
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 53 (3) (2024), 690 – 703
DOI : 10.15672/hujms.1241656

Research Article

A comparative study for the spectral properties
of Toeplitz and Hankel operators

Ayşe Güven Sarıhan
Department of Mathematics, Faculty of Science and Arts, Ordu University, Ordu, Turkey

Abstract
In this introductory review, we study Hankel and Toeplitz operators considering them as
acting on certain spaces of analytic functions, namely Hardy spaces and compare their
spectral properties such as their compactness criteria. In contrast to Toeplitz operators,
the symbol of a Hankel operator is not uniquely determined by the operator. We also
connect Toeplitz operators with Fredholm operators and give some of the most beautiful
properties of Toeplitz operators such as the essential spectrum of Toeplitz operator with
continuous symbol and the index of Toeplitz operator introducing Fredholm operators
firstly.
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1. Introduction
The theory of Toeplitz and Hankel operators is a very wide area and even a huge mono-

graph can deal with only some selected topics. The main purpose of this article is to
provide an introduction to this theory. We introduce Hankel operators, one of the most
important classes of operators on Hardy spaces and define them as operators having in-
finite Hankel matrices with entries depending only on the sum of the coordinates with
respect to some orthonormal basis. We also introduce another very important class of
operators on Hardy spaces, the class of Toeplitz operators and define them as operators
having infinite Toeplitz matrices with entries depending only on the difference of the coor-
dinates with respect to some orthonormal basis. Although Hankel and Toeplitz operators
are closely related to each other, they have quite different properties such as their com-
pactness criteria. While the symbol of a Toeplitz operator is uniquely determined by the
operator, the symbol of a Hankel operator is not. This study mainly focuses on the book
[13] and follows the proofs of some of its nice results and theorems in detail.
It is organised as follows. Section 2 deals with the spaces of analytic functions, Hardy
spaces. We are only concerned with H2, H∞ and give some useful background informa-
tion. The ideas in Section 2 are standard and can be found in [6, 8, 12, 13, 15, 16], for
example. Having established the background knowledge, we will be able to introduce
Hankel operators in Section 3 and Toeplitz operators in Section 4. The definitions in
Section 3 and 4 are taken from [13]. The final section connects Toeplitz operators with
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Fredholm operators. Some of the most important properties of Toeplitz operators such
as the essential spectrum of Toeplitz operator with continuous symbol and the index of
Toeplitz operator are given in this section introducing Fredholm operators firstly.

2. Spaces of analytic functions: Hardy spaces
As will be seen in the next sections, the most fruitful way of looking at Hankel and

Toeplitz operators is to consider them as acting on certain spaces of analytic functions,
namely Hardy spaces. The classic Hardy spaces consist of analytic functions defined on the
open unit disc. The discussion is for H2, which is naturally regarded as a closed subspace
of L2(T) and thus Hilbert space. After treating H2, we consider H∞, the isomorphism
between L2 and ℓ2 and the orthogonal projections.

We start by reviewing the basic properties of L2(T).
Let D denote the open unit disc in the complex plane:

D = {z; |z| < 1}
and let T denote the unit circle:

T = {z; |z| = 1}.

Definition 2.1. L2(T) is the space of all measurable functions on the circle T with the
norm

‖f‖L2 =
{ 1

2π

∫ π

−π
| f(eiθ) |2dθ

} 1
2

and each f ∈ L2(T) has Fourier coefficients

fn = 1
2π

∫ π

−π
f(eiθ)e−inθdθ (n = 0, 1,−1, 2,−2, ...).

Definition 2.2. L∞(T) is the space of all essentially bounded measurable functions on
the circle T with the norm

‖f(z)‖∞ = inf{C ≥ 0 : | f(z) |≤ C for almost every z}.

Definition 2.3. The Hardy space H2 is the space of all analytic functions on D such that

‖f‖H2 = sup
r<1

( 1
2π

∫ π

−π
| f(reiθ) |2dθ

) 1
2
< ∞.

The basic properties of H2 are summarized in the following theorem.

Theorem 2.4. ([14], Theorem 17.10.) A function f , of the form

f(z) =
∞∑
n=0

fnz
n

is in H2 if and only if
∑

| fn |2 < ∞; in that case,

‖f‖2
H2 =

∞∑
n=0

| fn |2.

Since the radial limits of a H2 function converge almost everywhere on T and the
resulting function is in L2(T), we can identify H2 as a subspace of L2(T).

Moreover, the subspace H2 and L2 admits the following descriptions:
H2 := {f ∈ L2 : fn = 0 for n < 0},
H2

− := {f ∈ L2 : fn = 0 for n ≥ 0},
where fn is the nth Fourier coefficients of f . Besides, we know that

H2
−

⊕
H2 = L2.
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Definition 2.5. The Hardy class H∞ is the space of all bounded analytic functions in D
with the norm

‖f(z)‖∞ = sup
|z|<1

| f(z) | .

Theorem 2.6. ([10], Theorem 5.5.) Let f ∈ L2(T). Then
(i)

∑
| fn |2 = 1

2π
∫

| f(t) |2dt.

(ii) f = limN→∞
∑N

−N fne
int in the L2(T) norm.

(iii) For any square summable sequence {an}n∈Z of complex numbers, that is, such that∑
| an |2 < ∞, there exists a unique f ∈ L2(T) such that an = fn.

(iv) Let f and g are in L2(T).
Then

1
2π

∫
f(t)g(t)dt =

∞∑
n=−∞

fngn.

Theorem 2.6 amounts to the statement that the correspondense f → {fn} is an isometry
between L2(T) and ℓ2(Z). Let denote this isomorphism as an operator

U : L2(T) −→ ℓ2(Z)
such that ∑

n∈Z
fnz

n 7→ {fn}n∈Z

to be able to say that Hankel operators defined on L2 and ℓ2(Z) are unitarily equivalent
through this isomorphism (see, for example, [10]).
Additionally, we may define the operator

V : H2(T) −→ ℓ2(Z+)
such that ∑

n∈Z+

fnz
n 7→ {fn}n∈Z+

to be able to say that Toeplitz operators defined on H2 and ℓ2(Z+) are unitarily equivalent
through this isomorphism (see, for example, [2], Section 2.6).

Moreover, we define the orthogonal projections which will be used in the next sections.
On the space L2 define the P+ and P− onto the subspaces H2 and H2

− by

P+f =
∑
n≥0

fnz
n, P−f =

∑
n<0

fnz
n.

Clearly, P− + P+ = I.

3. Hankel operators
3.1. Matrices {αi+j} in ℓ2(Z) and operators Ha

Definition 3.1. An infinite matrix is called a Hankel matrix if it has the form

α0 α1 α2 α3 ...
α1 α2 α3 α4 ...
α2 α3 α4 α5 ...
α3 α4 α5 α6 ...
. . . . ...
. . . . ...
. . . . ...


,
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where α = {αj}j≥0 is a sequence of complex numbers. In other words, Hankel matrices
are the matrices whose entries depend only on the sum of the coordinates. If α ∈ ℓ2(Z),
we can consider the operator Γ : ℓ2(Z) −→ ℓ2(Z) with matrix {αj+k}j,k≥0 that is defined
on the dense subset of finitely supported sequences. In other words, if a = {an}n≥0 is a
finitely supported sequence, then Γa = b ∈ ℓ2(Z), where b = {bk}k≥0 is defined by

bk =
∑
j≥0

αj+kaj , k ≥ 0.

We call such operators Hankel operators.
So we can define Hankel operators as operators having infinite Hankel matrices with

entries depending only on the sum of the coordinates with respect to some orthonormal
basis. Furthermore, we say that the matrix of Ha is a Hankel matrix {a−j−k}j≥1,k≥0 with
respect to the bases {zn}n≥0 for H2 and {zm}m≥0 for H2

−: (Haz
k, zj) = a−j−k.

3.2. Non-uniqueness of symbol for Hankel operator
In this part, we are going to consider another realization of Hankel operators on the

Hardy space H2 of functions on the unit circle.
Definition 3.2. Let a be function in the space L2 on the unit circle. We define the Hankel
operator Ha : H2 −→ H2

− on the dense subset of polynomials in H2 by
Haf = P−af,

where P− is the orthogonal projection from L2 onto H2
−. Then the function a is called a

symbol of the Hankel operator Ha.
As stated in [13] and we shall see below in detail, a Hankel operator has many different

symbols. So, it is possible to have a1 6= a but Ha1 = Ha. Indeed, let suppose a1 = z,
a = z2 and f is analytic since f ∈ H2. We have

Ha1f = P−a1f = P−(
∞∑
n=0

zfnz
n) = P−(

∞∑
n=0

fnz
n+1) = 0.

On the other hand, we have

Haf = P−af = P−(
∞∑
n=0

z2fnz
n) = P−(

∞∑
n=0

fnz
n+2) = 0.

Therefore, we have a1 6= a but Ha1 = Ha as required.
The following theorem helps to find the class {a1 ∈ L∞ : Ha1 = Ha} for fixed a ∈ L∞.

Theorem 3.3. Fix a ∈ L∞. Then
{a1 ∈ L∞ : Ha1 = Ha} = {a1 = a+ f : f ∈ H∞}.

Proof. Let Ha : H2 −→ H2
−, Haf = (I −P+)af = af −P+af and B(L2(T)) be the space

of bounded linear operators from L2(T) to itself.
For fix a, let describe the set a1 such that Ha1 = Ha. Let g : L∞(T) −→ B(L2(T)) be

an operator such that a 7−→ Ha.
Then we need to find the kernel of g which is

Ker(g) = {a ∈ L∞(T) : g(a) = Ha = 0}.
As shown in [1], if a happens to be in H∞, then it is clear that P+af = af for all f ∈ H2,
so the resulting Hankel operator Ha is zero operator. On the other hand, if Ha = 0, then

Ha1 = a− P+a = 0,
so a = P+a ∈ H∞. Therefore, Ha = 0 if and only if a ∈ H∞. Now, we may define

Ker(g) = {a ∈ H∞ : g(a) = Ha = 0}.
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If Ha1 = Ha then we have that Ha1−a = 0 by the linearity of Hankel operators. If
Ha1−a = 0, then a1 − a ∈ Ker g, so a1 = a+ f , where f ∈ H∞. □

Furthermore, we may say that the definition of Ker g implies that g is not injective. For
this reason, it is also easy to see that if Ha1 = Ha it does not have to imply a1 = a, which
means that the symbol of Hankel operator is not unique.

3.3. Boundedness of Hankel operator
In this section we shall give the criteria for boundedness for Hankel operators before

discussing compactness criteria of Hankel operators. The following theorem characterizing
the bounded Hankel operators on ℓ2(Z+) is due to Nehari.

Theorem 3.4. ([13], Theorem 1.1.1.) The Hankel operator Γ with matrix {αj+k}j,k≥0 is
bounded on ℓ2(Z+) if and only if there exists a function a in L∞ on the unit circle T such
that

αk = ak, k ≥ 0.
In this case

‖Γ‖ = inf{‖a‖∞ : ak = αk, k ≥ 0}.

Recall that ak is the kth Fourier coefficient of a.
It follows from Theorem 3.4 that a Hankel operator Ha is bounded and ‖Ha‖ ≤ ‖a‖∞.

3.4. Compactness of Hankel operator with continuous symbol
In order to be ready to prove the main theorem, which is Theorem 3.8, in this section

we give the following theorems.

Theorem 3.5. ([10], Weierstrass approximation theorem) Every continuous 2π-periodic
function can be approximated uniformly by trigonometric polynomials.

Theorem 3.6. ([11], Theorem 8.1-4) Let X and Y be normed spaces and T : X −→ Y a
linear operator. Then

(i) If T is bounded and dimT (X) < ∞, the operator T is compact.
(ii) If dimX < ∞, the operator T is compact.

Theorem 3.7. ([11], Theorem 8.1-5) Let (Tn) be a sequence of compact linear operators
from a normed space X into a Banach space Y . If (Tn) is uniformly operator convergent,
say, ‖Tn − T‖ → 0, then the limit operator T is compact.

Theorem 3.8. If symbol a ∈ C(T) then Ha = P−a is compact.

Proof. Suppose a ∈ C(T) then there exists a sequence of polynomials (an) such that
‖an − a‖C(T) → 0, as n → ∞ by Theorem 3.5. Firstly, we check that ‖Ha −Han‖ → 0 as
n → ∞. We have that

‖Haf −Hanf‖ ≤ ‖(Ha −Han)f‖ = ‖Ha−anf‖ ≤ 2π · C · ‖a− an‖C(T) ‖f‖ .

Since ‖an − a‖C(T) → 0, ‖Ha −Han‖ → 0 as n → ∞. Secondly, we need to show that a
sequence of operators (Han) is compact. To begin with, let us prove that if a(z) = zm

(m > 0), then Hzm is compact. Now, suppose a(z) = zm. Then

P−(a(z)f(z)) = P−(
∞∑
n=0

fnz
mzn) = P−(

∞∑
n=0

fnz
(n−m)).

We have that P−(a(z)f(z)) = f0z
−m + f1z

1−m + ... + fm−1z
−1. Since Hzmf is always a

polynomial of degree at most m, Hzm has finite rank and so is compact by Theorem 3.6
(i).
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Let us prove that if a(z) = zm(m ≥ 0), then Hzm is compact.

P−(a(z)f(z)) = P−(
∞∑
n=0

fnz
mzn) = P−(

∞∑
n=0

fnz
(n+m)) = 0.

Thus, Hzm = 0 and Hzm is compact. Now, let an =
∑M
m=−M γmz

m. Then

Han =
M∑

m=−M
γmHzm .

Then we have that

Han =
−1∑

m=−M
γmHzm +

M∑
m=0

γmHzm .

Therefore, (Han) is a sequence of compact operators since it can be represented as a
linear combinations of compact operators. Consequently, by Theorem 3.7, Ha is compact
due to the fact that (Han) is a sequence of compact operators and ‖Ha −Han‖ → 0 as
n → ∞. □

4. Toeplitz operators
4.1. Matrices {αi−j} in ℓ2(Z+) and operators Ta

Definition 4.1. An infinite matrix is called a Toeplitz matrix if it has the form

α0 α1 α2 α3 ...
α−1 α0 α1 α2 ...
α−2 α−1 α0 α1 ...
α−3 α−2 α−1 α0 ...
. . . . ...
. . . . ...
. . . . ...


,

where α = {αj}j≥0 is a sequence of complex numbers. Toeplitz matrices are the matrices
whose entries depend only on the difference of the coordinates.

We may define Toeplitz operators on the Hardy class H2 as those which have Toeplitz
matrices in the basis {zn}n≥0.

Definition 4.2. An operator T : H2 −→ H2 defined on the set of polynomials is called a
Toeplitz operator if there is a two-sided sequence of complex numbers {tn}n∈Z such that

(Tzk, zj) = tj−k, j, k ∈ Z+. (4.1)

4.2. Uniqueness of symbol for Toeplitz operator
Definition 4.3. Given a ∈ L∞ we define the Toeplitz operator Ta on H2 by

Taf = P+af, f ∈ H2,

where P+ is the orthogonal projection from L2 onto H2. Then the function a is said to
be a symbol of Toeplitz operator Ta.

We have given an isomorphism
V : H2(T) → ℓ2(Z+)

in the first section. Let Ta : H2 → H2 and A : ℓ2(Z+) → ℓ2(Z+) be Toeplitz opera-
tors. Let denote A = V TaV

∗. Thus, we can connect the Toeplitz operator A with the
Toeplitz operator Ta. As stated in [13], in contrast with Hankel operators the symbol
of a Toeplitz operator is uniquely determined by the operator, which can be seen in the
following theorem in detail.
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Theorem 4.4. If Ta = Tb then a = b.

Proof. To begin with, we need to check that if Ta = 0 then a = 0. Suppose Ta = 0, i.e.
Taf = 0 for ∀f . Firstly, let f(z) = z, a(z) =

∑∞
m=−∞ amz

m and Taf = P+af = 0. Then
P+(a(z)f(z)) = P+(z

∑∞
m=−∞ amz

m) = P+(
∑∞
m=−∞ amz

m+1) = 0.

Taf = a−1 + a0z
1 + a1z

2 + ... = 0.

a−1 = a0 = a1 = ... = 0.
Secondly, let f(z) = z2. Then P+(a(z)f(z)) = P+(

∑∞
m=−∞ amz

m+2) = 0.

Taf = a−2 + a−1z
1 + a0z

2 + a1z
3 + ... = 0.

a−2 = a−1 = a0 = a1 = ... = 0.
Finally, let f(z) = zn.
Then P+(a(z)f(z)) = P+(

∑∞
m=−∞ amz

m+n) = 0.

Taf = a−n + a−n+1z
1 + ... = 0.

a−n = a−n+1 = ... = 0.
If we continue this type of calculation, then we will find a = 0 due to the fact that all
coefficients of a are zero. Thus, if Taf = 0 for ∀f , then a = 0. Now, if Ta = Tb, then
Ta−b = 0 by the linearity of Toeplitz operator. If Ta−b = 0, then a− b = 0, so a = b. □

4.3. Boundedness of Toeplitz operator
We now give the boundedness criteria for Toeplitz operators before considering non-

compactness criteria of Toeplitz operators.

Theorem 4.5. ([13], Theorem 3.1.1.) The Toeplitz operator T with matrix defined by
(4.1) is bounded on H2 if and only if there exists a bounded function a on the unit circle
T whose Fourier coefficients coincide with the tj:

an = tn.

In this case
‖T‖ = ‖a‖∞ .

4.4. Non-compactness of Toeplitz operator with non-zero symbol
Some important definition and theorems are going to be given to be able to prove

Theorem 4.9 which shows non-compactness of Toeplitz operator with non-zero symbol.

Definition 4.6. A sequence (xn) in a Hilbert space H converges weakly to x ∈ H if

lim
n→∞

(xn, y) = (x, y) for all y ∈ H.

Weak converges is usually written as

xn ⇀ x as n → ∞

(see, for example, [9]).

Theorem 4.7. ([11], Theorem 8.1-7) Let X and Y be normed spaces and T : X −→ Y
a compact linear operator. Suppose that (xn) in X is weakly convergent, say, xn −→ x.
Then (Txn) is strongly convergent in Y and has the limit y = Tx.

Theorem 4.8. Let f (n) ∈ ℓ2(Z) be a sequence such that f (n) = (0, ..., 0, 1, 0, ..., 0), where
1 is on the nth position. Then f (n) is weakly convergent to 0.
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Proof. Suppose that H = ℓ2(Z). Let f (n) be a sequence whose nth term is 1 and whose
other terms are 0. If y = (y1, y2, y3, ...) ∈ ℓ2, then

(f (n), y) = yn → 0 as n → ∞,

since
∑

| yn |2 converges. Hence f (n) → 0 as n → ∞ (see, for example, [9], Example
8.38.). □

Now we are ready to prove the following theorem.
Theorem 4.9. If a 6= 0 then Ta = P+a is not compact.
Proof. Suppose a is not zero. Then ∃j such that aj 6= 0. Using the information about
the correspondence between ℓ2(Z) and L2, we may define f (n) = (0, ..., 0, 1, 0, ...), (where
1 is on the nth position) as f (n) = zn. Then

P+(a(z)f(z)) = P+(
∞∑

k=−∞
akz

kzn) = P+(
∞∑

k=−∞
akz

k+n) =
∞∑

k=−n
akz

k+n.

We may define
Ta : H2(T) −→ H2(T)

f (n) = zn 7→
∞∑

k=−n
akz

k+n

and
T ′
a : ℓ2(Z+) −→ ℓ2(Z+)

f (n) = (0, ..., 0, 1, 0, ...) 7→ (a−n, a−(n−1), ..., a0, a1, ...)
As we stated in the first section there is an isomorphism

V : H2(T) −→ ℓ2(Z+).
In fact, V is the restriction of the isomorphism U . Let denote Ta = V ∗T ′

aV . Then we may
say that Toeplitz operators defined on H2 and ℓ2(Z+) are unitarily equivalent through
this isomorphism as well. After defining Taf (n), we need to find the norm of Taf (n).∥∥∥Taf (n)

∥∥∥ =

∥∥∥∥∥∥
∞∑

k=−n
akz

k+n

∥∥∥∥∥∥ =
( ∞∑
k=−n

| ak |2
) 1

2
>| aj |> 0

since a 6= 0 and −n < j for sufficiently large n. This means that
∥∥∥Taf (n)

∥∥∥ 6−→ 0.

Consequently, we have that there exists a sequence f (n) → 0 as n → ∞, yet
∥∥∥Taf (n)

∥∥∥ 6→ 0.
This means that Ta = P+a is not compact by Theorem 4.7. □

After having considered Theorem 4.9, we may easily say that the only compact Toeplitz
operator is T0 = 0.

5. Fredholm operators
This section connects Toeplitz operators with Fredholm operators and gives some of the

most important properties of Toeplitz operators such as the essential spectrum of Toeplitz
operator with continuous symbol and the index of Toeplitz operator introducing Fredholm
operators firstly. The following definitions are taken from [5,7, 9, 13] respectively.
Definition 5.1. A bounded linear operator T on a Hilbert space is said to be Fredholm
if:
(i) RanT is closed;
(ii) KerT and KerT ∗ are finite dimensional, i.e. dim KerT < ∞ and dim KerT ∗ < ∞.
The index of a Fredholm operator T , index T , is the integer

index T = dim KerT − dim KerT ∗.
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For example, the identity operator on an infinite-dimensional Hilbert space is Fredholm
operator with index zero owing to the fact that the kernel of the identity operator is 0-
dimensional subspace consisting of (0, 0, 0, ...) and the adjoint of the identity operator is
again itself (see, for example, [9]).

Definition 5.2. The essential spectrum of T is the set of all complex numbers λ such
that T − λI is not a Fredholm operator, i.e.

spece(T ) = {λ ∈ C : T − λI is not a Fredholm}.

Let a be a function in C(T) that does not vanish on T. We define the winding number
wind a with respect to the origin in the following way.

Definition 5.3. Consider a continuous branch of the argument arga of the function t →
a(eit), t ∈ [0, 2π], i.e. arga ∈ C([0, 2π]),

exp(iarga(t)) = a(eit)
| a(eit) |

, t ∈ [0, 2π].

Then wind a = 1
2π (arga(2π) − arga(0)).

Definition 5.4. Let D(T ) be a linear subspace of X and let T : D(T ) → Y be linear. The
map T is said to have a left approximate inverse if and only if there is a map Rℓ ∈ B(Y,X)
such that Rℓ ⊂ D(T ) and RℓT − IX is compact. Similarly, T has a right approximate
inverse if and only if there is a map Rr ∈ B(Y,X) such that Rr(Y ) ⊂ D(T ) and TRr − IY
is compact. The maps Rℓ and Rr are called left and right approximate inverses of T
respectively.

We shall refer to a map which is both a left and a right approximate inverse of a map
T as an approximate inverse of T . Now, we shall give the some important theorems which
will be used to prove Theorem 5.10. We will denote F(X,Y ) as a space of all Fredholm
operators which map from X to Y .

Theorem 5.5. ([5], Theorem 3.15.) Let T ∈ B(X,Y ). Then the following statements are
equivalent:
(i) T ∈ F(X,Y ),
(ii) T has an approximate inverse.

Theorem 5.6. ([5], Theorem 3.16.) Let X, Y , Z be Banach spaces. Let S ∈ F(X,Y )
and suppose that T ∈ F(Y, Z). Then TS ∈ F(X,Z) and

index TS = index T + indexS.

Theorem 5.7. ([5], Theorem 3.17.) Let T ∈ F(X,Y ) and suppose that S is compact.
Then T + S ∈ F(X,Y ) and index(T + S) = index T .

As stated in [5], the index of Fredholm operator is unchanged by compact perturbations.

Theorem 5.8. ([11], Theorem 7.3-1) Let T ∈ B(X,X), where X is a Banach space. If
‖T‖ < 1, then (I − T )−1 exists as a bounded linear operator on the whole space X and

(I − T )−1 =
∞∑
j=0

T j = I + T + T 2 + ...

where the series on the right is convergent in the norm on B(X,X).

Theorem 5.9. If ‖B‖ < 1 then I +B is Fredholm and index (I +B) = 0.

Proof. We need to find that the image of I +B is closed and
dim Ker(I +B) < ∞ and dim Ker(I +B)∗ < ∞.
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To begin with, we need to check that if {φn} ∈ Ran(I + B) and φn → φ then φ ∈
Ran(I + B). Let φn = (I + B)ψn and φ = (I + B)ψ. Then ψn = (I + B)−1φn and
ψ = (I +B)−1φ since (I +B)−1 exists by Theorem 5.8. We have that ψn → ψ as n → ∞
since φn → φ as n → ∞. Besides, we have (I + B)ψn → (I + B)ψ, which means that
φn → φ as n → ∞ and φ ∈ Ran(I+B). Now, we need to find Ker(I+B) and Ker(I+B)∗.
Firstly, (I+B)ψ = 0 ⇔ Bψ = −ψ, which contradicts to ‖Bψ‖ < ‖ψ‖. Then we have that
ψ = 0. Thus,

Ker(I +B) = {0} and dim Ker(I +B) = 0 < ∞.

Secondly, we know that if ‖B‖ < 1 then ‖B∗‖ = ‖B‖ < 1.
(I +B)∗ψ = 0 ⇔ (B∗ + I)ψ = 0 ⇔ B∗ψ = −ψ,

which contradicts to ‖B∗ψ‖ < ‖ψ‖. Hence, we have that ψ = 0.
Ker(I +B)∗ = {0} and dim Ker(I +B)∗ = 0 < ∞.

Therefore, I +B is Fredholm operator. Moreover,
index(I +B) = dim Ker(I +B) − dim Ker(I +B)∗ = 0.

□
Now, we are ready to give one of the main theorems in this section and closely follow

its proof in [5] in detail.

Theorem 5.10. ([5], Theorem 3.18.) Let T ∈ F(X,Y ). Then there is a positive number δ
such that if S ∈ B(X,Y ) and ‖S‖ < δ, then T +S ∈ F(X,Y ) and index(T +S) = index T .

Proof. Let R 6= 0 be an approximate inverse of T , so that there are compact maps K1
and K2 such that RT = IX + K1, TR = IY + K2. Put δ = ‖R‖−1. We show that δ has
the desired properties. Let S ∈ B(X,Y ) be such that ‖S‖ < δ. Then ‖RS‖ < 1 and then
by Theorem 5.8, (IX +RS)−1 exists and is in B(X). Thus,

R(T + S) = IX +K1 +RS = (IX +RS)[IX + (IX +RS)−1K1] (5.1)
and

(IX +RS)−1R(T + S) = IX + (IX +RS)−1K1.

Since (IX+RS)−1K1 is compact this shows that T+S has a left approximate inverse, which
is (IX + RS)−1R. In the same way it follows that R(IY + SR)−1 is a right approximate
inverse of T + S. Now, we need to show that

(I +RS)−1R = R(I + SR)−1.

Let us start with the summation of R and RSR. We know that
R+RSR = R+RSR.

Then we have that
R(I + SR) = (I +RS)R. (5.2)

If we apply (I + SR)−1 to both right sides of the equation (5.2), then we have
R(I + SR)(I + SR)−1 = (I +RS)R(I + SR)−1.

R = RI = (I +RS)R(I + SR)−1. (5.3)
If we apply (I +RS)−1 to both left sides of equation (5.3), then we have

(I +RS)−1R = (I +RS)−1(I +RS)R(I + SR)−1.

(I +RS)−1R = IR(I + SR)−1 = R(I + SR)−1.

In conclusion, we have
(I +RS)−1R = R(I + SR)−1 as required.
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Hence T + S ∈ F(X,Y ) by Theorem 5.5. By Theorem 5.6, Theorem 5.9, we have
indexR+ index(T + S) = indexR(T + S).

indexR(T + S) = index(IX +RS) + index[IX + (IX +RS)−1K1] = 0
from equation (5.1). Therefore, index(T + S) = − indexR. In addition to this, we know
that RT = IX +K1, IX is Fredholm with index 0 and K1 is compact.

By Theorem 5.7, index(RT ) = index(IX +K1) = index IX = 0.
Then we have that

0 = index(RT ) = indexR+ index T by Theorem 5.6.
Thus, index T = − indexR. Consequently, we have shown that index(T + S) = index T .

□
In order to evaluate the second main theorem in this section, which is Theorem 5.13

about the essential spectrum of Toeplitz operator with continuous symbol we give the
followings.

Theorem 5.11. ([13], Theorem 1.4.) Let a be a nonzero function in L∞. Then either
KerTa = {0} or KerT ∗

a = {0}.

Proof. Let f ∈ KerTa and g ∈ KerT ∗
a . Then af ∈ H2

− and ag ∈ H2
−. Therefore,

afg ∈ H1
− = {a ∈ L1 : an = 0, n ≥ 0} and afg ∈ H1

−. Let h = afg. Then both h and
h belong to H1

−, which means that hn = 0 for any n ∈ Z and so h = 0. Since a 6= 0, it
follows that either f = 0 or g = 0. □
Theorem 5.12. ([13], Theorem 1.7.) Suppose KerTa = {0}. Then there exists ϵ > 0 such
that

ϵ ‖f‖2 ≤ ‖Taf‖2 ≤ ‖af‖2 , f ∈ H2.

Furthermore, there is important relation between Hankel and Toeplitz operators and
there is a useful formula that relate Hankel operators with Toeplitz ones. This formula
that will be used is the following:

Tφψ − TφTψ = H∗
φHψ, φ, ψ ∈ L∞

(see [13]).
We now ready to give the following main theorem and closely follow its proof in [13] in

detail.

Theorem 5.13. ([13], Theorem 3.3.) Let a ∈ C(T). Then spece(Ta) = a(T).

Proof. Firstly, let us prove that spece(Ta) ⊂ a(T). Let a ∈ C(T) and
a(T) = {λ ∈ C : a(eiθ) = λ for some θ ∈ [0, 2π]}

= {λ ∈ C : a− λ vanishes on T}.
Suppose that λ 6∈ a(T). We need to show that λ 6∈ spece Ta. We may say that a− λ does
not vanish on T since λ 6∈ a(T). If a−λ does not vanish on T, then b = 1

a−λ is continuous.
We need to show that Tb is approximate inverse of Ta−λ. We have

T(a−λ)b − Ta−λTb = H∗
(a−λ)Hb. (5.4)

Using equation (5.4), we have T1 − Ta−λTb = H∗
(a−λ)

Hb. Then we have

I − Ta−λTb = H∗
(a−λ)Hb, I − TbTa−λ = H∗

b
Ha−λ.

Both operators are compact by Theorem 3.8. This means that Ta−λ = Ta−λI is Fredholm
by Theorem 5.5. Thus, λ 6∈ spece Ta. Therefore, we have proven that spece Ta ⊂ a(T).
Secondly, let us prove that a(T) ⊂ spece Ta. It suffices to show that if Ta is Fredholm, then
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a is invertible in C(T). By Theorem 5.11, either KerTa = {0} or KerT ∗
a = {0}. Suppose

that KerTa = {0}. Then by Theorem 5.12, there exists ϵ > 0 such that

ϵ ‖f‖2 ≤ ‖Taf‖2 ≤ ‖af‖2 , f ∈ H2. (5.5)

Therefore, we can extend (5.5) to

ϵ ‖znf‖2 ≤ ‖aznf‖2

to be able to study on L2. The set {znf : f ∈ H2, n ≥ 0} is dense in L2. Indeed,

zn
∞∑
k=0

fkz
k =

∞∑
k=0

fkz
k−n =

∞∑
k=−n

fk+nz
k.

g ∈ L2 : g(z) =
∞∑

k=−∞
gkz

k and g(n)(z) =
∞∑

k=−n
gkz

k.

So, g(n) is of the form znf , f ∈ H2 and
∥∥∥g(n) − g

∥∥∥
L2

→ 0 as n → ∞. That is,

∥∥∥g(n) − g
∥∥∥
L2

=

∥∥∥∥∥∥
−n−1∑
k=−∞

gkz
k

∥∥∥∥∥∥
L2

≤

∥∥∥∥∥∥
∞∑

k=−∞
gkz

k

∥∥∥∥∥∥
L2

,

∥∥∥∥∥∥
∞∑

k=−∞
gkz

k

∥∥∥∥∥∥ = (
∞∑

k=−∞
| gk |2)

1
2 → 0

as n → ∞. Since the set {znf : f ∈ H2, n ≥ 0} is dense in L2, it follows that

ϵ ‖g‖2 ≤ ‖ag‖2

for any g ∈ L2, which implies that 1
a ∈ C(T). □

The following definitions and theorem are taken from [4].

Definition 5.14. A homotopy between two continuous functions

f, g : X → Y

is a family of continuous functions ht : X → Y for t ∈ [0, 1] such that h0 = f , h1 = g, and
the map t → ht is continuous functions X → Y .

Moreover, if we continuously deform a loop without touching a fixed point, say the
origin 0, the winding number around that point is constant during the entire deformation,
even if we allow the basepoint to move during the deformation. The type of deformation
we allow is called a free homotopy, which is just a homotopy through loops. More formally,
the definition of free homotopy is given below.

Definition 5.15. A free homotopy between two loops α and β in R2 \ 0 is a function
h : [0, 1]2 → R2 \ 0 such that h(0, t) = α(t) and h(1, t) = β(t) for all t and h(s, 0) = h(s, 1)
for all s.

Theorem 5.16. Two loops α and β are freely homotopic in R2 \0 if and only if windα =
windβ.

We now ready to give the following final main theorem and closely follow its proof in
[13] in detail.

Theorem 5.17. ([13], Theorem 3.3.) Let a ∈ C(T). For λ 6∈ spece Ta. We have

index(Ta − λI) = − wind(a− λ).
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Proof. Suppose λ 6∈ spece Ta. Without loss of generality we can assume that λ = 0. Since
a does not vanish on T, the curve t → a(eit), t ∈ [0, 2π], is homotopic in C \ {0} to the
curve t → eint for some integer n. Let t → aγ(eit) be this homotopy,

γ = 0 : aγ = a and γ = 1 : aγ = eitn = zn.

Theorem 5.10 establishes that the index is a homotopy invariant: if T (γ) is a norm con-
tinuous family of Fredholm operators then index T (γ) does not depend on γ (see, for
example, [3], Theorem 4.3.11.). Now, we need to check that Taγ is norm continuous in
γ. That is, need to check

∥∥∥Taγ1
− Taγ2

∥∥∥ → 0 as | γ1 − γ2 |→ 0. Let ã = aγ1 − aγ2 . We

know that
∥∥∥(Taγ1

− Taγ2
)f

∥∥∥ =
∥∥∥Taγ1 −aγ2

f
∥∥∥ = ‖P+(aγ1 − aγ2)f‖. ‖P+ãf‖L2 ≤ C ‖ãf‖L2 ≤

2π · C · ‖ã‖C(T) · ‖f‖L2 . Then we have∥∥∥(Taγ1
− Taγ2

)f
∥∥∥ ≤ 2π · C · ‖aγ1 − aγ2‖C(T) · ‖f‖L2 .

Because of the definition of the homotopy, ‖aγ1 − aγ2‖ → 0 as | γ1 − γ2 |→ 0. Then we
have that

∥∥∥Taγ1
− Taγ2

∥∥∥ → 0 as | γ1 − γ2 |→ 0. Hence, we have that the index does not
change under homotopy. Furthermore, Theorem 5.16 shows that the winding number is
homotopy invariant. Now, we may find wind a and index Ta finding wind zn and index Tzn .
Firstly, wind a = wind zn = n. Indeed, we know the formulas

exp(iarga(t)) = a(eit)
| a(eit) |

and wind a = 1
2π

(arga(2π) − arga(0)).

We know that arga(t) = −i log
( a(eit)

|a(eit)|
)
. Then we find that

argzn(2π) = −i log
( e2πin

| e2πin |
)
= −i log(e2πin) = 2πn,

argzn(0) = −i log
( e0

| e0 |
)
= −i.0 = 0.

Thus, wind a = 1
2π (2πn−0) = n. Secondly, we know that if a(z) = zn, we have the operator

Tzn : H2 → H2 such that Tznx = (0, 0, ..., 0, f0, f1, ...) (n zeros) where x = (f0, f1, ...).
Firstly, we need to find the kernel of Tzn . The kernel of Tzn is the 0-dimensional subspace
consisting of vectors (0, 0, 0, ...). Secondly, we need to find the kernel of T ∗

zn , which is
(Ran(Tzn))⊥.

Ran(Tzn) = (0, 0, ..., 0, f0, f1, ...)(n zeros) and (Ran(Tzn))⊥ = (f0, f1, ..., fn−1, 0, 0, ...).

Thus, dim Ker(T ∗
zn) = dim(Ran(Tzn))⊥ = n and dim Ker(Tzn) = 0. We have the formula

index Tzn = dim Ker(Tzn) − dim Ker(T ∗
zn) = 0 − n = −n.

Consequently, we have shown that

index Ta = index Tzn = −n = −windzn = −winda.

□
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