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Abstract

In this paper, we discuss the concept of total graph and computed some topological indices.
If © is a simple graph, then the elements of © are the vertices Oy and edges O . For e =
ut € O, the vertex u and edge e, as well as % and e, are incident. We define the general
harmonic (GH) index and general sum connectivity (GS) index for graph © regarding
incident vertex-edge degrees as: H*(©) = ., (ﬁ)a and X*(©) = >Ny + X¢)%,
where « is any real number. In this article, we derive the closed formulas for a few
standard graphs for (GH) and (GS) indices and then go on to calculate the lowest and
the greatest general harmonic index, as well as the general sum-connectivity index, for
various graphs that correspond to their total graphs.
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1. Introduction

Chemical Graph Theory is a branch of Mathematical Chemistry that uses graph theory
tools numerically to analyze chemical phenomena [3,23]. It has a significant impact on the
realm of chemical sciences [10]. The vertices of a molecule are the atoms, and the links
between the atoms are the valency bonds. A topological descriptor is an extracted numer-
ical value from the molecular graph [24,25]. It is used to understand the physicochemical
properties of chemical compounds [11,12]. The interesting characteristic of topological
indices is to apprehend a couple of the features of an atomic structure in a single number.
Starting with Wiener’s foundational work [29], plenty of topological descriptor have been
anticipated and investigated [28].

Let © = (Oy,OF) be a simple graph having [ vertices and m edges, with vertex and edge
sets Oy and O, individually. And X, is used to symbolize the degree of vertex u [17,18].
In a simple graph O, ut is the symbol for the edge e that connects the vertices u and .
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For the edgee = u of the graph ©, then the vertices u and 7 are associated with edge e.
The degree of an edge V. is calculated by the formula R, = N, + N, — 2, where ud = e.
The total I'(0) graph is a derived graph with (I'(0))y = Oy + O and ui € (I'(©))r <
u and 4 are associated or incident in ©. For more details see [26,27].

During the past few decades, edge end-vertex degrees were employed to calculate topolog-
ical indices. Several indices have been recognized as helpful tools in theoretical-chemistry.
The most familiar of these descriptors is discussed in [22] . This molecular descriptor
(Randié¢ sum connectivity) has been the subject of over a thousand studies and a number
of books [14,21]. Scientists have been working on improving the Randié index’s predictive
power for many years. As a result, a significant amount of additional topological indices,
analogous to the novel Randi¢ index, are introduced. The Zagreb type indices are the
most important Randié¢ successors [13]. The harmonic index, described in [8], is another
noteworthy topological descriptor and is defined as:

HO)= Y

Favaron et al. in [9] explored the connection between the harmonic index and graph
eigenvalues. Zhong [31, 32] calculates the extreme values of harmonic indices for trees,
general graphs, and unicyclic graphs. The general harmonic index is introduces by Yan et
al. in [30] and is defined as:

H*®)= ) (NU—QH%;)Q'

uuEB R

Getting inspiration from the Randié [1], Zagreb [12], and harmonic indices, two new
indices namely, the sum connectivity and the general sum connectivity indices were defined
by Zhou and Trinajstic in [33,34] as:

1
XO©)= ), F——
utEOR Nu_‘_N’a

XO) = Y (Ra+Ry)%
utEOR
Some extremal characteristics of {(©) and {*(0©) are discussed in [5,6,35]. To account
for contributions from pairs of nearby vertices, the Zagreb type indices were suggested.
Following them, a slew of other indices are calculated [2,7]. After being inspired by
Kulli’s work [15,16,19,20], we define the generalized harmonic index and generalized sum
connectivity index regarding incident vertex-edge degrees.

Definition 1.1. We establish the general harmonic (GH) index for graphs with regard
to incident vertex-edge degrees as:

1©) =% ()" (1.1)

0

Definition 1.2. We establish the general sum-connectivity (GS) index for graphs with
regard to incident vertex-edge degrees as:

X(0) =Y (Ra+Re)™. (1.2)

et

Firstly, we’ll derive the closed formulas for a few standard graphs for equation (1.1)
and equation (1.2). Secondly, we’ll calculate the lowest and the greatest general harmonic
(GH) index, as well as the general sum-connectivity (G\S) index, across various graphs
that correspond to their total graphs.
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For n > 4, the path graph P, has two types of edges | ©g,, |= 2 and | Op,, |[=n — 3
while total graph graph of P, has four types of edges. i-e. | I'my |= 2, | T'my, |= 2,
| 'y, |=4, and | I'g,, |= 4n — 13, see details in Figure 1.
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(1) Total Graph of Path Graph Ps

Figure 1. Graphical illustration of (a)path graph Ps and (b)its total graph I'(Ps)

Theorem 1.3. Forn >4, if I'(P,) is the total graph of P, (path graph), then for a > —2
and a < =2, P, has the largest and smallest GS indez, respectively.

Proof. By using equation (1.2), we can see that

X(Pa) = D IRa+Re)?]

2
= Z Z [(Nu + Ne)a + (Nu + Ne)a]
(2% +3%) x2+2x4%(=3+n)
— 2a+1 + 2 X 304 + 22a+1(n _ 3)

RAC(P)) = D [(Ra+Xe)]

ue

4
= Z Z [(Nu + NE)a + (Nu + Ne)a]
1=1 dueB;(I'(Pn))
= 2(6%+8Y) +2(5% 4+ 6%) + 4(8% +9%) + 2 x 10%(—13 + 4n)
2 x10%(—=13+4n) + 2 x (5% +9%) + 4 x (6“ + 8%)

RE(Py) — X“(T(P,) = 2x4%=34n)—2x 10%(—13 + 4n) + 2"
+ 2x3%¥—2x5%—4x6%—6x8—4x9% (1.3)

Define h(r) =2 x 4%(=3 +v) — 2 x 10%(—13 4 4v).
For v > 4, h(v) is strictly decreasing function when o > —2, also

h(4) = 2x4%—6x1094+2x2%+2x3%—-2x5%—-4x6%—6x8" —4 x 9%
= 2% (2°43% 5% —6%) —2x (3x 8% +2x 9% +3x 10%

< 0, for a>-2.
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Consequently, X*(P,) — X“(I'(P,)) < h(v) < h(4) < 0 for a > —2. Which implies that
X*(Ppn) < X*(I'(Pp)) for & > —2. By similar calculations, X*(FP,,) > x*(I'(P,)) for a < —2
and hence the the proof.

O

Theorem 1.4. Forn > 4, if T'(P,) is the total graph of P, (path graph), then for (%)O‘ > %
and (%)O‘ < %, P, has the smallest and largest GH index, respectively.

Proof. By using equation (1.1), we can see that

P = (o)

2 2

-y ¥ T + )

=1 4uekE; (Pn

= 2><(1+(§)a)+2><(

1
270[)(_3 +n)

HEE) = 3 ()

ue

e S S R

=1 queE;(T'(Pn))

= (2)(-13+ )+ 4 x [()°+ ()] +2x [ + ()]
+2x ()4 (3)°)
HY(P,) — H(T(P,)) = %X(—3+n)—(5—)x(—13+4n)—|—2
F2x ) 2% ()0~ (o)~ () — (55) — 4% ()1.4)

Define g(j1) = & (1 — 3) — (<13 +4u) x ().
For > 4, g(u) is strictly decreasing functlon when (%) > 4, also g(4) < 0 also holds for

(2)* > 1 Consequently, H*(P,) — H*(I'(P,)) < g(p) < g(4) < 0 for (£)® > X. Which
implies that H*(P,) < HY(I'(P,)) for (2)® > 1. By similar calculations, H*(P,) >
H(T'(Py)) for (£)* < 3 and hence the the proof. O

For n > 3, the cyclic graph C), is 2 regular graph, so there is only one type of edges
Op,, with frequency n. If I'(C,) is the total graph of cycle C),, then it is a 4 regular graph.
There is only one type of edges I'g,, with frequency 4n The total graph derived from the
cyclic graph C,, has 2n vertices and edges 4n, see details in Figure 2.

Theorem 1.5. Forn >3, I'(Cy,) has the greatest and the smallest GS index for a < —2
and o > —2, respectively.

Proof. By using equation (1.2), we can see that
XNCn) = D oIRg+Re)?)
= > IRa+HR)T+ Ry +Re)?]
wueE(Cr)
= 2n x 4%
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(a) Cycle Graph Cg

(b) Total Graph of Cycle Graph Cs

Figure 2. Graphical illustration of (a)cycle graph Cg and (b)its total graph I'(Cs)

XUO(C)) = D I(Ra +Re)?

de

= Do [+ R+ (Ry +Re)?]
wueE(D(C))

= 8n x 10%

X*(Cn) —X“((Cr)) = 2nx4%—8n x 10 (1.5)
Define h(v) = 2v x 4% — 8v x 10*. Also,
h(3) = 6x4% —12 x 10°
[0 5 «
= 6x4 (1—2(5) )
5
O —_\«
< 0, & (2) >
which holds for @ > —2, so h(3) < 0 for a > —2. And h/(v) = 2(4% — 4 x 10%) < 0 for
a > —2. Consequently, X*(Cp)—x*(I'(Cy)) < h(v) < h(3) < 0 for @ > —2. Which implies
that Y*(Cp) < X*(I'(Cy)) for a > —2. By similar calculations, x*(C,) > x*(I'(C,,)) for

a < —2 and hence the the proof. O

Theorem 1.6. Forn > 3, I'(C,,) has the greatest and the smallest GH index for (%)0‘ <
and (2)* > %, respectively.

=

Proof. By using equation (1.1), we can see that

a 2 o
H G = 2 ()
2 6% 2 «
= > [ )"+ ( )]
W€ E(Ch) R+ Ne Ru + Re
a B L,
= 2><(2+2) ><n—2n><(2)



On some bounds of degree based topological indices for total graphs 1679

2 .
HTG) = ¥ ()
2 2
= [( )+ ( )]
ﬁueE%(Cn)) Ny + N Ny + N
a 1
= 2><(m) ><4n:8n><(g)a
HY(Cy) — HY(T(C)) = 2n x (%)a . (%)a (1.6)
Define f(v) = 2v x (3)* —8v x (). Also,
6 24
f@) = 50 " Fa
14
= x5
2. 1
< 0, & (g) > Z

So f(3) < 0 for (2)* > 1. And f/(v) = 2(5x — 4 x %) < 0 for (£)* > 4. Consequently,
H*(Cp) — HA(I'(Cp)) < f(v) < f(3) <0 for (2)® > 1. Which implies that H*(C,) <
H*(T'(Cy)) for (2)® > 1. By similar calculations, H*(Cy,) > H*(I'(Cy,)) for (£)* < 1 and
hence the the proof. O

Lemma 1.7. T'(K,) is (2n — 2) regular graph and has order and size ”zﬂ and 5 - (n —
1)(n + 1) respectively.

Proof. Each vertex, say v/, will be connected to n — 1 vertices, see details in Figure 3.
As a result, these vertices will be connected to v’ by n — 1 edges. Therefore, the degree of
v in T'(K,,) will be 2n — 2. i-e. I'(K,,) is 2n — 2 regular. As | V(K,) |—nand | E(K,) |=

5 x (n—1), so by using definition of I'(K,), | V(I'(K,)) |[= § x (n—1)+n = % Using
the regularity and order of I'(K,,), we have ZU,GV(F(Kn))(Nu/) ==n 2*" -(2n —2). With the
help of Hand shaking lemma, | E(I'(K,)) |[= § - (n — 1)(n + 1). O

(a) Complete Graph Ks (b) Total Graph of Complete Graph Ks

Figure 3. Graphical illustration of (a)complete graph K3 and (b) its total graph
I'(K3)

Lemma 1.8. Let § > 3, the function ¢(53) is a strictly decreasing and increasing function
for a > %1 and o < %1 respectively, where

¢(B) = BB -DIBB—5)* = (B+1)(65 —8)%]
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Proof.
¢'(B) = (B—5)"""[(28-1)(38—-5)+3aB(8—1)]
— (68 —8)1[(2B8 - 1)(B+1)+ (8% — B)(68 —8) + (B> — B)(B+ 1) x 6a]
= (38-5)271(6 —30)8* + (13 + 3a)B + 5]

(68 —8)* 1[6(1+a)B® —128% + 96 — 1] (1.7)
The convexity of z%~! together with the Jensen’s inequality implies that
(65 —-8)* 1< (38-5)*"+3(8-1)""
Therefore, by using above inequality in equation (1.7), we have
¢'(B) < (38 —5)*"[(—6 — 6)8° + (18 — 3) 8° + (—22 + 30) 3 + 6]

¢(8) < (38 —5)*"g(8) <0
for > 4and a > _Tl, where g(8) = a183+a28%+a3B+6, and a3 = —6—60;, az = 18— 3a,
ag = —22+4 3. Since 1 < a—1 < 2 implies that 2 < o < 3. Consequently, ¢(f) is strictly

decreasing for o > %1 Similarly, we can show ¢() strictly increasing for o < %1 d

Lemma 1.9. Let ¥ > 3, the function Q(9) is a strictly decreasing and increasing function
for a < _71 and o > _71 respectively, where

1 (¥W+1)
Q9) = 2°9(9 — 1 -
() (b )[(3?9 -5 (69— 8)6“]
Proof.
1 J+1
YW = 229 -1 —
3o 1 69 + 1)
2%(9% — 9 -
+ 20 - e " Go—sr T o9y
- 1 3a(¥? —99)
= Go—ga 2T
1 6(9+ )99 —1)
- 21 +1)— (-9
1 6a (¥ + 1)(9 — 1)
= — 9?4+ (=13 — 30)9 —
(319_5)&[(6+3a) + (=13 — 3a)9 — 5] + (67— 38)2
1 2
S — 20 — 1
60— 8)° [0% + 29 — 1]
1 9 6a (0 + 1) — 1)
< - —13 — -
< (3§_5)a[(6+3a)19 + (=13 = 3a)9 — 5] + 60 —8)?
= f(@0)+g() (1.8)
where f(¥) = w [(6 + 3a)9? + (=13 — 3a)9 — 5] and g(J) = % both are
strictly decreasing for a < _71 and are strictly increasing for a > _71 Consequently,
inequality 1.8 implies that Q(¥) is strlctly decreasing for a < 5=. Similarly, we can show
Q(99) is strictly increasing for a > = O

Theorem 1.10. IfI'(K,,) is the total graph of complete graph where n > 3, then K, give
the largest and the smallest GS index for a < %1 and o > _71 respectively. Furthermore,
foroz:% and =3

X (Kn) = X (T(Ky))
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Proof.
) = DI+ R)7
= Z [(Nd + Ne)a + (Nu + Ne)a]
aucBE(Kn)
n(n —1)

= — o x2x(3n-5)"

= n(n—1)(3n—5)*
XU(C(Kn) = D [(Ra+Re)?]
= Z [(Nu + Ne)a + (Nu + Ne)a]
aue BT (Ky))
= n(n—1)(n+1)(6n —8)“
() = XM (Kn)) = n(n = 1)[(3n = 5)% = (n+1)(6n — 8)].

By using Lemma 1.8, the function ¢(n) = n(n—1)[(3n—5)%—(n+1)(6n—8)? is increasing
and decreasing for o < 3! and o > = respectively. Also ¢(3) = 6(4* —4-10%) < 0 if and
only if (2)* < 4 which holds for & > Z!. Therefore {*(K,) < {*(I'(Ky)). By the similar
argument for a < =!, we have the result {*(K,) > x*(I'(Ky)). Finally, for « = 3! and
n = 3, we have X*(K,) = X*(I'(Ky)). O

Theorem 1.11. IfI'(K,,) is the total graph of complete graph where n > 3, then K,, give
the largest and the smallest GH index for a > _71 and o < _71 respectively.

Proof.

B = Sl )]

2 a 2 L«
= aue%(:m[(mme) Sl
= 2><(3n2_5)axg-(n—1)

n2%
= m X (n—1)

H) = Yl )"

ue

- )"+ o)

aueE(T(Kn))
nn—1)(n+1)

2 )ax
2n —2+4n — 6 2
oo

= 2x(

Hoc(Kn) _ Ha(F(Kn)) = QO‘n(n — 1)[(3n i 5)a B (é:, —i__ éia].

By using Lemma 1.9, the function Q(J) = 2%9(J — 1) [(319i5)a - (égfé))a] is increasing and
1 1 4

decreasing for o > 5 and a < 5= respectively. Also Q(3) = 6 - 20‘[4% — lo—a] < 0 if
and only if (%)a < 1 which holds for a < 5}, Therefore H*(K,) < H*(I'(K,)). By the

similar argument for a > =, we have the result H*(K,) > H*(I'(K,)). O
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Lemma 1.12. For 3 > 2, the function defined by 7(8) = 2°[8 x (=2 +38)% — B x (2 +
B)(—=2 +68)%] is strictly increasing and decreasing for a < —3 and o > —3 respectively.

Proof.

7'(z)

20(1+ BIn2)[(—2+38)* — (B+2)(—2 + 68)"]

+ 2P x B[Ba(—2+3B)a— 1 — (=2 +6B)* — (2+ ) x 6a(—2+68)* "]

= 2%(-2+38)*" (-2 +38)(1 + 2In2) + 3a8]

— 2%(=2+2B)* (=24 68)(In2(B)* + 2(1 +In2)3 + 2) + 6a3(B + 2)](1.9)
The convexity of u®~! together with the Jensens inequality implies that

(38)* 7 > (=2+68)* ! — (~2+38)*
Using above inequality in equation (1.9), we have
7(B) < 2°(—2+3B8)*7'[38 -2+ 3In26% —2In28 + 3a — (1267 + 8z — 4

+ 68°In2—26%In2 +128%In2 — 431In2 + 65%a + 128a)]
= 2038 -2)*"1[(—6 x In2)3% + (In8 — 10 x In2 — 12 — 6a) 3>
+ (-5—Ind4+4In2—9a)B + 2]
7(8) < 2°(—2+3B)*" x g(B) (1.10)

where g(8) = [(=6 xIn2)3%+ (In8—10xIn2— 12— 6a) 8%+ (=5 —1In4d+41n2—9a) S +2]
g (B) <0 for @« > =3 and ¢'(8) > 0 for « < —3, where 3 > 2. Consequently, 7(3) in
increasing for @ < —3 and 7(f) is decreasing for a > —3; 8 > 2. O
Lemma 1.13. For w > 3, the function defined by ¢p(w) = w X 2’“’+"‘[(3w£2)a - (éxf;))a]
is strictly increasing and decreasing for (%)O‘ < % and (1—76)0‘ > % respectively.

Lemma 1.13 can be proved analogously. The hypercube @, is n regular graph with
order and size as 2" and n x 277! respectively , see details in Figure 4. By definition
of total graph, I'(Q,) has order and size as n - 2" ! +2.2""14 = (n 4+ 2) - 277! and
2"~1 . n(2n + n?), respectively. Now for the hypercube @,,, we calculate the smallest and

(a) Hyper Cube Graph Q: (b) Total Graph of Hyper Cube Graph Q:

Figure 4. Graphical illustration of (a )hypercube @2 and (b) its total graph
I'(Q2)
the largest GS index.

Theorem 1.14. Let I'(Qy,) be the total graph of Qy,, then for n > 2, Q, has the smallest
and and the greatest GS index for o < —3 and o > —3 respectively.



On some bounds of degree based topological indices for total graphs 1683

Proof.
£5@Qn) = 20 +Re)7]
= > [Ra+R)T+ (R +Re)?
e E(Qn)
= [(n+2(-1+n)*++2(-1+n)-2""" - n
= 2" xn(3n—2)°

(@) = Z[(Na +Re)]
= Z [(Rg +Re)™ + (Ny + Re)?]
tueE(T(Qn))
= [2n+2(—142n)*+ 2n+2(-142n))*]-2""1. (24 n) - n
= 2"x (6n—2)%2+n)n

XH@n) = R*(T(@n)) =n x 2" [(3n = 2)% = (n + 2)(6n — 2)°] (1.11)
Let 7(u) = = x 2*[(3u — 2)* — (u + 2)(6u — 2)*], then by using Lemma 1.12, 7(u) is
strictly increasing and decreasing for @ < —3 and a > —3 respectively. Also 7(3) =
24(7* — 5 x (16)*) < 0 for (:5)® < 5, which also satisfied by > —3. Consequently,
X*(Qn) — X*(T(Qr)) < 7(u) < 7(3) < o for a > —3, which implies that Y*(Q,) <
X*(T(Qy)) for a > —3. By similar calculations, we can show that Y*(Q,) > X“(I'(Qn))
for o < —3. O

Theorem 1.15. Let I'(Q,,) be the total graph of Qy, then for n > 3, Q,, has the smallest

and and the greatest GH index for (1—76)a > L and (1—7(")“ > L respectively.

5 5
Proof.

7Q) = Yl i)
2 2
= > )"+ ( )]
wuEE(Qn) Nﬁ+Ne Nu"‘Ne
2 a 2 L an—
- nx[(n+2(—1+n)) +(n+2(—1—|—n)) 2"
2n+cx
- (3n —2)«
HTQ) = Sl
2 2
= > ) o )]
e BT(Qn) Ny + X, Ny, + N
- [(2(n—i+2n))a+(2(n—i—|—2n))a]'(2n+n2).2n_1
B 5 9 2n+a
= (2n+n”) x m
H®(Qn) — H*(I(Qn)) = n x 2"F%[ 1 __ _(n+2) ]. (1.12)

(B3n—2)  (6n —2)
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Let ¢(u) = u X 2“+a[(3u12) (égfg))a]v then by using Lemma 1.13, ¢(u) is strictly
16(— -

increasing and decreasing for (1—6)0‘ < % and (1—76)a > % respectively. Also ¢(3)

ags) < 0 for (75)* > 5. Consequently, H*(Qn) — H*(T(Qn)) < ¢(u) < ¢(3) <
for (176)0‘ > L which implies that H*(Q,) < HO‘(F(Qn)) (16)0‘ > % By snnllar
1
5

i L
calculations, we can show that HY(Q,) > H*(I'(Q»)) for (& )a O

2. Conclusion

The study of structural Graphs Theory is a large and growing field of study. First

strategy for analysing structural qualities is to obtain quantitative measurements that
scramble structural data of the entire system by a real number. The entire structure of
networks has been examined using a vast compendium of quantitative descriptors and re-
lated graphs. The importance of degree-related topological indices in theoretical chemistry
and nanotechnology is highlighted in these studies. As a result, one of the most successful
study areas is the computation of degree-related indices.
This study deals with the derivation of closed expression of (GH) and (GS) indices in
terms of incident vertex-edge degrees for the path graph P,, cyclic graph C,, complete
graph K, and the hypercube graph @, for a definite pendent vertex for various esti-
mations of @. Computing favourable results for the extremal (GSS) and (GH) indices of
various graphs with fixed parameters would be the most appealing.
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