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ABSTRACT

The propagation of nonlinear Love waves in an elastic, vertically
heterogeneous crust laid upon an elastic, heterogeneous semi-space is
considered. By employing the multiple scales method, the amplitude function
of Love waves is represented by a nonlinear Schrédinger equation which
includes the nonlinear material and heterogeneity parameters of the layered
semi-space in its coefficients. This study numerically investigates the
influence of heterogeneity as well as the nonlinear properties of the media on
the presence of bright and dark solitary Love waves. Moreover, the remarkable
effects of nonlinear and heterogeneous material properties of both layer and
semi-space on the wave evolution of bright and dark solions are graphically
shown.
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OZET

Bu ¢alismada, dalga yayilimma dik yonde heterojen, elastik bir tabakayla
kapli heterojen yarim uzayda dogrusal olmayan Love dalgalarinin yayilmasi
problemi goz oniine alinmistir. Coklu dlgekler yontemi kullanilarak, dogrusal
olmayan Love dalgalarinin 6z etkilesimini karakterize eden, katsayilar
ortamin malzeme 6zelliklerine, dolayisiyla tabaka ve yarim uzay1 olusturan
malzemelerin heterojenlik parametrelerine bagli, dogrusal olmayan bir
Schrodinger denklemi tiiretilmistir. Ortamin dogrusal olmayan 6zelliklerinin
yani sira heterojenliginin de parlak ve karanlik soliter Love dalgalarinin
varlig1 iizerindeki etkileri niimerik olarak incelenmistir. Ayrica hem tabakaya
hem de yarim uzaya ait dogrusal olmayan ve heterojen malzeme 6zelliklerinin
parlak ve karanlik dalga evrimi tizerindeki kaydadeger etkileri grafiksel olarak
gosterilmistir.
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1. INTRODUCTION

Wave evolution in an elastic media is generally determined by three important factors which are dispersion,
nonlinearity and inhomogeneity. Love [1] theoretically demonstrated the presence of dispersive waves with
displacements perpendicular to the propagation plane in a homogeneous, linear, semi-space underlying a uniform
layer with different materials, called Love waves. Love waves, which occur near the surface where the two elastic
layers are in contact, are the fastest transverse surface waves which we directly feel throughout an earthquake [2].
Moreover, owing to its extensive application areas such as seismology, continuum mechanics, petroleum
engineering, biomechanics and metallurgy, the propagation of horizontally polarized shear (SH) waves in a linear,
elastic, homogeneous semi-space coated with a regular layer has been the subject of many studies [3-9]. Especially,
considering that the earth is composed of heterogeneous stratified elastic media whose rigidity and density change
depending on depth, for more realistic research on the Love wave propagation, the heterogeneous constitutional
characteristics of the medium must be taken into account. First, investigation of Love waves has been extended
to a heterogeneous semi-space covered with a homogeneous layer by Meissner, who considered the linear variation
in density and quadratic variation in rigidity of the semi-space [10]. Then, the surface SH waves in a homogeneous,
linear, elastic layer over a heterogeneous semi-space whose shear wave velocity, density and rigidity are functions
of depth has been investigated by several authors [11-15]. Since the analysis of wave propagation in a stratified
medium for any type of inhomogeneity is very complicated, the researchers have considered the problem for
particular types of variations in the constituent materials such as exponential, harmonic, quadratic or linear change
with depth, which are summarized in [16]. Since Love waves occur near the surface where the layer and semi-
space are in contact, it is desirable to examine a model where not only the semi-space but also the layer are taken
as inhomogeneous. Hence, the effects of both the layer and the semi-space’s heterogeneity on Love wave
propagation have been the subject of many studies [17-21].

The effects of nonlinear constituent materials as well as heterogeneity of the medium on solitary SH wave
propagation have been extensively studied in recent years. Teymur has examined SH wave propagation in a
homogeneous, nonlinear, elastic semi-infinite medium coated with a nonlinear crust [22]. Deliktas et. al. have
studied the nonlinear modulation of SH waves in a vertically heterogeneous two-layered plate and investigate the
influence of heterogeneity on the presence of envelope solitary waves [23]. Then, Deliktas has extended the study
of Love waves to the heterogeneous nonlinear layer between two different semi-spaces and reveal the remarkable
influences of material characteristics of intermediate layer on both existence and nonlinear evolutions of solitary
Love-type waves [24].

In the present study, the influence of both nonlinear and nonhomogeneous constituent materials of the media
consisting of a layer laid upon a semi-space having different elastic material properties on the bright and dark
solitary Love waves is investigated. It is assumed that the densities and strain energy functions of the media have
an exponential change in the thickness direction. When nonlinearity is ignored, considered problem reduces to
the propagation of Love waves studied by Sidhu [17]. By using the derivative expansion method, an NLS equation
whose coefficients depend on the medium's material properties, wave number and also heterogeneity parameters
is derived for nonlinear modulation of waves. When heterogeneity parameters of the media tend to zero, derived
NLS equation reduce to that for the layer laid upon semi-space consisting of homogeneous elastic materials. The
effects of heterogeneity as well as the nonlinearity of the media on both existence and nonlinear evolutions of
bright and dark solitary Love wave solutions have been examined and the results are presented graphically.

2. FORMULATION

Let the ordered triples (x;,x,, x3) and (X3, X,, X3) represent, respectively, the spatial and material coordinates of
a point referred to the same rectangular Cartesian system. We take into consideration a layer with uniform
thickness over a semi-space consisting of different, vertically nonhomogeneous, nonlinear, elastic materials whose
linear shear modulus, nonlinear material functions and densities change exponentially in the depth direction. In
the reference frame (X3, X5, X3), the regions occupying 0 < X, < h and —oo < X, < 0 are the layer (P;) and the
semi-space (P,), respectively; here h is a positive constant (see Figure 1).

X2
A
h
O
P, P = py 6™
o =, e —x
p® =, e
P, 0@ = p, 6%
n® =, "%

Figure 1. Geometry of the media.
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The SH waves are defined as follows
x1 = Xl’ xz = Xz, X3 = X3 + u(s)(Xl,Xz, t) S = 1,2 (1)

Here, t denotes the time, superscript s indicates to the region P, u'®) represents the particle's displacement in the

X3 direction. It is assumed that X, = h is traction free, displacements and stresses are continuous at X, = 0 and
radiation condition satisfies in semi-space.

The materials of the media are considered as nonlinear, isotropic, incompressible hyper-elastic and made of
different generalized neo-Hookean materials [25]. The densities and strain energy functions of both layer and semi-
space are assumed to be functions of thickness variable. For such a material

p® = pi(X;), p@ = p,(Xp), T® = sW(IW,X,), 2@ =5@(1D,x,) 2)

where I®=tr ¢ such that ¢V =[x, x,¢], £ is the strain energy function. Let X = X;, Y = X,, Z = X;.
The following equations of motion and boundary conditions can be obtained (for detailed analysis see e.g., [26])

924D 9241 52, 1 du® g (1) 8 [au® 9 [oul® [€Y)
u —612( w0 )__ b du WL (2 (W) ) 4+ 2 (2 ()
at2 X2 ay? pMW gy vy ax\ ox ay
N(u®) a(p®n®) gu®
p ay aw |

62u(2)_cz 62u(2)+62u(2) 1 du(z) 0u(2) (2) 0u(2) N( (2)) Bu(Z)N( (2))
at? 2\ ax2 av2 ) p®@ ar oy ar

]\f(u(z)) d(p(Z)n(Z)) u@

n P, 3)

p@ ar ay n P, Q)
au@®
6Y—00n Y =h, (5)
(1) = @ gng EL L _ az® 0u® _
ut =wtand Say 5 = ar@ oy r=0 ©)
u® s 0asY » —w. @

where

N(u®) = (”:)) +(ag:))2, s =12

Here, linear shear velocities c,, s = 1,2, are c2 = u®/p® where u©® = 22— (S) (3 Y) are the linear shear
azz(®)

Y)

—>@
modulus. Nonlinear material functions of the media are n® = Z%T'

3. ASYMPTOTIC ANALYSIS

The self-modulation of small and finite amplitude SH waves by employing the multiple scales method (see e.g.
[27]) with the following scales

x; =X, ti=¢t, y=Y, i=012 (8)

where € > 0, a small parameter, represents the strength of non-linearity, {x;, x,, t;, t,} are the slow variables which
describe slow variations, whereas {x,, t,, y} are the fast variables representing fast variations. Next, we expand
u®) in the following asymptotic series:

u(S) = Z;?:l gnu‘ElS) (xOI X1,X2, tO’ tll tZ’ Y) S = 1'2 (9)

Rewriting (3)-(7) in terms of (8) and applying (9) give a hierarchy of problems that enable uﬁf) to be obtained,
successively. First three of them can be written as follows:

. (s) Bzugs) 62u55) 1 au® au(S) . _
0(e):  Lg(w”) 2 at2 ( P 5 ) "9 4y oy D P, s=12. (10)
ou _
2y =0on y=h, (11)
(1) 2
uf) = u;z) and az; - az; =0on y=0, (12)
u&z) —»0as y—- —oo. (13)
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2. Oy — o (2 208 _ 2P\
0(&%): Li(u,”) =2 (cs xeom atgor) ' S 1,2. 14)
oug” _ _
e =0 ony=h, (15)
@ @
M =4 and 6:;; - y—a;; =0ony=0, (16)
ugz) —»0asy - —ow. @an
3. () _ 5 62ugs) _ 62ugs)) 2 621155) azugs) _ azugs) _ aZugs)
0(e™): L (u3 )=2 (CS ax 6x1 ato 0ty ox? 9x9xz at2 dtoty
(S) (s)
ol ) ouls (s) No(u ) d(p®n)) au .
+n® <6x ( g No(u S)) ( L No (uy” ))) — Ty e NA (18)
o
On y = h F =0, (19)
oulP oul? 2 aull (1 2
ony=0 %y 27 g 7 ) — gy 2 () and ul? = u?), (20)
u? > 0asy —» —oo (21)
where

ay\2 )\
MW = (50) + () v =u@/u®, o=n®/c;

Note that the first order problem in ¢ is the propagation of linear Love waves in the vertically nonhomogeneous
layer overlying the nonhomogeneous semi-space investigated in [17]. For harmonic wave solutions of this
problem, different types of variation in p® and u®, s = 1,2, such as linear, quadratic, harmonic or exponential
variation, are examined by several authors [16, 28, 29]. In this analysis, we consider depth dependent exponential
variations in the nonhomogeneous constituent materials. Hence, the densities, linear shear modulus and nonlinear
material functions are taken to be, respectively,

p(S) = pe®y, M(S) = ey, n® = nse’lsy, s=1,2 (22)

where ps and ps, s = 1,2, are rigidities and densities at the interface, respectively, and « are the linear
heterogeneity parameters, A, are the nonlinear heterogeneity parameters. ng are the nonlinear material constants.
When ng > 0, the material has the property of shear hardening otherwise softening.

By employing the separation of variables method and using (13), and making the substitution u(s) fs)/w/u(s)
the solutions of the equatlons (10) are expressed as follows

1 1 _ .
) = B4 (e, 11,6000 + B (xy, xp, t1, 0)e PO Y el 4 cc. (23)
2 ()]
ui )= \/WZZ IC( (xlleltlltZ)elkvlyeue +c. c., (24)
where

0 =kxy— wty, p; = (c?/c? — 1 — a,%/(4k? lz))z , v = (14 ay?/(4k21%) — c% /e,

Agl), Bl(l), Cl(l) are the first order amplitude functions dependent on {x,, x,, t;,t,}, kand w are the wave number
and angular frequency, respectively, ¢ = w/k is the phase velocity and "c.c." represents the complex conjugate of
the former terms.

Clearly, a surface SH wave propagates when the following inequality holds for the phase velocity ¢

1 1
2332
(1 + 4k212) <c< ¢ (1 + 4k2l2) . (25)
Substituting of (23)-(24) in (11)-(12) gives
wul =0 1=12,. (26)

where Ugl) = (A(l),Bl(l), Cl(l))T and W, is dispersion matrix given in the Appendix. For the nontrivial solutions
of (26), the condition det W, = 0 gives the dispersion relation first derived in [17]

2kp(2kv — ay)yo — (4k?p? + 2kva,y, + ay (ay — ayy,) )tan(kph) = 0 27
where v =v;,p = p; and yo = U/, For a; = a, = 0, (27) reduces to
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vy, — ptan(kph) =0 (28)

which coincides with the frequency equation of Love waves in a homogeneous semi-space covered with a
homogeneous layer [22]. Since the focus of this work is on the nonlinear self-modulation, the analysis does not
include the harmonic-resonance case. Therefore, we assume

detW; = 0,for | # 1. (29)
Thus, the solutions of (26) can be obtained as
UV =R UP =0forl#1. (30)

Here, A;, a complex function of {x;, x,, t;, t,}, represents the first order amplitude of the nonlinear modulation.
The components of R satisfying W, R = 0 can be found in the Appendix. Thus, (23)-(24) are given as follows

utt = \/% (R,e*PY + Rye~*PY)ei® 4 ¢ c, (31)
u? = \/%Rﬁk"yew +c.c. (32)
Note that the condition
kv > 2 (33)
which is necessary for the u§2> to vanish as y — —oo, is satisfied only if
k(1 - é) > 0, consequently ¢ < c,. (34)
It follows from (25) and (34) that

1 1
o) (1+Z—;2)2<c<c2< Cy (1+%)2. (35)

With nondimensional linear heterogeneous parameters A; = a4 /k, A, = a,/k and nondimensional phase velocity
C = c¢/cy, (35) can be written as follows

1 1

(1+A712)5<C<Zi < E—i(l#%z)i. (36)

1

Hence a surface SH wave satisfying radiation condition (13) propagates in an exponentially heterogeneous layered
semi-space when (36) holds for the phase velocity C.

To finalize the first order solution, we must determine A,. This can be accomplished by higher order problems.
Substituting (31)-(32) in the problem of 0 (£?2), one can easily solve (14) via method of undetermined coefficients

for ug”. Then the nonhomogeneous boundary conditions (15)-(16) gives the following compatibility condition

LbY =0 (37)
where bg) are given as

@ _ _;(0faWs 041 0W, O _
bP = —i (3252 - 22T R and b’ = 0 foralll > 1. (38)

L is a left row vector such that LW, = 0. The components of L = (L,, L, L5 ) are given in the Appendix.
From the compatibility condition (37), following equation for A is obtained

o |y O _
oty +t1 x; 0, (39)

where the group velocity, 1, is expressed by

— (1M oWy
V=-(L52R)/LE2R (40)
(39) implies that
Ay = Ay (2 — Vyxy, by, 85) (41)
Substituting uf) and ugs) into the third order perturbation problems (18) yields
£, (u) = Yi2,Dif;()e" + terms in (e*3) + c.c. (42)
L, (ugz)) = Y813 Dif;()e' + terms in (e*3) + c.c. (43)

We give the explicit forms of f;(y) and D;, j = 1,2,..,16 in the Appendix. ug5> are written as
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uP =a +a, s=12 (44)

where ﬁgs)are the homogeneous solutions. They are constructed as in the (23)-(24) by writing third order amplitude

functions UL = (4, B, ") instead of U, The particular solutions @{” can be solved by means of the
method of undetermined coefficients or the method of variation of parameters. For detailed analysis, we refer to

[23] and [24] where the methods are applied in detail, respectively. Then, substituting ugs) and uf) in (19)-(20)
one obtains the following system

w,u = b, (45)

Where bV # 0,55 # 0 and b” = 0 for I = 1,3. b{" is symbolized by

b(1) _ [ i (6W1 0A,; OW, 6ﬂ1) 1 (62W1 0%A1 %Wy 3%A; |, 9*Wq 62ﬂ1)] (aw1 9%A,
3 = dw dt, ok dx, 2\ dw? at? dkdw 0x10t, ak?  9x? ok 0x?
oW, 3%A, )(6R dR 2
— —+V, — F|A{|*A,;. 4
dw dx,0t,) \ok tooa) T A ["Ay (46)

Here F is the constant vector. Since its components are so long, they are not written explicitly. The solvability

condition L. bgl) = 0 must be satisfied for (45). Consequently, the following NLS equation is obtained
2
22 LT EA LA lAR = 0 (47)

where nondimensional variables are described by

T=wt, E=k(x, —Vt;), A=kA,. (48)
The simple representation of ' and A are

_ k2 d%w _ 1 oW,

=g A= LR/(LTER). (49)

Now, we search for the soliton solutions of the NLS equation (47) through the following ansatz
A, 1) = g(&)e'™, r:constant. (50)

For bright soliton solutions, we choose g(§) = gosech(§) such that g, # 0. Hence putting (50) in the NLS
equation (47) yields

g0=\[2AE andr =T. (51)

Thus, the following bright soliton solution is constructed by means of (50)

AE,T) = \[ZAE sech(§)e'™, forTA > 0. (52)

When TA < 0, to get the dark soliton solutions, we choose g(¢) in (50) as g(¢) = gotanh(§). Putting (50) with
g(&) in the NLS equation gives

Jo = /—ZA—F andr = —2T. (53)

Hence, the dark soliton solution is identified as

A7) = / —ZA—F tanh(§)e~2*, for TA < 0. (54)

Since it is decisive in the solutions of (47), the T'A sign should be investigated.

4. NUMERICAL EVALUATION

The effects of nonlinear constituent materials as well as heterogeneity of the layered semi-space on the I'A sign
and hence solitary Love wave propagation are studied. In the calculations, the following parameters are chosen as
in the geophysical model given in [7]

Y0:2.159, CZ/Cl = 1.297.

Firstly, we investigate the influence of dimensionless linear heterogeneity parameters of the layer and semi-space
A, =a,/k, A, = ay/k, respectively, on the change of nondimensional phase velocity C = c/c; versus
nondimensional wave number K = kh for the dispersion relation's first branch. Figure 2 illustrates the results
for different values of (4;,A,) which have been chosen as {(0.1,0.3), (0.3,0.1), (0.1,0.1), (0.3,0.3)}. It is seen
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that the curves having same A, approach to each other for small wave numbers whereas the curves with same A,
approach to each other for K > 1. Consequently, linear heterogeneity of the layer dominates C for short waves
while that of half space is effective on C for long waves. It is also observed that the upper limit of C is ¢, /c; chosen
as 1.297, and the lower limit which is greater than 1 changes depending on A, which is consistent with the
inequality (36). The change of I" versus K is also shown in Figure 3 for different values of (4,,A,). The sign of
I, initially negative, changes at a certain K values with variation in A; and A,.

1.30 1.32
1.30
1.28
1.25 126 (A4, Az)
1.24
1.20 1.22 — (0.1,0.9)
29 2 10 12
C 115 0.0 0.2 0.4 0.6 08 1.0 1.2 __ ___ (0.3,0.1) |
I N (0.1, 0.3) |
105 — (0.3, 0.3)
1.00
0 2 4 6 8
K
Figure 2. C vs. K for various (44, 4,).
0.05
0.00 =
/ /| (A4, Az)
r -0.05 '1'/," — (0.1,0.1)
/, - (0.3,0.)
-0.10 < (0.1, 0.3)
— (0.3, 0.3)
-0.15
0 2 4 6 8 10

K

Figure 3. I' vs. K for various (44, 4;).

To examine the effect of heterogeneity associated with the linear constitution of both layer and semi-space on
nonlinear wave propagation, in the numerical evaluations of ', nonlinear material constants Sy, = n,/c?, Bo; =
n,/c? and the nondimensional nonlinear heterogeneity parameters A, = A;h and A, = A,h are fixed while
(A4, A;) isbeing changed. Note that when S, > 0, the material has shear hardening (H) otherwise softening (S)
properties. Firstly, we examine the effect of (4,,4,) choosing as {(0.1,0.3), (0.3,0.1), (0.1,0.1), (0.3,0.3)} on
the sign of 4 and I"A for a softening layer and a hardening semi-space, (S, H) material model, with fixed 8,; =
—1, Bo2 = 1 and the nonlinear heterogeneity parameters (A;, A;)=(0.1, 0.1). The results are illustrated in Figures
4a-4b. As shown in Figure 4a, 4 >0 for all K >0. Hence I'"4 is negative in the interval in which I <0. Therefore,
the presence of (54) is possible in this interval that is changing with (4,, A,).

s T T 045
i 0.000
1.0
5 08 ’_;:,' (41, A7) arpl ~0002
08 fil — 04,04) -0.004
4 0.4 ¥ -0.008
/A (0.3,0.1) 005
3 02 -0.008
o0 s 1 M 0.1, 0.3 05 0.
A o5 010 050 1 ( ) 1ra 000 0.05_0.10
— (0.3, 0.3)
-0.05 (Ay, Az) (Aq, Az)
ol — @00 NS (0.1, 0.3)
e (0.3, 0.1) — (0.3, 0.3)
- 0.1 1 10 -018 0.1 1 10
K K
(@) (b)

Figure 4. For various (4;,4,) and for (S, H) material model with 8y, = =1 and 8o, =1, (A1, Ay) =
(0.1,0.1)a) Avs. K, b) I'd vs. K.
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When the media consists of the softening layered half-space, for (S,S) material model having nonlinear material
constants 8,,= B2 = —1, changes of 4 and I'4 versus K are shown in Figures 5a-5b, respectively, for various
values of (4;,4,) and for fixed (A, A,)=(0.1, 0.1). As can be seen, I'4 is positive initially, thus existence of
bright solitary waves is possible. The each I'A curve has two zeros that belong to 4 and I, respectively. The
positive intervals in which bright solitons (52) exist are varying with the change in A; and A,. It is seen that the
I'A curves having same A, approach to each other for small wave numbers whereas the curves with same A;
approach to each other for K > 1. Consequently, linear heterogeneity of the layer dominates nonlinear
modulation for short waves while that of half space is effective on nonlinear waves for long waves. Note that
different choice of 8,, makes the curves in Figure 4 and Figure 5 different from each other. Thus, the effect of
notonly (A4, A4,) butalso B,, on the presence of solitary SH waves is demonstrated.

@

0.15

" A, A

0.1 0.0014

5 — (0.1, 0.1) 0.0012

0.0 tp| 00010

: 0.0008

R -0.1 === (0.3, 0.1) 0.0006

0z 0.0004

-0. 0.0002
----- 0.1, 0.3

3l -03 (01, 03) oost %55 010 0.50
A -0.4 — (0.3, 0.3
0.05 0.0 050 1 (03, 03) ra

p

0.00 ‘
W
\

(A4, Az) (A, Az)
. -0.05 — 1,01 N M - (0.1, 0.3)
I
------ (03, 0.1) — (03, 03)
o5 0.10 0.50 1 5 -o40 01 1 10
K K
@ (b)

Figure 5. For various (4;,4,) and for (S, S) material model with By;=80, = —1, (A1,A;) = (0.1,0.1) a) 4
vs. K, b) I'd vs. K.

Now, to investigate the effect of nonlinear heterogeneity of both layer and semi-space, 4 and I'4 curves are
depicted with fixed (4,,4,) = (0.3,0.3) and for various values of (A;,A,) which have been chosen as
{(0.1,0.1), (0.4,0.1), (0.1,0.4), (0.4,0.4)}. 4 and I"A versus K for (S, H) material model with (841, Bo2) = (—1,1)
are presented in Figures 6a-6b, respectively. As can be observed in Figure 6a, 4 > 0 for all K. In Figure 6b, the
sign of each I"'4 curve changes at K = 3.85 in which I' = 0. Dark solitary SH waves exist for 0< K <3.85 in which
I'A <0. Note that, for (S, H) material model, the wave numbers where dark solitary waves exist do not affected by
the change in (A4, A;) . Asimilar examination is carried out for the media consisting of the softening layered half-
space for By, = Bo2 = —1, with Figures 7a-7b. It is seen that I'4 curves have two zeros such that the first belongs
to 4 and the second belongs to I'. Since I" does not dependent on nonlinear material parameters, the second zeros
do not change, whereas the first zeros vary with the variation of (A;,A,) . It is also seen that I'4 curves having
same A, approach to each other when K « 1, I'4 curves with same A; approach to each other for large wave
numbers. This observation is consistent with the conclusion highlighted in [22] that the layer’s nonlinearity for
short waves and the semi-space’s nonlinearity for long waves dominate the wave modulation. Consequently,
intervals where bright and dark solitons exist change depending on the nonlinear heterogeneous structures of layer
and semi-space. The reason why the curves in Figure 6 and Figure 7 are different from each other is the different
Bo2 selection. Thus, the effect of not only (A4, A;) but also S, of the half-space on the presences of solitons is
observed.
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Figure 6. For various (A,,A;) and for (S, H) material model with 8y, = —1, 8, = 1, (44,4;) = (0.3,0.3)
a) 4vs. K, b)ravs. K.
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Figure 7. For various (A;,A,) and for (S, S) material model with 8o, = —1, 8y, = —1, (4,,4,) = (0.3,0.3)
a)Avs. K, b)ravs. K.

For all models having hardening half-space, I'A is negative for K « 1, thus dark solitary waves propagate.
However, for all models having softening half-space, I'4 is positive for K « 1, hence bright solitons propagate.
It is concluded that the semi-space’s nonlinearity dominates the wave motion for long waves.

Aand I'A curves for hardening layer overlying the softening half-space and for hardening layer overlying the
hardening half-space are not given due to limited space. These curves are symmetrical about the K axes of the
opposite sign (By1 , Boz) curves in Figures 4-7.

We also examine the influence of nonlinearity and nonhomogeneity on the evolution of solitary Love waves. As
shown in Figures 4b-5b when K =0.6, for (S, S) models I'A >0 and bright solitons propagate, for (S, H) models
I'A <0 and dark soliton propagation exists. Hence nonlinear evolutions of dark and bright solitons are presented in
Figures 8a-8b for (S, H) and (S, S) material models, respectively, for different (4,,A4,) selected as
{(0.1,0.3), (0.3,0.1)}, with fixed K =0.6 and (A, A;)=(0.1, 0.1). Consequently, the considerable effects of both
(A4, A;) and B, on the nonlinear evolutions of waves are demonstrated. Similar observation is made for different
(A4, Ay) values selected as (A4, A,) = {(0.4,0.1), (0.1,0.4)} with K=0.6 and fixed (4,, 4,) = (0.3,0.3) in Figures
9a-9b, respectively, for (S, H) and (S, S) models. Thus, the influence of not only (A4, A,) but also 8, on the
nonlinear evolutions of waves is observed. Notice that for the (S, H) material model, though the change in (A4, A;)
does not affect the interval of existence of dark solitons, it has a significant effect on the nonlinear evolution of
waves.

A2 0 ‘ m A=0.1, A,=0.3
|
L

0o/

N A1=0.3, A2=0.1

f 5
(@) (b)
Figure 8. For various (44, 4,) with (A;,A;) = (0.1,0.1) and K=0.6 a) Nonlinear evolution of the dark
solitons in the (S, H) model with 8,; = —1, By, =1 b) Nonlinear evolution of the bright solitons in the (S, S)
model with By;= —1, By, = —1.
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1A12 u N\=0.4,A,=0.1

L A=0.1,A,=04

() (b)
Figure 9. For various (A, A;) with (4,,4,) = (0.3,0.3) and K=0.6 a) Nonlinear evolution of the dark
solitons in the (S, H) model with 8,; = —1, B,, = 1 b) Nonlinear evolution of the bright solitons in the (S, S)
m0d9| Wlth B()l: _1, ﬁoz =-1.

5. CONCLUDING REMARKS

Existence and nonlinear evolution of solitary Love waves in a layered semi-space consisting of different nonlinear,
elastic, heterogeneous constituent materials varying exponentially with depth are examined. Firstly, dispersion
relation is derived, and it is shown that linear heterogeneity of the layer dominates C for short waves while that
of half space is dominant on C for long waves. Then an NLS equation is obtained for nonlinear modulation of
waves via multiple scales method. For two different material models, (S, H) and (S, S), the variation of I'4 sign
with heterogeneity of both layer and half-space is examined due to its distinctive effect on the presence of solitary
wave solutions. As it is seen in the Figures 4-7, linear and nonlinear heterogeneity parameters of the semi-space
affects strongly the existence of envelope solitary waves for long waves while those of layer dominate the existence
of solitary waves for short waves. Furthermore, the considerable influence of heterogeneity properties of both layer
and semi-space on the nonlinear evolutions of bright and dark solitons are shown graphically. It is observed that
for the (S, H) material model, the change in (A, A,) does not affect the interval of existence of dark solitons
whereas it has a considerable effect on nonlinear evolution of dark solitons.
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