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Karmaşık integral denklemlerini basit cebirsel denklemlere dönüştürme 

yeteneğine sahip olan ve hem matematikte hem de istatistikte sıkça 

kullanılan en önemli yöntemlerden biri Fourier dönüşümüdür. Fourier 

dönüşümü, matematikte belli koşullar altında her fonksiyon için geçerli 

olmasına rağmen istatistiğin matematikten çok farklı olması nedeniyle bu 

durum istatistikte daha karmaşık hale gelebilmektedir. İstatistikte her durum 

için farklı gözlem değerleri yani farklı 𝑥ler söz konusu iken matematikte her 

𝑥 için bir fonksiyon tanımlanır. İstatistikte fonksiyonlardan ziyade rasgele 

değişkenlerle ilgilenilmektedir ve ilgilenilen gözlem değerlerinin yoğunluk 

fonksiyonları da bilinmelidir. Asimptotik özelliklerin incelendiği parametrik 

olmayan modellerde Fourier dönüşümü kullanıldığı görülmektedir. Hem 

dağılım hem de yoğunluk fonksiyonu kullanılarak gerçekleştirilebilen 

Fourier dönüşümünde bilinmeyen veya integrallenebilir olmayan yoğunluk 

fonksiyonları ya da çok yavaş yakınsama oranı söz konusu olduğunda 

(asimptotik özellikler düşünüldüğünde) yoğunluk fonksiyonunun 

kullanılması mümkün olamamaktadır. Böyle durumlarda Fourier 

dönüşümünün dağılım fonksiyonu ile gerçekleştirilmesi daha uygun 

olacaktır. Bu çalışmada, Fourier dönüşümünün hangi koşullarda dağılım 

fonksiyonu ile gerçekleştirilmesinin daha uygun olacağı üzerine öneriler 

sunulmaktadır. 
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 The Fourier transform is one of the most important methods, which has the 

ability to transform complex integral equations into simple algebraic 

equations and is frequently used in both mathematics and statistics. Although 

the Fourier transform is valid for every function in mathematics under certain 

conditions, this situation can become more complicated in statistics because 

of the fact that statistics is very different from mathematics. While in 

statistics, different observation values, that is, different 𝑥 values, are 

considered for each situation, in mathematics for each 𝑥 a function is 

defined. In statistics, random variables are concerned rather than functions, 

and the density functions of the observed values of interest should also be 

known. It is seen that the Fourier transform is used in non-parametric models 

in which asymptotic properties are examined.  In the Fourier transform, 

which can be performed using both distribution and density functions, it is 

not possible to use the density function when there are unknown or non-

integrable density functions or very slow convergence rate (considering 

asymptotic properties). In such cases, it would be more appropriate to 

perform the Fourier transform with the distribution function. In this study, 

suggestions are presented on under which conditions it would be more 
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appropriate to perform the Fourier transform with the distribution function. 

   
To Cite: Yalaz S. Fourier Transform by Distribution Function in Statistics. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri 

Enstitüsü Dergisi 2024; 7(2): 581-591. 
 

 

1. Introduction 

 

Fourier transform is one of the most important methods, which has the ability to transform complex 

integral equations into simple algebraic equations and is frequently used in both mathematics and 

statistics. The lemma developed by German mathematician Georg Frederick Bernhard Riemann, who 

lived between 1826 and 1866 and put forward by the French mathematician Henri Lebesque, who 

lived between 1875 and 1941, and also known as the Riemann - Lebesque lemma, said that the Fourier 

or Laplace transform of a function on 𝐿1 goes to infinity. 

According to the lemma if 𝑓 is one dimensional Lebesque metric, 𝐿1, integrable on the real coordinate 

space of dimension 𝑑, ℝ𝑑, which means that Lebesque integral of |𝑓| is finite, the Fourier transform of 

𝑓 gives the following notation (Bochner and Chandrasekharan, 1949; URL 2, 2022),  

𝑓(𝑧) ≔ ∫ 𝑓(𝑥)

.

ℝ𝑑

𝑒𝑥𝑝(−𝑖𝑧𝑥) 𝑑𝑥 → 0, |𝑧| → ∞. 

Although this idea is known to have been assserted by Riemann, it is known that the idea was asserted 

for the first time by the French mathematicians Cauchy and Poisson between 1810 and 1840 without 

the condition that 𝑓 is 𝐿1 integrable on ℝ𝑑. Riemann and Lebesque developed this idea, since it would 

not be possible for all the transformations to be correct without this condition. 

Hence, 𝑓𝜖𝐿1(−∞, ∞), the forward Fourier transform is 𝜓𝑓(𝑠) = ∫ 𝑒𝑖𝑠𝑥𝑓(𝑥) 𝑑𝑥. According to 

Riemann's definition, this notation is seen as 𝜓𝑓𝜖𝐿1(−∞, ∞), the inverse Fourier transform is 𝑓(𝑥) =

1

2𝜋
∫ 𝑒−𝑖𝑠𝑥𝜓𝑓(𝑠) 𝑑𝑠. 

This is true for every function in mathematics. However, statistics is more concerned with random 

variables rather than functions. In statistics, this representation can be made as 𝜓𝐹(𝑠) = ∫ 𝑒𝑖𝑠𝑥𝑓(𝑥) 𝑑𝑥 

if the density function 𝑓(𝑥) is known. 

When the distribution function is used, it can be done as 𝑋 ∼ 𝐹 ⇒  𝜓𝐹(𝑠) = ∫ 𝑒𝑖𝑠𝑥𝐹(𝑑𝑥). The aim 

here is to obtain 𝜓𝐹 from 𝐹 and thus to obtain the experimental function 𝜓𝐹𝑛
 and return to  𝐹 again 

obtaining 𝐹𝑛 from 𝜓𝐹𝑛
. This cycle is given in Figure 1. 

 

Figure 1. Fourier transform with the distribution function 
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It is also true if 𝑓(𝑥) is known (See Figure 2). 

 

Figure 2. Fourier transform with density function 

However, it is not suggested to use 𝑓(𝑥). 𝑓 function may not be 𝐿1 integrable on ℝ𝑑 or not be exactly 

known. Also, considering the asymptotic features, the convergence rate may be much slower. 

Fourier transform is used in non-parametric models in which asymptotic properties are examined in 

statistics. In the convolution theorem, which is used especially in nonparametric equations with 

measurement errors, the nonparametric regression function can be estimated by the Fourier transform 

of a nonparametric estimator of the density of the flawed measurement, such as a Kernel estimator 

(Carroll et al., 1995). In the deconvolution technique, in order to eliminate the effect of measurement 

error, it is recommended to use a Kernel whose Fourier transform has a certain basis in the estimation 

of the non-parametric regression function (Fan, 1991). However, the rate of convergence depends on 

the variable of nonparametric function. The smoother the density of the variable, the faster the Fourier 

transform of the function deteriorates as the frequency approaches infinity, and the smaller the kernel 

bandwidth, the faster the bias decreases. In the literature focusing on the deconvolution technique, the 

smoothness of a density is typically defined in terms of the asymptotic decay rate of the Fourier 

transform as the frequency goes to infinity. The basis for such an explanation is that the number of 

derivatives of a continuous density is directly related to the asymptotic behavior of the Fourier 

transform as the frequency goes to infinity. This leads to the traditional distinction between " ordinary 

smooth" functions (which take a finite number of continuous derivatives and whose Fourier transform 

degrades under certain conditions) and "super smooth" functions (which take an infinite number of 

continuous derivatives and whose Fourier transform degrades under certain conditions). The use of the 

deconvolution technique in the estimation of the nonparametric function depends on knowing the 

distribution of the variable. In the absence of information about the distribution, when there are two 

consecutive measurement errors, the estimator is converted to simple factors with the Fourier 

transform process and the solution is obtained (Schennach, 2004; Yalaz and Tez, 2019). 

In Fourier transform, which is the basis of all these important studies, it is important to decide which 

function will be used and when it will be used. To get rid of the stated handicaps may be the idea, 

instead of using the unknown density function 𝑓 using the distribution function 𝐹, can be adopted. 

Mentioned idea forms the basis of our research. 
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2. Material and Method 

2.1. Probability Function and Distribution Function 

There are two types of random variables in statistics; discrete random variables and continuous 

random variables. The probability functions of discrete random variables (𝑋) are probability values 

that take a finite number of values 𝑥1, 𝑥2, ⋯ , 𝑥𝑛, 

𝑓(𝑥𝑖) = 𝑃(𝑋 = 𝑥𝑖), 𝑖 = 1, 2, ⋯ , 𝑛. 

The distribution function is the probability that 𝑋 is less than or equal to 𝑥, 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∑ 𝑓(𝑥𝑖)

𝑥𝑖≤𝑥

. 

Probability density function of continuous random variables (𝑋) are probability values that take the 

values defined in the range (−∞, ∞) and satisfy the conditions ∫ 𝑓(𝑥)𝑑𝑥
∞

−∞
= 1, 𝑓(𝑥) ≥ 0; −∞ <

𝑥 < ∞. In addition to this, the probability of finding the continuous random variable 𝑋 between 𝑐 and 

𝑑 is 

𝑃(𝑐 < 𝑋 < 𝑑) = ∫ 𝑓(𝑥)𝑑𝑥

𝑑

𝑐

, 

which shows the area bounded by 𝑓(𝑥) curve, 𝑥-axis and 𝑥 = 𝑐, 𝑥 = 𝑑 lines. The distribution function 

is defined as (Akdeniz, 2002), 

𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫ 𝑓(𝑠)𝑑𝑠

𝑥

−∞

. 

Distributions produced from discrete random variables are called discrete probability distributions, and 

distributions produced from continuous random variables are called continuous probability 

distributions. 

Using 𝑓(𝑥) in Fourier transform is inconvenient. In order to use 𝑓, it must be 𝐿1 integrable on ℝ𝑑, 

which means that 𝑓𝜖𝐿1(−∞, ∞). Because the continuity condition cannot be met, discrete distributions 

are often ignored in the Fourier transform. Discrete probability distributions, which are well known 

and frequently used in statistics are Poisson, Bernoulli, Binomial, Geometric, Negative Binomial and 

Discrete Uniform distributions. It is not meaningful to ignore these important distributions and to deal 

with other distributions. 
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The maximum likelihood estimation method, used for the estimation of parameters in parametric 

statistical methods, proposed in years between 1912 and 1922 by Ronald Aymler Fisher, a British 

statistician, biologist and geneticist, is also valid for the independent sample with the same 

distributions. Because the joint probability density function can be written in these conditions as, 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝜆) = 𝑓(𝑥1|𝜆) × 𝑓(𝑥2|𝜆) × … × 𝑓(𝑥𝑛|𝜆). 

From here, 

𝐿(𝜆; 𝑥1, 𝑥2, … , 𝑥𝑛) = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛|𝜆) = ∏ 𝑓(𝑥𝑖|𝜆)

𝑛

𝑖=1

 

can be written. (The likelihood function 𝐿(𝜆|𝑋) = 𝑃(𝑋|𝜆) can be used when the observed 

𝑥1, 𝑥2, … , 𝑥𝑛variables are considered as the constant parameters of this function as the variables of the 

function 𝜆) (URL 3, 2022). Taking the natural logarithm of the likelihood function is a widely used 

method in practice: 

ln 𝐿(𝜆; 𝑥1, 𝑥2, … , 𝑥𝑛) = ∑ ln 𝑓(𝑥𝑖|𝜆)

𝑛

𝑖=1

. 

However, as mentioned earlier, statistics is very different from mathematics. While a function is 

defined for every 𝑥 in mathematics, different 𝑥 values for each situation or different observation 

values are appeared in statistics. Therefore, it is necessary to know exactly what distribution the 

functions (in the language of statistics, density functions) of the observation values we are interested in 

have. When it is not known from which distribution the functions come from, parametric statistical 

methods, such as the maximum likelihood estimation method, cannot be used, so non-parametric 

statistical methods will be more compatible. Because of the fact that, non-parametric methods are 

based on the idea that the distributions of random variables should be obtained from the data, not the 

assumption that the distributions are known beforehand. 

Kernel density estimation in non-parametric statistical methods provides very good estimates for the 

density function (Fan and Truong, 1993): 

𝑓ℎ̂(𝑥) =
1

𝑛
∑ 𝐾ℎ(𝑥 − 𝑥𝑖)

𝑛

𝑖=1

=
1

𝑛ℎ
∑ 𝐾 (

𝑥 − 𝑥𝑖

ℎ
)

𝑛

𝑖=1

. 

where 𝐾, a non-negative function whose integral is equal to one, ℎ > 0 is the smoothing parameter 

called the bandwidth. 
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Kernel density estimation, frequently used for measurement error models, is lean on the investigation 

of asymptotic features (Toprak, 2015; Yalaz, 2019). However, considering the asymptotic properties, 

it is known that ℎ has the same asymptotic ratio with 𝑛
−1

5⁄ . In this case, 
1

𝑛ℎ
=

1

𝑛𝑛
−1

5⁄
= 𝑛

−4
5⁄ . That is, 

the rate of convergence is much slower, 𝑛
−4

5⁄ , than the parametric methods convergence rate, 𝑛−1, 

because 

𝐹𝑛(𝑥) =
1

𝑛
∑ 𝑃(𝑋𝑖 ≤ 𝑥)

𝑛

𝑖=1

. 

The graph for 𝐹(𝑦) = ∫ 𝑓(𝑥)
𝑦

−∞
𝑑𝑥 is indicated in Figure 3. 

 

 

Figure 3. Distribution function graph 

When smoothing methods are used, this returns to 𝐹𝑠(𝑦) = ∫ 𝑓𝑛(𝑥)
𝑦

−∞
𝑑𝑥 and the graph changes to the 

Figure 4. 

 

 

Figure 4. Flattened distribution function graph 

As a result of smoothing, the piecewise function disappears and becomes a smooth function. This 

function can be used to find the unknown density function, but it should not be ignored that the 

convergence rate is very slow. 

Since smoothing methods suggest the estimation of an unknown 𝑓(𝑥) function, although it is a 

preferred method, the convergence rate of the obtained function is very slow. The best way to avoid 

this handicap may be not to use the unknown probability function 𝑓 and to use the distribution 

function 𝐹 instead of it. 
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3. Findings and Discussion 

3.1. Playing Around with a General Expression, Random Variables and Demonstrating the Expected 

Value with Fourier Transform  

In this study, instead of limiting the study and dealing with any function, we have proceeded through a 

method that aims to deal with relations called functional and then find functions that provide these 

equations. The most important aspect of working with functionals is not to make any special 

assumptions. For example, if it is not given that the desired function is differentiable or if it is not 

calculated in a way that can be differentiable, the derivative and related properties should not be used 

in the solution (URL 1, 2022). 

Let 𝑇(𝑋) be a functional for 𝑋 ∼ 𝐹. Then, 

𝐸[𝑇(𝑋)] = ∫ 𝑇(𝑋)𝐹(𝑑𝑥). 

Due to the drawbacks of the mentioned flattening methods, instead of using flattening methods here, 

representations have been made by playing with random variables a little (disturbing the random 

variables) as similar with these methods. So, let's take 𝑋 + ℎ𝑁 instead of taking 𝑋. Here, 𝑋 and 𝑁 are 

independent random variables and 𝑁 has a standard normal distribution. 

If 𝑁~𝑁(0,1), the characteristic function of the random variable 𝑁 is known as 

𝜓𝑁(𝑠) = 𝐸[𝑒𝑖𝑠𝑁] = ∫ 𝑒𝑖𝑠𝑥𝜃𝑥(𝑑𝑥) 

             = ∫ 𝑒𝑖𝑠𝑥
1

√2𝜋
𝑒−

𝑥2

2 𝑑𝑥 =
1

√2𝜋
∫ 𝑒−

2𝑖𝑠𝑥−𝑥2

2 𝑑𝑥 

             = 𝑒−
𝑠2

2  

This means that, 𝜃(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2 =
1

√2𝜋
𝜓𝑁(𝑥). 

Then, 

𝐸[𝑇(𝑋 + ℎ𝑁)] = ∫ ∫ 𝑇(𝑥 + ℎ𝑦)𝜃(𝑦)𝐹(𝑑𝑥) 𝑑𝑦 =
1

√2𝜋
∫ ∫ 𝑇(𝑥 + ℎ𝑦)𝜓𝑁(𝑦)𝑑𝑦𝐹(𝑑𝑥) (1) 

 

Let us take 𝑥 + ℎ𝑦 = 𝑧. In this case 
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ℎ𝑦 = 𝑧 − 𝑥 ⇒ 𝑦 =
𝑧 − 𝑥

ℎ
⇒ 𝑑𝑦 =

1

ℎ
𝑑𝑧. 

Substituting this in equation (1), one can get 

𝐸[𝑇(𝑋 + ℎ𝑁)] =
1

√2𝜋

1

ℎ
∫ ∫ 𝑇(𝑧)𝜓𝑁 (

𝑧 − 𝑥

ℎ
) 𝑑𝑧𝐹(𝑑𝑥)

=
1

√2𝜋

1

ℎ
∫ ∫ ∫ 𝑇(𝑧)𝑒

𝑖(
𝑧−𝑥

ℎ
)𝑤

𝜃(𝑤)𝑑𝑤𝑑𝑧𝐹(𝑑𝑥) 

                            =
1

√2𝜋

1

ℎ
∫ ∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧

𝑤

ℎ 𝑒−𝑖𝑥
𝑤

ℎ 𝜃(𝑤)𝑑𝑤𝑑𝑧𝐹(𝑑𝑥). 

 

 

 

 

 

 

(2) 

 

Taking 
𝑤

ℎ
= 𝜔, 

𝑑𝑤

ℎ
= 𝑑𝜔 is possible. If these are used in equation (2), we can write 

1

√2𝜋

1

ℎ
∫ ∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧

𝑤

ℎ 𝑒−𝑖𝑥
𝑤

ℎ 𝜃(𝑤)𝑑𝑤𝑑𝑧𝐹(𝑑𝑥) =
1

√2𝜋
∫ ∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧𝜔𝑒−𝑖𝑥𝜔𝜃(ℎ𝜔)𝑑𝜔𝑑𝑧𝐹(𝑑𝑥) (3) 

 

where 𝜃(ℎ𝜔) =
1

√2𝜋
𝑒−

ℎ2𝜔2

2 . Substitute this in equation (3), the presentation will be 

1

√2𝜋
∫ ∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧𝜔𝑒−𝑖𝑥𝜔𝜃(ℎ𝜔)𝑑𝜔𝑑𝑧𝐹(𝑑𝑥) =

1

2𝜋
∫ ∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧𝜔𝑒−𝑖𝑥𝜔𝑒−

ℎ2𝜔2

2 𝑑𝜔𝑑𝑧𝐹(𝑑𝑥) 

                                                                                      =
1

2𝜋
∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧𝜔 ∫ 𝑒−𝑖𝑥𝜔𝐹(𝑑𝑥)𝑑𝑧𝑒−

ℎ2𝜔2

2 𝑑𝜔. 

 

 

 

 

(4) 

 

Substituting ∫ 𝑒−𝑖𝑥𝑠𝐹(𝑑𝑥) = 𝜓𝐹(−𝑠) in equation (4), it can be seen that 

1

2𝜋
∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧𝜔 ∫ 𝑒−𝑖𝑥𝜔𝐹(𝑑𝑥)𝑑𝑧𝑒−

ℎ2𝜔2

2 𝑑𝜔 =
1

2𝜋
∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧𝑠𝜓𝐹(−𝑠)𝑑𝑧𝑒−

ℎ2𝑠2

2 𝑑𝑠. (5) 

 

Since ∫ 𝑒𝑖𝑧𝑠𝑇(𝑧)𝑑𝑧 = 𝜓𝑇(𝑠) equation (5) will be                               

1

2𝜋
∫ ∫ 𝑇(𝑧)𝑒𝑖𝑧𝑠𝜓𝐹(−𝑠)𝑑𝑧𝑒−

ℎ2𝑠2

2 𝑑𝑠 =
1

2𝜋
∫ 𝜓𝐹(−𝑠)𝜓𝑇(𝑠)𝑒−

ℎ2𝑠2

2 𝑑𝑠. (6) 

 

However, since 𝑇(𝑋 + ℎ𝑁) was obtained while dealing with the functional 𝑇(𝑋) at the beginning, it 

should be returned to the situation where random variables have not been manipulated. 
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3.2. Returning to the State of Not Playing with Random Variables 

The main goal was to get 𝐸[𝑇(𝑋)]. When it is desired to return 𝐸[𝑇(𝑋)] again from equation (6), it is 

necessary to approximate ℎ → 0. In this case 𝑒−
ℎ2𝑠2

2 → 1 happens. However, we should be very careful 

to the remaining expression 

1

2𝜋
∫ 𝜓𝐹(−𝑠)𝜓𝑇(𝑠)𝑑𝑠. (7) 

 

At first glance, although approximating ℎ → 0 seems to make our job easier, the aforementioned 

troubles are also valid here. In this case, considering the equation (7), 𝜓𝐹(−𝑠) or 𝜓𝑇(𝑠) must be 

integrable. 𝜓𝐹(−𝑠) is certainly not integrable because 𝐹 distribution contains jumps (see Figure 3). 

Let us take ℎ → 0 for a moment. In this case, the expression 

𝐸[𝑇(𝑋 + ℎ𝑁)] =
1

2𝜋
∫ 𝜓𝐹(−𝑠)𝜓𝑇(𝑠)𝑒−

ℎ2𝑠2

2 𝑑𝑠 

will return to  

𝐸[𝑇(𝑋)] =
1

2𝜋
∫ 𝜓𝐹(−𝑠)𝜓𝑇(𝑠)𝑑𝑠. 

It is known that 𝜓𝐹(−𝑠) is not integrable. So, in order to 𝐸[𝑇(𝑋)] be valid, 𝑇 should be integrable for 

|𝑇|𝜖𝐿1(−∞, ∞), and for taking inverse process 𝜓𝑇(𝑠) = ∫ 𝑒𝑖𝑠𝑥𝑇(𝑥)𝑑𝑥 should be integrable for 

𝜓𝑇𝜖𝐿1(−∞, ∞). Situations that satisfy both conditions can be achieved through a multitude of 

assumptions known as restrictions. In this case, 𝜓𝑇(𝑠) needs to be defined more specifically and be 

integrable. Initially our aim has kept 𝜓𝑇(𝑠) as any functional. Therefore, taking ℎ → 0 would not be 

correct. 

The recommendation here is taking ℎ → 0− and ℎ → 0+ rather than taking ℎ → 0. Then, 

𝐸[𝑇(𝑋 + ℎ𝑁)] =
1

2
𝐸[𝑇(𝑋+)] +

1

2
𝐸[𝑇(𝑋−)]. 

If we take 𝑇(𝑥) = 1𝑎<𝑥≤𝑏, because of 

𝑇(𝑥+) = lim
𝑦↓𝑥

𝑇(𝑦) and 𝑇(𝑥−) = lim
𝑦↑𝑥

𝑇(𝑦), then 

𝑇(𝑥) =
1

2
𝑇(𝑥+) +

1

2
𝑇(𝑥−). 
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However, it is necessary to pay attention to the idea of taking ℎ → 0− and ℎ → 0+. Lebesque 

measurement theory does not allow us to integrate limits approaching from the right and left. In this 

case, we may encounter more limitations. 

4. Results 

Kernel density estimation, which is frequently used for measurement error in variables, is based on the 

logic of smoothing non-smooth probability density functions (𝑓). For this reason, while studying the 

subject of measurement error in variables, it has also been applied to investigate the asymptotic 

properties in the literature. However, the convergence rate is much slower under weak assumptions 

than the convergence rate in parametric methods. Instead of using unknown probability function 𝑓, 

using the distribution function 𝐹 is the best way to avoid this handicap. By paying attention to the 

integrability condition in the smoothing process using the distribution function, it became possible to 

achieve the desired result by assuming that the smoothing parameter approaches zero from the right 

and left. However, it is necessary to pay attention to the idea that limits used in the functions and 

equations cannot be included in the integral. 
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