k, (56)

s s _
o, +0,5, =0

O'lj

for s=k+2,...,m.From Lemma 3, it can be found
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ol 0y, =0y = =0y, (57)
which shows that 4, becomes as in (49) and (50).

In view of Theorem 8, we get

Corollary 7. Let M bea k — dimensional 3 — semi-slant submanifold of M (c). For each

@, —plane section IT = Span{e ,e,}, we have

(p)—K(e ne )Sm||h||2+£{k2—7k+l4+9(s +5,c08” 6)}. (58)
1 2 2(k—1) 8 1 2

The equality case of (58) is satisfied if and only if 4, becomes as in (49) and (50).

Proof. Under this assumption, we find

g 3(s, +5,c08° 6). (59)

P|

n

Using (59) in (48), the proof could be obtained.

Corollary 8. Let M be a k — dimensional submanifold of M (¢)and IT= Span{e,,e,} be

a ¢, —section.

1) We get the below table:

Table 4:
M Inequality
k* (k-2
(1) | invariant 7(p)—K(e ne)) < ﬁ”h”z + g (k> +2k—15}
E(k=2),. 0 ¢ .,
(2) | totally real | 7(p)—K(e, ne,) < Z(k——l) |7 + " (k> =7k +32}.

ii) The equality case of (1)-(2) is satisfied if and only if 4, becomes as in (49) and (50).

Proof. Assume that M is invariant. In this case, we find
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" 23(s, +5,) =3(k—3). (60)

P|”L

n

Using (60) in (48), we obtain the first case of Table 4.

If M is totally real, then we have

=6. (61)

n

2
Plﬂi

Using (61) in (48), we obtain the second case of Table 4.

The proof of ii) is straightforward from Theorem 8.
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