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Abstract

Time scale theory helps us to combine differential equations with difference equations.
Especially in models such as biology, medicine, and economics, since the independent
variable is handled discrete, it requires us to analyze in discrete clusters. In these cases,
the difference equations defined in Z are considered. Boundary value problems (BVP’s)
are used to solve and model problems in many physical areas. In this study, we examined
spectral features of the discrete Sturm-Liouville problem. We have given some examples
to make the subject understandable. The discrete Sturm-Liouville problem is solved by
using the discrete Laplace transform. In the classical case, the discrete Laplace transform is
preferred because it is a very useful method in differential equations and it is thought that
the discrete Laplace transform will show similar properties. The other method obtained
for the solution of this problem is the solutions obtained according to the states of the
characteristic equation and λ parameter. In this solution, discrete Wronskian and Cramer
methods are used.

1. Introduction

A time scale T is a non-empty, arbitrary, closed subset of R. This theory was first studied by Hilger in his doctoral thesis [1].
Later, Bohner and Peterson expressed ∆-derivative, ∆-integral and some properties in [2]. Bohner and Georgiev studied the
concepts for multivariate functions on time scale [3] . There are many studies in different years on this theory [4, 5]. For
instance, time scale population model is used in many important areas such as wound healing, maximization and minimization
problems in economy, epidemic problems.
The special case of T= Z has many applications in literature. Due to the difficulties posed by derivative and integral in general
case, the special cases of time scale are frequently used in many applications. Difference equation is a type of equation that
have applications in many fields such as biology, medicine and population. Examples of these applications can be given such as
population growth model, logistics surplus model, competition model and infectious disease model. First studies on BVP’s for
linear ∆-difference equations on time scale are in the relevant references [6, 7]. In addition, various studies have been carried
out on the general theory of difference equations [8], non-regular cases of linear ordinary difference equations, asymptotic
behavior of difference equation systems and difference equations [9], finite difference calculus. Other important studies that
deal with the properties of difference equations are [10] and [11]. In addition, there are many studies that examine discrete
versions of Sturm-Liouville, Bessel, Dirac on time scales (see [12–29]).
To give basic results, we should recall substantial concepts of time scale theory. For t ∈ T, forward and backward jump
operators [2] are expressed by

σ(t) = in f{s ∈ T;s > t}
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and

ρ(t) = sup{s ∈ T;s < t} .

Let’s state a set Tκ which is derived from T, and necessary for the definition of delta derivatives. If T has a left-scattered
maximum m, then Tκ = T−m. In other cases, Tκ = T. Moreover, let f : T→ R and t ∈ Tκ . Then, one can define f ∆(t) to be
the number (if it exists) with the property that given any ε < 0, there is a neighborhood U = (t−δ , t +δ )∩T of t for some
δ > 0 such that ∣∣∣[ f (σ(t)− f (s)]− f ∆(t) [σ(t)− s]

∣∣∣≤ ε |σ(t)− s| ,

for all s ∈U . f ∆(t) is known as ∆-derivative of f at t ∈ Tκ . Now, let’s express another important concept that is necessary
when defining an integral on T. f : T→ R is regulated if its right-sided limit exist (finite) at all right-dense points in T and its
left-sided limits exist (finite) at all left-dense points in T. f is called rd-continuous provided it is continuous at right-dense
points in T and its left-sided limits exist (finite) at left-dense points in T. Crd(T) indicates the set of all rd-continuous functions.
By the special selections of T, we can have below derivatives [7].

1. f ∆(t) = f
′
(t) for all t ∈ R if T= R.

2. f ∆(t) = ∆ f (t) = f (t +1)− f (t) for all t ∈ Z if T= Z.

Let’s start to express the concept of integral, which is very important for the subject we are working on, gradually. There exists
a function F which is pre-differentiable with region of differentiation D where F∆(t) = f (t) holds for all t ∈ D where f is
regulated. For functions f and F satisfying these conditions and an arbitrary constant C, we express indefinite delta integral of
f by ∫

f (t)∆t = F(t)+C.

In same logic, Cauchy integral of f on [r,s] is defined by∫ s

r
f (t)∆t = F(s)−F(r),

for all r,s ∈ T. The definitions of delta derivative and delta integral, which are generally given in arbitrary time scales, have
different representations in different time scales.
We will now express some spectral results for a special case of T. In this study, we take into account below discrete
Sturm-Liouville problem

L∆y(t) =−∆
2y(t)+q(t)y(t) = λy(t), 0 < t < N, (1.1)

with separated discrete boundary conditions

∆y(0)−hy(0) = 0, (1.2)

∆y(N)+Hy(N) = 0, (1.3)

where λ is spectral parameter, q ∈ LZ
2 [0,N], N ∈ Z+ and H,h ∈ R. Considering this problem, which is very important in terms

of mathematical physics in classical analysis, in a discrete situation will give very important results. By setting T= R in (1.1),
it reduces to Sturm-Liouville equation on R as

Ly(t) =−y
′′
(t)+q(t)y(t) = λy(t).

Discrete version of L2[0,N] will play a key role in the study, while the main results are obtained in spectral point of view. So
let’s define this space.The discrete LZ

2 [0,N] space is defined by [according to Theorem 1.79 (iv) in [2]]

LZ
2 [0,N] =

{
x(t) :

N−1

∑
t=0
|x(t)|2 < ∞

}
.

Inner product on LZ
2 [0,N] is defined by

〈x,y〉=
∫ N

0
x(t)y(t)∆t =

N−1

∑
t=0

x(t)y(t),
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where x,y ∈ LZ
2 [0,N]. Another concept that we will use in the study is discrete Laplace transform (or L-transform) [2, 11].

Assume that f : Na→ R is regulated where Na = {a,a+1,a+2, ...} and a ∈ R. Then, discrete L-transform of f based at a is
defined by

La { f}(s) = Fa(k) =
∫

∞

0

f (a+ k)

(s+1)k+1 ∆k =
∞

∑
k=0

f (a+ k)

(s+1)k+1 ,

for all complex numbers s 6=−1 when the improper integral converges. Here, La { f}(s) = Fa(k), L−1
a {Fa(k)}= f (s) where

L−1
a is inverse discrete L-transform [11].

Let’s continue with another concept that is extremely important for L-transform. f is of exponential order r > 0 if there exists
a constant A > 0 such that | f (t)| ≤ Art for t ∈ Na. Let f be exponential order r > 0. Then, for any N ∈ Z+ [11],

La
{

∆
N f
}
(s) = sNFa(s)−

N−1

∑
j=0

s j
∆

N−1− j f (a),

for |s+1|> r. Let f ,g : Na→ R and discrete L-transforms of f and g converge for |s+1|> r where r > 0. Then, discrete
L-transform of c1 f + c2g converges for |s+1|> r and

La{c1 f + c2g}(s) = c1La{ f}(s)+ c2La{g}(s),

for |s+1|> r, c1,c2 ∈ R. Addition, assume that p 6=±i. Then,

La{cosp(t,a)}(s) =
s

s2 + p2 ,

and

La{sinp(t,a)}(s) =
p

s2 + p2 .

This study is planned as follows: In Section 2, we give proofs of some basic theorems for spectral properties of discrete
Strum-Liouville equation. Using some methods, we get eigenfunctions of (1.1)-(1.3) discrete Sturm-Liouville problem in
Section 3.

2. Some spectral properties of discrete Sturm-Liouville equation

The eigenvalues and eigenfunctions of differential operators need to be found in solving problems encountered in many fields
such as analysis, applied mathematics and mathematical physics. For this reason, spectral properties of Sturm-Liouville
problem, which has applications in many fields, have been an important subject of study.
Orthogonality of eigenfunctions, simplicity and reality of eigenvalues, formally self-adjointness property of operator are
well-known properties in usual spectral analysis. The following results are generalized to discrete case. All the features that
will be given below will allow to better understand and explain the physical phenomenon expressed by the problem expressed
in the discrete situation.

Theorem 2.1. The eigenfunctions corresponding to the distinct eigenvalues of problem (1.1)-(1.3) are orthogonal.

Proof. We have to show that there are λ1 6= λ2 for y1(t,λ1) and y2(t,λ2) such that 〈y1,y2〉= 0.

−∆
2y1 +q(t)y1 = λ1y1,

−∆
2y2 +q(t)y2 = λ2y2.

If necessary adjustments are made here, we get

−y2(∆
2y1)+ y1(∆

2y2) = (λ1−λ2)y1y2.

Let’s take discrete integral of both sides on [0,N] to get

−
N∫

0

y2(∆
2y1)∆t +

N∫
0

y1(∆
2y2)∆t = (λ1−λ2)

N∫
0

y1y2∆t,

N∫
0

∆[(∆y2)y1− (∆y1)y2]∆t = (λ1−λ2)

N∫
0

y1y2∆t,
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[(∆y2)y1− (∆y1)y2]
N
0 = (λ1−λ2)

N∫
0

y1y2∆t,

∆y2(N)y1(N)−∆y1(N)y2(N)−∆y2(0)y1(0)+∆y1(0)y2(0) = (λ1−λ2)

N∫
0

y1y2∆t.

If we substitute the boundary conditions of the (1.1)-(1.3) problem, we get

−Hy2(N)y1(N)+Hy1(N)y2(N)−hy2(0)y1(0)+hy1(0)y2(0) = (λ1−λ2)

N∫
0

y1y2∆t

0 = (λ1−λ2)

N∫
0

y1y2∆t.

Since λ1 6= λ2, we get

N∫
0

y1y2∆t = 0

or

N−1

∑
t=0

y1(t)y2(t) = 0.

Thus,

〈y1,y2〉= 0.

Theorem 2.2. Eigenvalues corresponding to the discrete Sturm-Liouville problem (1.1)-(1.3) are all real.

Proof. Let λ be an eigenvalue and u be eigenfunction corresponding to λ . Since L∆ is symmetric where L∆u = λu , we get

〈L∆u,u〉= 〈λu,u〉 ,

〈L∆u,u〉= 〈u, ¯L∆u〉=
〈
u, λ̄u

〉
.

Then,

〈λu,u〉=
〈
u, λ̄u

〉
,

〈λu,u〉−
〈
u, λ̄u

〉
= 0,

(λ − λ̄ )〈u,u〉= 0.

Since u is the eigenvalue, 〈u,u〉 6= 0, we get

(λ − λ̄ ) = 0

and

λ = λ̄ .

It yields that, the eigenvalues are all real. This completes the proof.

Theorem 2.3. Eigenvalues corresponding to discrete Sturm-Liouville problem (1.1)-(1.3) are all simple.
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Proof. To prove this, we will consider two eigenfunctions corresponding to the same eigenvalue. We will show that these
eigenfunctions are linearly dependent.

L∆u =−∆
2u+q(t)u = λu,

L∆v =−∆
2v+q(t)v = λv.

If necessary adjustments are made here, we get

v(−∆
2u+q(t)u)−u(−∆

2v+q(t)v) = 0,

∆[u(∆v)− v(∆u)] = 0,

u(∆v)− v(∆u) = c, c ∈ R. (2.1)

Now let us set t = 0. Then, we get

u(0)∆v(0)− v(0)∆u(0) = c,

u(0)hv(0)− v(0)hu(0) = c,

and

c = 0.

If this expression is substituted in (2.1), we get

u∆v− v∆u = 0.

If the fact ∆
( u

v

)
= (∆u)v−(∆v)u

v2 is used in the above equation, we get

∆

(u
v

)
= 0,

u
v
= c1,

u = c1v, c1 ∈ R.

This means u and v are linearly dependent. Proof is completed.

Theorem 2.4. Discrete Sturm-Liouville operator L∆ is formally self-adjoint on LZ
2 [0,N].

Proof. Let u and v be two eigenfunctions. We have to show that 〈v,L∆u〉= 〈L∆v,u〉. Let’s consider the following equations.

L∆u =−∆
2u+q(t)u

L∆v =−∆
2v+q(t)v

If necessary arrangements are made, it yields

vL∆u−uL∆v = ∆[−(∆u)v+(∆v)u].

Let’s take discrete integral for both sides on [0,N] to obtain

N∫
0

vL∆u∆t−
N∫

0

uL∆v∆t =

N∫
0

∆[−(∆u)v+(∆v)u]∆t

= [(∆u)v− (∆v)u]N0
= ∆u(N)v(N)+∆v(N)u(N)+∆u(0)v(0)−∆v(0)u(0)
= Hu(N)v(N)−Hu(N)v(N)+hu(0)v(0)−hv(0)u(0)
= 0.

From here, we get 〈v,L∆u〉−〈L∆v,u〉= 0 and 〈v,L∆u〉= 〈L∆v,u〉 .

The feature of being formally self-adjointness is important in terms of making sense of the problem that is handled physically.
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3. Some examples on discrete Sturm-Liouville equation

In this section, the discrete eigenfunctions of the Sturm-Liouville problem (1.1)-(1.3) with various types of conditions will be
obtained. In these examples, it is seen that obtaining the eigenfunctions in the discrete case is more troublesome and difficult
than in the classical case.

Example 3.1. Let us consider the below discrete BVP

−∆
2y = λy,

y(0) = 0,∆y(2) = 0.

In this example, the discrete boundary value problem will be solved in this particular case. By taking the necessary derivatives
in −∆2y = λy, the following equation is obtained.

y(t +2)−2y(t +1)+(λ +1)y(t) = 0.

Characteristic equation of this equation is k2−2k+(1+λ ) = 0 and its characteristic roots are k1,2 = 1± i
√
−λ . There are

three situations for these roots as λ = 0, λ < 0 and λ > 0.

1. Let λ = 0. Since k is double-decker root as k1,2 = 1, we get

y(t) = c1 + c2t.

Since c1 = 0, c2 = 0 by the given conditions, λ is not an eigenvalue.
2. Let λ < 0. We get k1 = 1−

√
−λ , k2 = 1+

√
−λ and

y(t) = c1(1−
√
−λ )t + c2(1+

√
−λ )t .

By the conditions, we get c1 = 0 and c2 = 0. So, λ is not an eigenvalue.
3. Let λ > 0. We get k1 = 1− i

√
λ , k2 = 1+ i

√
λ . Since r =

√
1+λ , and θ = tan−1(

√
λ ), y has the following form.

y(t) = (c1 cosθ t + c2 sinθ t)(1+λ )
t
2 .

Since y(0) = 0 and c1 = 0, it should be sin3θ = 0 for c2 6= 0. Then, it yields θ = πz
3 ,z = 1,2,3, ... Therefore,

y(t) = c2(1+λ )
t
2 sin

πz
3

t.

Example 3.2. Consider discrete L-transform to solve below discrete IVP

−∆
2y(t) = λy(t),

y(0) = 2, ∆y(0) = 4.

Let’s apply discrete L-transform to both sides of equation as

Lα

(
−∆

2y(t)
)
= Lα (λy(t)) ,

−s2Y (s)+ sy(0)+∆y(0) = λY (s),

Y (s) =
2s+4
λ + s2 .

By using inverse discrete L-transform, we get

y(t) = 2cos√
λ
(t,0)+

4√
λ

sin√
λ
(t,0).

Now let’s get the eigenfunctions of discrete Sturm-Liouville problem in general case, which includes q(t) ∈ LZ
2 [0,N].

Example 3.3. Consider following discrete equation

−∆
2y(t)+q(t)y(t) = λy(t).
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First, let’s find the homogeneous solution of this equation. Since y(t +2)−2y(t +1)+(λ +1)y(t) = 0, characteristic equation
is k2−2k+(1+λ ) = 0. There are three situations for the roots as λ > 0, λ = 0 and λ < 0.

1. Let λ > 0. Then, homogeneous solution is

yh(t) = c1(1+λ )
t
2 cosθ t + c2(1+λ )

t
2 sinθ t.

Here, yp(t) = u1(t)y1(t) + u2(t)y2(t) can be written as a particular solution. Since y1 = (1 + λ )
t
2 cosθ t and

y2 = (1+λ )
t
2 sinθ t, we get

yp(t) = u1(t)(1+λ )
t
2 cosθ t +u2(t)(1+λ )

t
2 sinθ t.

The following operations can be performed.

∆u1(t)(1+λ )
t+1

2 cosθ(t +1)+∆u2(t)(t +1)(1+λ )
t+1

2 sinθ(t +1) = 0,

∆u1(t)(1+λ )
t+2

2 cosθ(t +2)+∆u2(t)(t +2)(1+λ )
t+2

2 sinθ(t +2) =−q(t)y(t).

When necessary solutions are made, we get

u1(t) =
t−1

∑
i=0

−q(i)y2(i+1)
WZ(i+1)

and

u2(t) =
t−1

∑
i=0

q(i)y1(i+1)
WZ(i+1)

where

WZ(y1(i+1),y2(i+2)) =
∣∣∣∣y1(i+1) y2(i+1)
y1(i+2) y2(i+2)

∣∣∣∣ .
WZ(y1(i+1),y2(i+2)) =

∣∣∣∣∣(1+λ )
i+1

2 cosθ(i+1) (1+λ )
i+1

2 sinθ(i+1)
(1+λ )

i+2
2 cosθ(i+2) (1+λ )

i+2
2 sinθ(i+2)

∣∣∣∣∣
= (1+λ )

2i+3
2 sinθ

Finally, general solution of given discrete equation is

y(t,λ ) = c1(1+λ )
t
2 cosθ t + c2(1+λ )

t
2 sinθ t +(1+λ )

t
2 cosθ t

t−1

∑
i=0

−q(i)y(i)(1+λ )
i+1

2 sinθ(i+1)

(1+λ )
2i+5

2 sinθ

+(1+λ )
t
2 sinθ t

t−1

∑
i=0

q(i)y(i)(1+λ )
i+1

2 cosθ(i+1)

(1+λ )
2i+5

2 sinθ

.

2. Let λ = 0. Homogeneous solution is

yh(t) = c1 + c2t.

Similarly, yp(t) = u1(t)y1(t)+u2(t)y2(t) can be written as a particular solution.

∆u1(t)+∆u2(t)(t +1) = 0

∆u1(t)+∆u2(t)(t +2) =−q(t)y(t).

Wronskian of y1 and y2 is as follows.

WZ(y1(i+1),y2(i+2)) =
∣∣∣∣1 i+1
1 i+2

∣∣∣∣= 1.

As a result, general solution is obtained as

y(t) = c1 + c2t−
t−1

∑
i=0

q(i)y(i)+ t
t−1

∑
i=0

q(i)y(i)(i+1).
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3. Let λ < 0. In this case, homogeneous solution is

yh(t) = c1(1−
√
−λ )t + c2(1+

√
−λ )t .

When the necessary calculations are made, we get

WZ(y1(i+1),y2(i+2)) = (1+ i)i(−2
√
−λ −2λ

√
−λ ).

Considering the definitions of u1 and u2, general solution is obtained as follows.

y(t) = c1(1−
√
−λ )t + c2(1+

√
−λ )t − (1+

√
−λ )t

t−1

∑
i=0

q(i)y(i)(1−
√
−λ )t

(1+ i)i(−2
√
−λ −2λ

√
−λ )

+(1−
√
−λ )t

t−1

∑
i=0

q(i)y(i)(1+
√
−λ )t

(1+ i)i(−2
√
−λ −2λ

√
−λ )

Example 3.4. Consider discrete L-transform to solve below discrete IVP

−∆
2y(t)+q(t)y(t) = λy(t)

y(0) = c1,∆y(0) = c2.

Let q(t)y(t) = f (t). Applying discrete L-transform to both sides of equation, it yields

L
{
−∆

2y
}
(s)+L{ f}(s) = λL{y}(s)

−s2Y (s)+ sy(0)+∆y(0)+L{ f}(s) = λY (s)

Y (s) = c1
s

s2 +(
√

λ )2
+

c2√
λ

√
λ

s2 +(
√

λ )2
+

1
λ + s2 L{ f}(s).

By applying discrete inverse L-transform in last equation, we get

y(t) = c1 cos√
λ
(t,0)+

c2√
λ

sin√
λ
(t,0)+L−1

{
1

λ + s2 L{ f}(s)
}
.

Let’s apply discrete convolution to last expression on right-hand side of equation.

L−1
{

1
λ + s2 L{ f}(s)

}
=

sin√
λ
(t,0)
√

λ
∗q(t)y(t)

=
t−1

∑
r=0

sin√
λ
(r,0)
√

λ
q(t−σ(r))y(t−σ(r))

If we consider expression that we found in y(t) solution, we get

y(t) = c1 cos√
λ
(t,0)+

c2√
λ

sin√
λ
(t,0)+

t−1

∑
r=0

sin√
λ
(r,0)
√

λ
q(t−σ(r))y(t−σ(r)).

Finally, let us express two important concepts in the solution of the examples given in this section as a reminder.

Remark 3.5 ( [2]). Let y1 and y2 be delta differentiable functions. Discrete Wronskian of these functions is defined by

WZ =

(
y1(t) y2(t)

∆y1(t) ∆y2(t)

)
.

Remark 3.6 ( [11]). Let f ,g : Na→ R. Delta convolution product of f and g is defined by

( f ∗g)(t) =
t−1

∑
r=a

f (r)g(t−σ(r)+a)

for t ∈ Na.
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4. Conclusion

Difference equations are used in mathematical models and numerical solutions of differential equations in various fields.
Sturm-Liouville problems are used to solve problems in many physical fields. In this study, we examined discrete Sturm-
Liouville operator and its spectral properties. We have obtained a solution for the discrete Sturm-Liouville problem we are
considering using some methods. We did one of these solutions by considering the existing discrete L-transform. We proved
the basic spectral properties of the operator for the discrete Sturm-Liouville difference equation, such as self-adjointness,
orthogonality of eigenfunctions, and realness of eigenvalues. We hope that the study will guide researchers for discrete case of
Sturm-Liouville problem.

Article Information

Acknowledgements: The authors would like to express their sincere thanks to the editor and the anonymous reviewers for
their helpful comments and suggestions.

Author’s contributions: All authors contributed equally to the writing of this paper. All authors read and approved the final
manuscript.

Conflict of Interest Disclosure: No potential conflict of interest was declared by the author.

Copyright Statement: Authors own the copyright of their work published in the journal and their work is published under the
CC BY-NC 4.0 license.

Supporting/Supporting Organizations: No grants were received from any public, private or non-profit organizations for this
research.

Ethical Approval and Participant Consent: It is declared that during the preparation process of this study, scientific and
ethical principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of data and materials: Not applicable.

References

[1] S. Hilger, Ein Masskettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Ph.D. Thesis, Universität Würzburg, 1988.
[2] M. Bohner, A. Peterson, Dynamic Equations on Time Scales: An Introduction with Applications, (MA): Birkhäuser Boston, Boston, 2001.
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[28] A. A. Nabiev, M. Gürdal, On the solution of an infinite system of discrete equations, Turkish J. Math. Comput. Sci., 12(2) (2020), 157-160.
[29] Y. Aygar, Investigation of spectral analysis of matrix quantum difference equations with spectral singularities, Hacet. J. Math. Stat., 45(4) (2016),

999-1005.


	Introduction
	Some spectral properties of discrete Sturm-Liouville equation
	Some examples on discrete Sturm-Liouville equation
	Conclusion

