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Abstract

This work discusses the µ-symmetry and conservation law of µ procedure for the nonlinear
dispersive modified Benjamin-Bona-Mahony equation (NDMBBME). This equation models
an approximation for surface long waves in nonlinear dispersive media. It can also describe
the hydromagnetic waves in a cold plasma, acoustic waves in inharmonic crystals, and
acoustic gravity waves in compressible fluids. First and foremost, we offer some essential
pieces of information about the µ-symmetry and the conservation law of µ concepts. In
light of such information, µ-symmetries are found. Using characteristic equations, the
NDMBBME is reduced to ordinary differential equations (ODEs). We obtained the exact
invariant solutions by solving the nonlinear ODEs. Furthermore, employing the variational
problem procedure, we get the Lagrangian and the µ-conservation laws. The exact solutions
and conservation laws are new for the NDMBBME that are not reported by the other studies.
We also demonstrate the properties with figures for these solutions.

1. Introduction

Nonlinear partial differential equations (NLPDEs) play a paramount role in the investigation of considerable problems in physics and geometry.
The struggle to discover exact solutions to nonlinear equations is crucial for understanding most nonlinear physical phenomena. Non-
linear wave phenomena arise in diverse scientific and engineering specializations, such as solid-state physics, chemical physics, and geometry.

Lately, influential and efficient procedures for discovering analytic solutions to nonlinear equations have lured considerable interest
from various groups of scientists, such as Semi-inverse variational technique [1], New extended direct algebraic method (NEDAM) [2],
Extended rational sine-cosine methods and sinh-cosh methods [3], Multiwave solutions [4], Generalized exponential rational function
method (GERFM) [5], Lie symmetry analysis [6–10], Simplified Hirota technique [11], Extended simple equation method [12], Multiple
exp-function method [13], Improved auxiliary equation approach [14], Modulation instability [15], Modified Jacobi elliptic expansion
method [16], µ-symmetries method [17–20] and so on.

Lie symmetry analysis, which was first studied by S. Lie, is one of the most general and influential strategies for getting exact solu-
tions for NLPDEs. A symmetry group of a differential equation means a transformation that maps (smooth) solutions to solutions. Lie
utilized a continuous group of transformations to develop solution strategies for ODEs. ODEs with trivial Lie or no symmetries but possess
λ -symmetries can be integrated using the λ -symmetry procedure. λ -symmetry was introduced by Muriel and Romero as a new kind of
symmetry [21]. Morando and Gaeta viewed the case of PDEs and extended the λ -symmetries to the µ-symmetries [22–24]. In the event of
the µ−symmetries of the Lagrangian, the conservation law is referred to as the conservation law of µ .

The principal purpose of the current investigation is to scrutinize the µ−symmetries, reductions, invariant solutions, and conservation law of
µ for the NDMBBME.
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The study is assembled as follows. Section 2 offers the main concepts of the µ−symmetry and µ−conservation law procedure. We
yield the µ-symmetries of the NDMBBME and build the invariant solutions of the model by employing the accepted µ-symmetries in
Section 3. We obtain Lagrangian in potential form by using the variational problem method and the Frechet derivative in Section 4. For the
NDMBBME, the conservation law of µ is investigated in Section 5. Lastly, in Section 6, conclusions are given.

2. The Principal Vision of the µ-Symmetry and Conservation Law of µ Procedure

2.1. µ-symmetry concept

Surmise that µ = λidxi be a semi basic one-form on first order jet space (J(1)ℵ,π,ℵ), which is compatible, namely, ℘jλi =℘iλ j [17–20,24].
Here, ℘i and ℘j are total derivative with respect to xi, and λi defines from J(1)ℵ to R.
Think that ∆ be the sth-order partial differential equation (PDE) as follows

∆ : h̄(x,w(s)) = 0. (2.1)

Here w = w(x) = w(x1,x2, ...,xp) and w(s) symbolizes all sth order derivatives of w as to x.
Let Ω be a vector field on J(s)ℵ. Then, we describe the Ω as

Ω = ϒ+
s

∑
|J|=1

ψJ∂wJ , (2.2)

in which ϒ is a vector field on ℵ and defines as

ϒ = ξ
i(x,w)

∂

∂xi +ϕ(x,w)
∂

∂w
. (2.3)

Here, (2.2) is the prolongation of µ of (2.3) if its coefficient provides the prolongation formula of µ

ψJ,i = (℘i +λi)ψJ−wJ,m(℘i +λi)ξ
m, (2.4)

in which ψ0 = ϕ. Let R⊂ J(s)ℵ be the solution manifold for ∆. If Ω : R→ T R, it is said that, for Eq. (2.1), (2.3) is a µ−symmetry. To get
µ-symmetry of Eq. (2.1), then applies (2.2) to Eq. (2.1), and restrain the got outcomes to the solution manifold R∆ ⊂ ℵ(s) that will be up to
ξ , ϕ , λi. If we deem the λ as functions on ℵ(s) and compatibility conditions between the λi, a system of all the dependence on wJ form the
determining equations [24]. V = exp(

∫
µ)ϒ is an exponential vector field if (2.3) is a vector field on ℵ.

Theorem 2.1. Let sth-order PDE defines as ∆(x,ws), (2.3) be a vector field on ℵ, with invariant surface condition Q = ϕ−wiξ
i, and Ω be

the µ−prolong of order s of ϒ. In this case, for ∆, (2.3) is a µ−symmetry, then Ω : Rϒ→ T Rϒ, in which Rϒ ⊂ J(s)ℵ is the solution manifold
for ∆ϒ made of ∆ and ÈJ :=℘JQ = 0, ∀J with |J|= 0,1, ...,s−1 [17–20, 24].

2.2. µ-conservation law

Surmise that µ = λidxi be a semi-basic one-form and with the compability condition ℘jλi =℘iλ j.
A conservation law of µ is

(℘i +λi)Pi = 0.

Here, Pi is a conserved vector of µ and this vector is a matrix-valued ℵ-vector.
Surmise that L =L (x,w(s)) depicts the sth order Lagrangian. For L , (2.3) is a µ−symmetry, namely, ∃ℵ-vector Pi such that (℘i+λi)Pi =
0 where the necessary and sufficient condition is Ω[L ] = 0 [22].
Let second-order Lagrangian defines as L = L (x, t,w,wx, ...,wtt) and for L , ϒ = ϕ( ∂

∂w ) be a µ−symmetry. ℵ−vector Pi is got as [22]

Pi := ϕ
∂L

∂wi
+
[
(℘j +λ j)ϕ

] ∂L

∂wi j
−ϕ℘j(

∂L

∂wi j
). (2.5)

Here, ℘j is the total derivative.
The Frechet derivative ℘∆ is self adjoint, namely, ℘∗

∆
=℘∆ is necessary and sufficient condition in which a system admits a variational

formulation [17–20, 25].

Theorem 2.2. Let ∆ = 0 be a system of differential equations. For some variational problem £ =
∫

Ldx, ∆ is the Euler-Lagrange expression,

i.e., ℘∆ =℘∗
∆

if and only if ∆ = È(L). Then, by employing the homotopy formula L[u] =
1∫

0
u∆[λu]dλ , a Lagrangian can be found for ∆.

3. Application of the µ-Symmetry Procedure to NDMBBME

The NDMBBME can be represented as

∆w : wt +wx−δw2wx +wxxx = 0. (3.1)

Here, δ is a nonzero and real constant, and w = w(x, t).
The NDMBBME was first used to define an approximation for surface long waves in nonlinear dispersive media. It can also describe the
hydromagnetic waves in a cold plasma, acoustic waves in inharmonic crystals, and acoustic gravity waves in compressible fluids [26–28].
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Classical Lie symmetry analysis of Eq. (3.1) was also examined in [29] and 3-dimensional Lie algebra was obtained.
Assume that we have a semi-basic one-form µ = λ1dx+λ2dt such that ℘tλ1 =℘xλ2 when wt +wx−δw2wx +wxxx = 0.
Let

ϒ = ξ
∂

∂x
+ τ

∂

∂ t
+ϕ

∂

∂w
(3.2)

be a vector field on ℵ, and ξ ,τ,ϕ based on x, t,w. The third prolongation is given as

Ω = ξ
∂

∂x
+ τ

∂

∂ t
+ϕ

∂

∂w
+ψ

x ∂

∂wx
+ψ

t ∂

∂wt
+ψ

xxx ∂

∂wxxx
.

Ω satisfies the following µ−symmetry condition:

ψ
t +ψ

x−2βϕwx−βu2
ψ

x +ψ
xxx |= 0

∆=0
,

where

ψ
x = (℘x +λ1)ϕ−wx(℘x +λ1)ξ −wt(℘x +λ1)τ,

ψ
t = (℘t +λ2)ϕ−wx(℘t +λ2)ξ −wt(℘t +λ2)τ,

ψ
xx = (℘x +λ1)ψ

x−wxx(℘x +λ1)ξ −wxt(℘x +λ1)τ,

ψ
xxx = (℘x +λ1)ψ

xx−wxxx(℘x +λ1)ξ −wxxt(℘x +λ1)τ,

and ℘t , ℘i denote the total differentiations as to t and xi:

℘t =
∂

∂ t
+wt

∂

∂w
+wtt

∂

∂wt
+wtxk

∂

∂wxk
+ ...,

℘i =
∂

∂xi +wxi
∂

∂w
+wtxi

∂

∂wt
+wxixk

∂

∂wxk
+ ....

By applying Ω to Eq. (3.1) and substituting −wt −wx +δw2wx for wxxx, we obtain an over-determined system for λ1,λ2,τ,ξ ,ϕ

−3τww = 0, −6ξww = 0,

−3τλ1−3τx = 0,

−6τwλ1−3τλ1w−6τxw = 0,

−9ξwλ1−4ξ λ1w−9ξxw +3ϕww = 0,

.

.

.

−3ξwλ1w−ξ λ1ww−3λ1ξww +ϕwww−3ξwwx = 0,

−6τxwλ1−3τwλ1x−3τxλ1w−2τλ1xw−3τwλ
2
1 +3ξw−3λ1τλ1w−3τxwx = 0. (3.3)

Surmise that λ1 =℘x[H]+ y and λ2 =℘t [H]+ z, in which H = H(x, t), y = y(x) and z = z(t) are arbitrary functions, and λ1, λ2 satisfy to
℘xλ2 =℘tλ1 on solutions to Eq. (3.1).

Case 1: When y = 0, z = 0, and H =− ln(Ξ) in the functions of λ1 and λ2, then by substituting the functions

λ1 =−
Ξx

Ξ
, λ2 =−

Ξt

Ξ

into the system of (3.3) and solving them , we get

ξ = Ξ, τ = 0, ϕ = 0.

Then, by inserting the ξ , τ, and ϕ into (3.2), we obtain

ϒ1 = Ξ
∂

∂x
. (3.4)
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(3.4) is µ−symmetry of Eq. (3.1). Also,

V = exp
(∫

λ1dx+λ2dt
)

ϒ

= exp
(∫

(−Ξx

Ξ
)dx+(−Ξt

Ξ
)dt
)

ϒ1.

Thanks to the Theorem 2.1, the order reduction of Eq. (3.1) is

Q = ϕ−ξ wx− τwt

= −Ξwx. (3.5)

Case 2: When y = 0, z = 0, and H =− ln(Ξ) in the functions of λ1 and λ2, then by placing the functions

λ1 =−
Ξx

Ξ
, λ2 =−

Ξt

Ξ

into the system of (3.3) and solving them, we attain

ξ =
2
3

Ξ, τ = Ξ, ϕ = 0.

Then, by substituting the ξ , τ, and ϕ into (3.2), we reach

ϒ2 = Ξ

(
2
3

∂

∂x
+

∂

∂ t

)
. (3.6)

(3.6) is µ−symmetry of Eq. (3.1). Also,

V = exp
(∫

(−Ξx

Ξ
)dx+(−Ξt

Ξ
)dt
)

ϒ2.

By using the Theorem 2.1, the order reduction of Eq. (3.1) is

Q = ϕ−ξ wx− τwt

= −Ξ

(
2
3

wx +wt

)
. (3.7)

Case 3: When y = 0, z = C1
C1t−3 , and H =− ln(Ξ) in the functions of λ1 and λ2, then by inserting the functions

λ1 =−
Ξx

Ξ
, λ2 =

C1

C1t−3
− Ξt

Ξ

into the system of (3.3) and solving them, we get

ξ =

(
(2t + x)C1−C2−6

3C1t−9

)
Ξ, τ = Ξ, ϕ = 0.

Then, by substituting the ξ , τ, and ϕ into the vector field, we obtain

ϒ3 = Ξ

((
(2t + x)C1−C2−6

3C1t−9

)
∂

∂x
+

∂

∂ t

)
. (3.8)

(3.8) is µ−symmetry of Eq. (3.1). Also,

V = exp
(∫ (

−Ξx

Ξ

)
dx+

(
C1

C1t−3
− Ξt

Ξ

)
dt
)

ϒ3.

By using the Theorem 2.1, the order reduction of Eq. (3.1) is

Q = ϕ−ξ wx− τwt

= −Ξ

[(
(2t + x)C1−C2−6

3C1t−9

)
wx +wt

]
. (3.9)

Here, Ξ = Ξ(x, t) is an arbitrary positive function, C1 and C2 are arbitrary constants.
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3.1. µ-invariant solutions for the NDMBBME

Thanks to the invariant surface condition, the characteristic equation forms are constructed. By solving the characteristic equation form,
similarity variables are obtained. Then, thanks to the similarity variables and the original equation, a PDE can be converted to an ODE. Then,
by solving the ODE, the invariant solution is obtained.
The characteristic equation corresponding to (3.5) is written as

dx
−Ξ

=
dt
0

=
dw
0
. (3.10)

By solving (3.10), we get similarity variables as indicated below

σ = t, w = Ξ1(σ).

After placing w into Eq. (3.1), Eq. (3.1) can be reduced to the ODE

d
dσ

Ξ1 = 0,

Ξ1(σ) = C.

Therefore, we have an invariant solution

w =C.

For (3.7), let us consider Ξ 6= 0. Then, we have 2
3 wx +wt = 0. The characteristic equation corresponding to (3.7) is written as

dx
2
3

=
dt
1

=
dw
0
. (3.11)

By solving (3.11), we get similarity variables as indicated below

ϖ = t− 3
2

x, w = Ξ2(ϖ).

After placing w into Eq. (3.1), Eq. (3.1) can be reduced to the ODE as

12ζ Ξ
2
2(

d
dϖ

Ξ2)−4(
d

dϖ
Ξ2)−27(

d3

dϖ3 Ξ2) = 0.

Solving the above ODE, we get an integral form, specifically,

Solution Set-1: letting C1 =C3 = 0, C2 = 1, we obtain

w(x, t) =−
9 JacobiSN

(
1
9

√
6+6

√
1−27δ (t− 3

2 x), 1
9

√
− 3(27δ−2+2

√
1−27δ)

δ

)
√

3+3
√

1−27δ

. (3.12)

Solution Set-2: Let C1 =C2 = 0, C3 = 1, we get

w(x, t) =

√
2

√
δ

(
tan
(

2
√

3
9
(
t− 3

2 x+1
))2

+1
)

δ tan
(

2
√

3
9 (t− 3

2 x+1)
) . (3.13)

Solution Set-3: If we choose C1 =C2 =C3 = 0, we reach

w(x, t) =

√
2

√
δ

(
tan
(

2
√

3
9
(
t− 3

2 x
))2

+1
)

δ tan
(

2
√

3
9 (t− 3

2 x)
) . (3.14)

For (3.9), let −Ξ 6= 0. Then we have
(
(2t+x)C1−C2−6

3C1t−9

)
wx +wt = 0. The characteristic equation corresponding to (3.9) is written as

dx
(2t+x)C1−C2−6

3C1t−9

=
dt
1

=
dw
0
. (3.15)
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By solving (3.15), we obtain similarity variables as indicated below

ρ =−C1(t− x)+C2−3

C1(tC1−3)
1
3

, w = Ξ3(ρ).

After placing w into Eq. (3.1), Eq. (3.1) can be reduced to the ODE

−( d
dρ

Ξ3)C1ρ +3(
d3

dρ3 Ξ3) = 0.

Solving the above equation, we have an invariant solution

w(x, t) =C1 +C2ρ

(
3Γ( 2

3 )
2ρ(−C1)

1
3 hypergeom

([ 2
3
]
,
[

4
3 ,

5
3

]
, 1

27C1ρ3
)

+4π
√

3hypergeom
([ 1

3
]
,
[ 2

3 ,
4
3
]
, 1

27C1ρ3)
)

+C3ρ

( √
3Γ( 2

3 )
2ρ(−C1)

1
3 hypergeom

([ 2
3
]
,
[

4
3 ,

5
3

]
, 1

27C1ρ3
)

−4hypergeom
([ 1

3
]
,
[ 2

3 ,
4
3
]
, 1

27C1ρ3)π

)
. (3.16)

(3.16) holds the Eq. (3.1) when δ = 0. Here, ρ =−C1(t−x)+C2−3

C1(tC1−3)
1
3

. Also, hypergeom is hypergeometric function.

In particular, we deal with the following case:

ϒ1,2 = ϒ2 + γ1ϒ1.

Thus, we have

ϒ1,2 = Ξ

((
2
3
+ γ1

)
∂

∂x
+

∂

∂ t

)
. (3.17)

(3.17) is µ−symmetry of Eq. (3.1). By using the Theorem 2.1, we have

Q = ϕ−ξ wx− τwt .

= −Ξ

[(
2
3
+ γ1

)
wx +wt

]
. (3.18)

The characteristic equation corresponding to (3.18) is written as

dx( 2
3 + γ1

) = dt
1

=
dw
0
. (3.19)

By solving (3.19), we get similarity variables as indicated below

κ =
3tγ1 +2t−3x

2+3γ1
, w = Ξ4(κ).

After placing w into Eq. (3.1), Eq. (3.1) can be reduced to the ODE

27(
d

dκ
Ξ4)Ξ

2
4δγ

2
1 +36(

d
dκ

Ξ4)Ξ
2
4δγ1 +12δΞ

2
4(

d
dκ

Ξ4)

+27(
d

dκ
Ξ4)γ

3
1 +27(

d
dκ

Ξ4)γ
2
1 −4(

d
dκ

Ξ4)−27(
d3

dκ3 Ξ4) = 0.

By solving the above equation, we get an integral form, especially, if we choose C1 =C3 = 0, C2 = 1, we attain

w(x, t) =− 1√√√√√√√ −81γ3
1 −81γ2

1 +12+9

√
81γ4

1 +54γ3
1 −27γ2

1 −108δ

−12γ1 +4
γ1+

6
√

81γ4
1 +54γ3

1 −27γ2
1 −108δ −12γ1 +4

×



18 JacobiSN



1
18(2+3γ1)

√√√√√√√√√
24−162γ3

1 +18

√
81γ4

1 +54γ3
1

−27γ2
1 −108δ −12γ1 +4

γ1

−162γ2
1 +12

√
81γ4

1 +54γ3
1

−27γ2
1 −108δ −12γ1 +4

(3tγ1 +2t−3x),

1
18


√

6
δ

√√√√√√√√√√
81γ4

1 +9
√

81γ4
1 +54γ3

1 −27γ2
1 −108δ −12γ1 +4γ2

1

+54γ3
1 +3

√
81γ4

1 +54γ3
1 −27γ2

1 −108δ −12γ1 +4γ1

−27γ2
1 −2

√
81γ4

1 +54γ3
1 −27γ2

1 −108δ

−12γ1 +4
−54δ −12γ1 +4






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4. Lagrangian of the NDMBBME in Potential Form Using the Variational Problem Method

It is crucial that if an equation has odd order, it does not accept a variational problem, but thanks to the potential form ∆v, this equation
accepts a variational problem [18–20].
The NDMBBME

∆w : wt +wx−δw2wx +wxxx = 0

is in an odd order. Frechet derivative of ∆w is

℘∆w :℘t +℘x−δw2
x℘−2δwwx +℘

3
x .

Note that ℘∆w 6=℘∗
∆w
. We say that the NDMBBME does not accept a variational problem. The NDMBBME in ∆v is got by the lustrous

differential substitution w = vx,

∆v = vxt + vxx−δv2
xvxx + vxxxx = 0. (4.1)

Eq. (4.1) is named ”the NDMBBME in the potential form” and its Frechet derivative is

℘∆v =℘x℘t +℘
2
x −δv2

x℘
2
x −2δvxvxx℘x +℘

4
x . (4.2)

Note that Eq. (4.2) is self-adjoint. Thanks to the Theorem 2.2, the NDMBBME in ∆v has a Lagrangian of the form

L[v] =

1∫
v

0

∆v[λv]dλ

= −1
2

vxvt −
1
2

v2
x +

δ

12
v4

x +
1
2

v2
xx +DivP.

Thus, we have

L∆v [v] =−
1
2
(vxvt + v2

x −
δ

6
v4

x − v2
xx). (4.3)

5. Application of the µ-Conservation Laws of the NDMBBME

In this part, first of all, we will compute the conservation laws of µ for the NDMBBME as ∆v. Consider the second-order Lagrangian (4.3)
for the NDMBBME as ∆v

∆v = vxt + vxx−δv2
xvxx + vxxxx

= È(L∆v). (5.1)

Surmise that for L∆v [v], ϒ = ϕ∂v be a vector field. Let µ = λ1dx+λ2dt be a semi-basic one-form such that ℘xλ2 =℘tλ1 when ∆v = 0.
Thanks to the (2.4), Ω and its coefficients are

Ω = ϕ
∂

∂v
+ψ

x ∂

∂vx
+ψ

t ∂

∂vt
+ψ

xx ∂

∂vxx
,

ψ
x = (℘x +λ1)ϕ, ψ

t = (℘t +λ2)ϕ, ψ
xx = (℘x +λ1)ψ

x.

By applying the µ−prolongation Ω to Eq. (5.1) and substituting 1
vx
(−v2

x +
δ

6 v4
x + v2

xx) for vt , we get

λ1ϕ +ϕx = 0, −2ϕvv = 0,

−δ

3
ϕv = 0, − δ

2
(λ1ϕ +ϕx) = 0,

ϕx +ϕt +λ2ϕ +λ1ϕ = 0,

−2λ1vϕ−4λ1ϕv−4ϕvx = 0,

−2ϕxx−2λ
2
1 ϕ−4λ1ϕx−2λ1xϕ = 0. (5.2)

Consider ϕ = Ξ, and L∆v [v] = 0. A particular solution of the system (5.2) is given by

λ1 =−
Ξx

Ξ
, λ2 =−

Ξt

Ξ
.

Therefore, for L∆v [v], ϒ = Ξ
∂

∂v is a µ−symmetry. Then, by using Theorem 2.2, there exists an ℵ-vector Pi which is conservation law of µ ,
that is, (℘i +λi)Pi = 0. Then, by of (2.5), the ℵ-vector Pi for L∆v [v] is got
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P1 =−Ξ(
1
2

vt + vx−
δ

3
v3

x + vxxx),

P2 =−vx

2
Ξ. (5.3)

So, for L∆v [v], conservation law of µ is the form ℘xP1 +℘tP2 +λ1P1 +λ2P2 = 0.

Corollary 5.1. Conservation law of µ for the NDMBBME in ∆v = È(L∆v) is as

℘xP1 +℘tP2 +λ1P1 +λ2P2 = 0,

where P1 and P2 are the ℵ-vector Pi of (5.3).

Remark 5.2. Conservation law of µ for the NDMBBME in ∆v, satisfying to the Noether’s Theorem for µ−symmetry, that is to say

(℘i +λi)Pi = −Ξ(vxt + vxx−δv2
xvxx + vxxxx)

= QÈ(L∆v).

Secondly, let us consider the NDMBBME as ∆v

∆v = vxt + vxx−δv2
xvxx + vxxxx = 0. (5.4)

Eq. (5.4) corresponds to

℘x(vt + vx−
δ

3
v3

x + vxxx) = 0,

or equivalently

vt + vx−
δ

3
v3

x + vxxx = Θ1(t),

where Θ1(t) = Θ1 is an arbitrary function. If we put

Θ1− vx +
δ

3
v3

x − vxxx

for vt and substitute w for vx in the ℵ-vector Pi of (5.3), then, we get the ℵ-vectors P1 and P2 as:

P1 =−Ξ(
1
2

Θ1 +
1
2

w− δ

6
w3 +

1
2

wxx),

P2 =−w
2

Ξ. (5.5)

Corollary 5.3. Conservation law of µ for the NDMBBME ∆w is

℘xP1 +℘tP2 +λ1P1 +λ2P2 = 0,

where P1 and P2 are the ℵ-vector Pi of (5.5).

Remark 5.4. The NDMBBME ∆w satisfies the characteristic form, that is to say

(℘i +λi)Pi = −Ξ(wx +wt −δw2wx +wxxx)

= Q∆w.
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Figure 5.1: The 3−dimensional, contour and density figures of w(x, t) in (3.12)
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Figure 5.2: The 3−dimensional, contour and density figures of w(x, t) in (3.13)
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Figure 5.3: The 3−dimensional, contour and density figures of w(x, t) in (3.14)

6. Conclusions

In this study, we considered the NDMBBME to scrutinize the µ−symmetries, symmetry reductions, invariant solutions, and conservation
laws. To begin with, some essential properties of the µ−symmetries and conservation law were given. The vital situation in this approach
is a semi-basic one-form µ = λidxi, which must satisfy compatibility conditions. Then we demonstrated that the approach of the µ−
symmetry reduction can also be analyzed in terms of the formulation of the Noether theorem when µ−symmetries were regarded to discover
the invariant solutions of PDEs, which are named the µ−invariant solutions. Moreover, we obtained Lagrangian in potential by using the
variational problem method and the Frechet derivative. In this context, the equation must have Lagrangian necessary and sufficient condition
its Frechet derivative is self-adjoint. Finally, the conservation law of µ was investigated. The main novelty of this paper is NDMBBM
equation is first studied using the µ−symmetry method and conservation law of µ . The 3d, contour, and density figures of the reached
solutions were drawn with the aid of Mathematica. The accuracy of the solutions acquired was tested and proved in Maple.
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[20] Ö. Orhan, T. Özer, On µ-symmetries, µ-reductions, and µ-conservation laws of Gardner equation, J. Math. Phys., 26(1) (2019), 69-90.
[21] C. Muriel, J.L. Romero, New methods of reduction for ordinary differential equations, IMA J. App. Math., 66(2) (2001), 111-125.
[22] G. Cicogna, G. Gaeta, Noether theorem for µ-symmetries, J.Phys. A: Math Theor., 40(39) (2007), 11899–11921.
[23] G. Cicogna, G. Gaeta, P. Morando, On the relation between standard and µ-symmetries for PDEs. J. Phys. A, 37(40) (2004), 9467–9486.
[24] G. Gaeta, P. Morando, On the geometry of lambda-symmetries and PDE reduction, J.Phys. A: Math Gen., 37(27) (2004), 6955-6975.
[25] P.J. Olver, Application of Lie Groups to Differential Equations, New York, Springer-Verlag, 1986.
[26] K. Khan, M.A. Akbar, S.M. Islam, Exact solutions for (1+1)-dimensional nonlinear dispersive modified Benjamin-Bona-Mahony equation and coupled

Klein-Gordon equations, SpringerPlus, 3(1) (2014), 1-8.
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