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The propagation of nonlinear Love waves in an elastic, vertically 

heterogeneous crust laid upon an elastic, heterogeneous semi-space is 

considered. By employing the multiple scales method, the amplitude function 

of Love waves is represented by a nonlinear Schrödinger equation which 

includes the nonlinear material and heterogeneity parameters of the layered 

semi-space in its coefficients. This study numerically investigates the 

influence of   heterogeneity as well as the nonlinear properties of the media on 

the presence of bright and dark solitary Love waves. Moreover, the remarkable 

effects of nonlinear and heterogeneous material properties of both layer and 

semi-space on the wave evolution of bright and dark solions are graphically 

shown. 
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Bu çalışmada, dalga yayılımına dik yönde heterojen, elastik bir tabakayla 

kaplı heterojen yarım uzayda doğrusal olmayan Love dalgalarının yayılması 

problemi göz önüne alınmıştır. Çoklu ölçekler yöntemi kullanılarak, doğrusal 

olmayan Love dalgalarının öz etkileşimini karakterize eden, katsayıları 

ortamın malzeme özelliklerine, dolayısıyla tabaka ve yarım uzayı oluşturan 

malzemelerin heterojenlik parametrelerine bağlı, doğrusal olmayan bir 

Schrödinger denklemi türetilmiştir.  Ortamın doğrusal olmayan özelliklerinin 

yanı sıra heterojenliğinin de parlak ve karanlık soliter Love dalgalarının 

varlığı üzerindeki etkileri nümerik olarak incelenmiştir. Ayrıca hem tabakaya 

hem de yarım uzaya ait doğrusal olmayan ve heterojen malzeme özelliklerinin 

parlak ve karanlık dalga evrimi üzerindeki kaydadeğer etkileri grafiksel olarak 

gösterilmiştir.   
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1.  INTRODUCTION 

Wave evolution in an elastic media is generally determined by three important factors which are dispersion, 

nonlinearity and inhomogeneity. Love [1] theoretically demonstrated the presence of dispersive waves with 

displacements perpendicular to the propagation plane in a homogeneous, linear, semi-space underlying a uniform 

layer with different materials, called Love waves. Love waves, which occur near the surface where the two elastic 

layers are in contact, are the fastest transverse surface waves which we directly feel throughout an earthquake [2]. 

Moreover, owing to its extensive application areas such as seismology, continuum mechanics, petroleum 

engineering, biomechanics and metallurgy, the propagation of horizontally polarized shear (SH) waves in a linear, 

elastic, homogeneous semi-space coated with a regular layer has been the subject of many studies [3-9]. Especially, 

considering that the earth is composed of heterogeneous stratified elastic media whose rigidity and density change 

depending on depth, for more realistic research on the Love wave propagation, the heterogeneous constitutional 

characteristics of the medium must be taken into account.  First, investigation of Love waves has been extended 

to a heterogeneous semi-space covered with a homogeneous layer by Meissner, who considered the linear variation 

in density and quadratic variation in rigidity of the semi-space [10]. Then, the surface SH waves in a homogeneous, 

linear, elastic layer over a heterogeneous semi-space whose shear wave velocity, density and rigidity are functions 

of depth has been investigated by several authors [11-15].  Since the analysis of wave propagation in a stratified 

medium for any type of inhomogeneity is very complicated, the researchers have considered the problem for 

particular types of variations in the constituent materials such as exponential, harmonic, quadratic or linear change 

with depth, which are summarized in [16]. Since Love waves occur near the surface where the layer and semi-

space are in contact, it is desirable to examine a model where not only the semi-space but also the layer are taken 

as inhomogeneous. Hence, the effects of both the layer and the semi-space’s heterogeneity on Love wave 

propagation have been the subject of many studies [17-21].  

The effects of nonlinear constituent materials as well as heterogeneity of the medium on solitary SH wave 

propagation have been extensively studied in recent years. Teymur has examined SH wave propagation in a 

homogeneous, nonlinear, elastic semi-infinite medium coated with a nonlinear crust [22]. Deliktas et. al. have 

studied the nonlinear modulation of SH waves in a vertically heterogeneous two-layered plate and investigate the 

influence of heterogeneity on the presence of envelope solitary waves [23]. Then, Deliktas has extended the study 

of Love waves to the heterogeneous nonlinear layer between two different semi-spaces and reveal the remarkable 

influences of material characteristics of intermediate layer on both existence and nonlinear evolutions of solitary 

Love-type waves [24]. 

In the present study, the influence of both nonlinear and nonhomogeneous constituent materials of the media 

consisting of a layer laid upon a semi-space having different elastic material properties on the bright and dark 

solitary Love waves is investigated. It is assumed that the densities and strain energy functions of the media have 

an exponential change in the thickness direction.  When nonlinearity is ignored, considered problem reduces to 

the propagation of Love waves studied by Sidhu [17]. By using the derivative expansion method, an NLS equation 

whose coefficients depend on the medium's material properties, wave number and also heterogeneity parameters 

is derived for nonlinear modulation of waves. When heterogeneity parameters of the media tend to zero, derived 

NLS equation reduce to that for the layer laid upon semi-space consisting of homogeneous elastic materials. The 

effects of heterogeneity as well as the nonlinearity of the media on both existence and nonlinear evolutions of 

bright and dark solitary Love wave solutions have been examined and the results are presented graphically. 

2. FORMULATION 

Let the ordered triples  (𝑥1, 𝑥2, 𝑥3) and (𝑋1, 𝑋2, 𝑋3) represent, respectively, the spatial and material coordinates of 

a point referred to the same rectangular Cartesian system. We take into consideration a layer with uniform 

thickness over a semi-space consisting of different, vertically nonhomogeneous, nonlinear, elastic materials whose 

linear shear modulus, nonlinear material functions and densities change exponentially in the depth direction. In 

the reference frame (𝑋1, 𝑋2, 𝑋3), the regions occupying 0 < 𝑋2 < ℎ and −∞ < 𝑋2 < 0 are the layer (𝑃1) and the 

semi-space (𝑃2), respectively; here ℎ is a positive constant (see Figure 1). 

 
Figure 1. Geometry of the media. 
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The SH waves are defined as follows 

𝑥1 = 𝑋1,    𝑥2 = 𝑋2,    𝑥3 = 𝑋3 + 𝑢(𝑠)(𝑋1, 𝑋2, 𝑡)          𝑠 = 1,2.               (1) 

Here, 𝑡 denotes the time, superscript 𝑠 indicates to the region 𝑃s, 𝑢(𝑠) represents the particle's displacement in the 

𝑋3 direction. It is assumed that 𝑋2 = ℎ is traction free, displacements and stresses are continuous at  𝑋2 = 0 and 

radiation condition satisfies in semi-space. 

The materials of the media are considered as nonlinear, isotropic, incompressible hyper-elastic and made of 

different generalized neo-Hookean materials [25]. The densities and strain energy functions of both layer and semi-

space are assumed to be functions of thickness variable. For such a material 

𝜌(1) = 𝜌1(𝑋2),   𝜌(2) = 𝜌2(𝑋2), 𝛴(1) = 𝛴(1)(𝐼(1), 𝑋2),    𝛴(2) = 𝛴(2)(𝐼(2), 𝑋2)              (2) 

where 𝐼(s)=tr 𝒄(−1) such that 𝒄(−1) = [𝑥𝑘,𝐾 𝑥𝑙,𝐾], 𝛴(s) is the strain energy function. Let 𝑋 = 𝑋1, 𝑌 = 𝑋2, 𝑍 = 𝑋3. 

The following equations of motion and boundary conditions can be obtained (for detailed analysis see e.g., [26]) 

𝜕2𝑢(1)

𝜕𝑡2 − 𝑐1
2 (

𝜕2𝑢(1)

𝜕𝑋2 +
𝜕2𝑢(1)

𝜕𝑌2 ) −
1

𝜌(1)

𝑑𝜇(1)

𝑑𝑌

𝜕𝑢(1)

𝜕𝑌
=  𝑛(1) {

𝜕

𝜕𝑋
(

𝜕𝑢(1)

𝜕𝑋
𝒩(𝑢(1))) +

𝜕

𝜕𝑌
(

𝜕𝑢(1)

𝜕𝑌
𝒩(𝑢(1)))}  +

𝒩(𝑢(1))

𝜌(1)  
𝑑(𝜌(1)𝑛(1))

𝑑𝑌
 
𝜕𝑢(1)

𝜕𝑌
  in  𝑃1                    (3) 

𝜕2𝑢(2)

𝜕𝑡2 − 𝑐2
2 (

𝜕2𝑢(2)

𝜕𝑋2 +
𝜕2𝑢(2)

𝜕𝑌2 ) −
1

𝜌(2)

𝑑𝜇(2)

𝑑𝑌

𝜕𝑢(2)

𝜕𝑌
= 𝑛(2) {

𝜕

𝜕𝑋
(

𝜕𝑢(2)

𝜕𝑋
𝒩(𝑢(2))) +

𝜕

𝜕𝑌
(

𝜕𝑢(2)

𝜕𝑌
𝒩(𝑢(2)))}    

+
𝒩(𝑢(2))

𝜌(2)  
𝑑(𝜌(2)𝑛(2))

𝑑𝑌
 

𝜕𝑢(2)

𝜕𝑌
    in 𝑃2                                                                                                                            (4) 

∂𝑢(1)

∂𝑌
= 0 on   𝑌 = h,                                                                                                                                                               (5) 

𝑢(1) = 𝑢(2) and  
𝑑𝛴(1)

𝑑𝐼(1)

∂𝑢(1)

∂𝑌
=

𝑑𝛴(2)

𝑑𝐼(2)

∂𝑢(2)

∂𝑌
  on 𝑌 = 0,                                                                                                (6) 

𝑢(2) → 0 as 𝑌 →  −∞.                (7) 

where 

𝒩(𝑢(𝑠)) = (
𝜕𝑢(𝑠)

𝜕𝑋
)

2

+ (
𝜕𝑢(𝑠)

𝜕𝑌
)

2

,          𝑠 = 1,2.  

Here, linear shear velocities 𝑐s, 𝑠 = 1,2, are 𝑐𝑠
2 = 𝜇(𝑠)/𝜌(𝑠) where 𝜇(𝑠) = 2

𝑑𝛴(𝑠)

𝑑𝐼(𝑠) (3, 𝑌) are the linear shear 

modulus. Nonlinear material functions of the media are  𝑛(𝑠) = 2
𝑑2𝛴(𝑠)

𝑑𝐼2 (3,𝑌)

𝜌(𝑠)(𝑌)
. 

3. ASYMPTOTIC ANALYSIS 

The self-modulation of small and finite amplitude SH waves by employing the multiple scales method (see e.g. 

[27]) with the following scales  

 𝑥𝑖 = 𝜀𝑖𝑋,         𝑡𝑖 = 𝜀𝑖𝑡,        𝑦 = 𝑌,        𝑖 = 0,1,2             (8) 

where 𝜀 > 0, a small parameter, represents the strength of non-linearity, {𝑥1, 𝑥2, 𝑡1, 𝑡2} are the slow variables which 

describe slow variations, whereas  {𝑥0, 𝑡0, 𝑦} are the fast variables representing fast variations. Next, we expand 

𝑢(𝑠) in the following asymptotic series: 

 𝑢(𝑠) = ∑ 𝜀𝑛𝑢𝑛
(𝑠)(𝑥0, 𝑥1, 𝑥2, 𝑡0, 𝑡1, 𝑡2, 𝑦)    𝑠 = 1,2.            ∞

𝑛=1                                                                                        (9) 

Rewriting (3)-(7) in terms of (8) and applying (9) give a hierarchy of problems that enable 𝑢𝑛
(𝑠)

 to be obtained, 

successively. First three of them can be written as follows:  

𝑂(𝜀):     ℒs(𝑢1
(s)

) ≜
∂2𝑢1

(s)

∂𝑡0
2 − 𝑐s

2 (
∂2𝑢1

(s)

∂𝑥0
2 +

∂2𝑢1
(s)

∂𝑦2 ) −
1

𝜌(s)

𝑑𝜇(s)

𝑑𝑦

𝜕𝑢1
(s)

𝜕𝑦
 in   𝑃s,     𝑠 = 1,2.                                        (10) 

∂𝑢1
(1)

∂𝑦
= 0 on   𝑦 = h,                             (11) 

𝑢1
(1)

= 𝑢1
(2)

 and 
∂𝑢1

(1)

∂𝑦
− 𝛾

∂𝑢1
(2)

∂𝑦
= 0 on  𝑦 = 0,          (12) 

𝑢1
(2)

→ 0 as  𝑦 →  −∞.   (13) 
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𝑂(𝜀2):         ℒ𝑠(𝑢2
(𝑠)

) = 2 (𝑐𝑠
2 ∂2𝑢1

(𝑠)

∂𝑥0 ∂𝑥1
−

∂2𝑢1
(𝑠)

∂𝑡0 ∂𝑡1
) ,  𝑠 = 1,2. (14) 

∂𝑢2
(1)

∂𝑦
= 0  on  𝑦 = h, (15) 

𝑢2
(1)

= 𝑢2
(2)

  and 
∂𝑢2

(1)

∂𝑦
− 𝛾

∂𝑢2
(2)

∂𝑦
= 0 on 𝑦 = 0, (16) 

𝑢2
(2)

→ 0 as 𝑦 →  −∞. (17) 

𝑂(𝜀3):          ℒs(𝑢3
(s)

) = 2 (𝑐s
2 ∂2𝑢2

(s)

∂𝑥0 ∂𝑥1
−

∂2𝑢2
(s)

∂𝑡0 ∂𝑡1
) + 𝑐s

2 (
∂2𝑢1

(s)

∂𝑥1
2 + 2

∂2𝑢1
(s)

∂𝑥0𝑥2
) −

∂2𝑢1
(s)

∂𝑡1
2 − 2

∂2𝑢1
(s)

∂𝑡0𝑡2
  

+𝑛(𝑠) (
∂

∂𝑥0
(

∂𝑢1
(s)

∂𝑥0
𝒩0(𝑢1

(s)
)) +

∂

∂y
(

∂𝑢1
(s)

∂𝑦
𝒩0(𝑢1

(s)
))) +

𝒩0(𝑢1
(s)

)

𝜌(s)  
𝑑(𝜌(s)𝑛(s))

𝑑𝑦
 

𝜕𝑢1
(s)

𝜕𝑦
  in  𝑃s (18) 

On  𝑦 = h       
∂𝑢3

(1)

∂𝑦
= 0,  (19) 

On 𝑦 = 0   
∂𝑢3

(1)

∂𝑦
− 𝛾

∂𝑢3
(2)

∂𝑦
= 𝛾𝛽2

∂𝑢1
(2)

∂𝑦
𝒩0(𝑢1

(2)
) − 𝛽1

∂𝑢1
(1)

∂𝑦
𝒩0(𝑢1

(1)
) and 𝑢3

(1)
= 𝑢3

(2)
, (20) 

𝑢3
(2)

→ 0 as 𝑦 → −∞                                                      (21) 

where 

 𝒩0(ѱ) = (
𝜕ѱ

𝜕𝑥0
)

2

+ (
𝜕ѱ

𝜕𝑦
)

2

.  𝛾 = 𝜇(2)/𝜇(1),  𝛽s = 𝑛(s)/𝑐𝑠
2  

Note that the first order problem in 𝜀 is the propagation of linear Love waves in the vertically nonhomogeneous 

layer overlying the nonhomogeneous semi-space investigated in [17]. For harmonic wave solutions of this 

problem, different types of variation in 𝜌(s) and  𝜇(s), 𝑠 = 1,2, such as linear, quadratic, harmonic or exponential 

variation, are examined by several authors [16, 28, 29]. In this analysis, we consider depth dependent exponential 

variations in the nonhomogeneous constituent materials. Hence, the densities, linear shear modulus and nonlinear 

material functions are taken to be, respectively, 

𝜌(s) = 𝜌s𝑒𝛼𝑠𝑦,     𝜇(s) = 𝜇s𝑒𝛼𝑠𝑦 ,     𝑛(s) = 𝑛s𝑒𝜆𝑠𝑦, 𝑠 = 1,2          (22) 

where 𝜇s and 𝜌s, 𝑠 = 1,2, are rigidities and densities at the interface, respectively, and 𝛼𝑠 are the linear 

heterogeneity parameters, 𝜆𝑠 are the nonlinear heterogeneity parameters. 𝑛s are the nonlinear material constants.  

When  𝑛s > 0, the material has the property of shear hardening otherwise softening. 

By employing the separation of variables method and using (13), and making the substitution  𝑢1
(s)

= 𝑈1
(s)

/√𝜇(s) 

the solutions of the equations (10) are expressed as follows  

𝑢1
(1)

=
1

√𝜇1𝑒𝛼1𝑦
∑ {𝐴1

(𝑙)
(𝑥1, 𝑥2, 𝑡1, 𝑡2)𝑒𝑖𝑙𝑘𝑝𝑙𝑦 + 𝐵1

(𝑙)
(𝑥1, 𝑥2, 𝑡1, 𝑡2)𝑒−𝑖𝑙𝑘𝑝𝑙𝑦}∞

𝑙=1 𝑒𝑖𝑙𝜃 + 𝑐. 𝑐.                    (23) 

𝑢1
(2)

=
1

√𝜇2𝑒𝛼2𝑦
∑ 𝐶1

(𝑙)∞
𝑙=1 (𝑥1, 𝑥2, 𝑡1, 𝑡2)𝑒𝑙𝑘𝑣𝑙𝑦𝑒𝑖𝑙𝜃 + 𝑐. 𝑐.,                                                (24) 

where 

𝜃 = 𝑘𝑥0 − 𝜔𝑡0 ,  𝑝𝑙 = (𝑐2/𝑐1
2 − 1 − 𝛼1

2/(4𝑘2𝑙2))
1
2 ,  𝑣𝑙 = (1 + 𝛼2

2/(4𝑘2𝑙2) − 𝑐2/𝑐2
2)1/2. 

𝐴1
(𝑙)

,  𝐵1
(𝑙)

,  𝐶1
(𝑙)

 are the first order amplitude functions dependent on {𝑥1, 𝑥2, 𝑡1, 𝑡2}, 𝑘 and   𝜔  are the wave number 

and angular frequency, respectively, 𝑐 = 𝜔/𝑘 is the phase velocity and ''c.c.'' represents the complex conjugate of 

the former terms. 

Clearly, a surface SH wave propagates when the following inequality holds for the phase velocity 𝑐 

𝑐1  (1 +
𝛼1

2

4𝑘2𝑙2)

1

2
< 𝑐 <  𝑐2 (1 +

𝛼2
2

4𝑘2𝑙2)

1

2
.      (25) 

Substituting of (23)-(24) in (11)-(12) gives 

𝑾𝑙𝑼1
(𝑙)

= 𝟎, 𝑙 = 1,2, ..       (26) 

where    𝑼1
(𝑙)

= (𝐴1
(𝑙)

, 𝐵1
(𝑙)

, 𝐶1
(𝑙)

)𝑇  and 𝑾𝑙  is dispersion matrix given in the Appendix. For the nontrivial solutions 

of (26), the condition det 𝑾1 = 0 gives the dispersion relation first derived in [17] 

2𝑘𝑝(2𝑘𝜈 − 𝛼2)𝛾0 − (4𝑘2𝑝2 + 2𝑘𝜈𝛼1𝛾0 + 𝛼1(𝛼1 − 𝛼2𝛾0))𝑡𝑎𝑛(𝑘𝑝ℎ) = 0        (27) 

where 𝜈 = 𝜈1, 𝑝 = 𝑝1 and 𝛾0 = 𝜇2 𝜇1.⁄  For 𝛼1 = 𝛼2 = 0, (27) reduces to 
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𝜈𝛾0 − 𝑝𝑡𝑎𝑛(𝑘𝑝ℎ) = 0              (28) 

which coincides with the frequency equation of Love waves in a homogeneous semi-space covered with a 

homogeneous layer [22]. Since the focus of this work is on the nonlinear self-modulation, the analysis does not 

include the harmonic-resonance case. Therefore, we assume  

det 𝑾𝑙 ≠ 0, for  𝑙 ≠ 1.              (29) 

Thus, the solutions of (26) can be obtained as 

𝑼1
(1)

= 𝒜1𝑹,    𝑼1
(𝑙)

= 𝟎 for  𝑙 ≠ 1 .             (30) 

Here, 𝒜1, a complex function of {𝑥1, 𝑥2, 𝑡1, 𝑡2}, represents the first order amplitude of the nonlinear modulation. 

The components of R satisfying 𝑾1𝑹 = 0 can be found in the Appendix. Thus, (23)-(24) are given as follows 

𝑢1
(1)

=
𝒜1

√𝜇1𝑒𝛼1𝑦
(𝑅1𝑒𝑖𝑘𝑝𝑦 + 𝑅2𝑒−𝑖𝑘𝑝𝑦)𝑒𝑖𝜃 + 𝑐. 𝑐.,                                                   (31) 

𝑢1
(2)

=
𝒜1

√𝜇2𝑒𝛼2𝑦 𝑅3𝑒𝑘𝜈𝑦𝑒𝑖𝜃 + 𝑐. 𝑐.                                                                  (32) 

Note that the condition  

𝑘𝑣 >
𝛼2

2
                 (33) 

which is necessary for the 𝑢1
(2)

 to vanish as 𝑦 → −∞, is satisfied only if  

𝑘2(1 −
𝑐2

𝑐2
2) > 0,  consequently 𝑐 < 𝑐2 .                             (34) 

It follows from (25) and (34) that  

𝑐1 (1 +
𝛼1

2

4𝑘2)

1

2
< 𝑐 <  𝑐2 <  𝑐2 (1 +

𝛼2
2

4𝑘2)

1

2
 .                                                                                                         (35) 

With nondimensional linear heterogeneous parameters 𝐴1 = 𝛼1/𝑘, 𝐴2 = 𝛼2/𝑘 and nondimensional phase velocity 

𝐶 = 𝑐/𝑐1, (35) can be written as follows  

 (1 +
𝐴1

2

4
)

1

2
< 𝐶 <

𝑐2 

𝑐1 
 <  

𝑐2 

𝑐1 
(1 +

𝐴2
2

4
)

1

2
.                         (36) 

Hence a surface SH wave satisfying radiation condition (13) propagates in an exponentially heterogeneous layered 

semi-space when (36) holds for the phase velocity 𝐶.  
To finalize the first order solution, we must determine 𝒜1. This can be accomplished by higher order problems. 

Substituting (31)-(32) in the problem of 𝑂(𝜀2), one can easily solve (14) via method of undetermined coefficients 

for 𝑢2
(𝑠)

.  Then the nonhomogeneous boundary conditions (15)-(16) gives the following compatibility condition 

𝑳. 𝒃𝟐
(𝑙)

= 0               (37) 

where 𝒃𝟐
(𝑙)

 are given as  

𝒃𝟐
(1)

=  −𝑖 (
𝜕𝒜1

𝜕𝑡1

𝜕𝑾1

𝜕𝜔
−

𝜕𝒜1

𝜕𝑥1

𝜕𝑾1

𝜕𝑘
) 𝑹   and 𝒃2

(𝑙)
= 𝟎  for all 𝑙 > 1.                                   (38) 

L is a left row vector such that 𝑳𝑾1 = 0. The components of 𝑳 = (𝐿1, 𝐿2, 𝐿3 ) are given in the Appendix. 

From the compatibility condition (37), following equation for 𝒜1 is obtained 

𝜕𝒜1

𝜕𝑡1
+ 𝑉𝑔

𝜕𝒜1

𝜕𝑥1
= 0,              (39) 

where the group velocity, 𝑉𝑔, is expressed by 

𝑉𝑔 = − (𝑳
𝜕𝑾1

𝜕𝑘
𝑹) 𝑳

𝜕𝑾𝟏

𝜕𝜔
𝑹⁄              (40) 

(39) implies that  

𝒜1 = 𝒜1(𝑥1 −  𝑉𝑔𝑥1, 𝑡1, 𝑡2)              (41) 

Substituting 𝑢1
(𝑠)

 and 𝑢2
(𝑠)

 into the third order perturbation problems (18) yields 

ℒ1(𝑢3
(1)

) = ∑ 𝐷𝑗𝑓𝑗(𝑦)𝑒𝑖𝜃 + terms in (𝑒±3𝑖𝜃) + 𝑐. 𝑐.12
𝑗=1             (42) 

ℒ2(𝑢3
(2)

) = ∑ 𝐷𝑗𝑓𝑗(𝑦)𝑒𝑖𝜃 + terms in (𝑒±3𝑖𝜃) + 𝑐. 𝑐.16
𝑗=13            (43) 

We give the explicit forms of 𝑓𝑗(y) and  𝐷𝑗 , 𝑗 = 1,2, . . ,16 in the Appendix. 𝑢3
(𝑠)

 are written as 



M ü h . B i l . v e  A r a ş . D e r g i s i , 2 0 2 3 ; 5 ( 1 )  6 7 - 7 8  

72 

 

𝑢3
(𝑠)

= �̅�3
(𝑠)

+ �̂�3
(𝑠)

,      𝑠 = 1,2             (44) 

where �̂�3
(𝑠)

are the homogeneous solutions. They are constructed as in the (23)-(24) by writing third order amplitude 

functions 𝑼3
(𝑙)

= (𝐴3
(𝑙)

, 𝐵3
(𝑙)

, 𝐶3
(𝑙)

) instead of 𝑼1
(𝑙)

. The particular solutions �̅�3
(𝑠)

  can be solved by means of the 

method of undetermined coefficients or the method of variation of parameters. For detailed analysis, we refer to 

[23] and [24] where the methods are applied in detail, respectively. Then, substituting 𝑢3
(𝑠)

 and 𝑢1
(𝑠)

 in (19)-(20) 

one obtains the following system 

𝑾𝑙𝑼3
(𝑙)

=  𝒃3
(𝑙)

,                (45) 

Where 𝒃3
(1)

≠ 𝟎, 𝒃3
(3)

≠ 𝟎 and 𝒃3
(𝑙)

= 𝟎 for 𝑙 ≠ 1,3.  𝒃3
(1)

 is symbolized by 

 𝒃3
(1)

= [−𝑖 (
𝜕𝑾1

𝜕𝜔

𝜕𝒜1

𝜕𝑡2
−

𝜕𝑾1

𝜕𝑘

𝜕𝒜1

𝜕𝑥2
) +

1

2
(

𝜕2𝑾1

𝜕𝜔2

𝜕2𝒜1

𝜕𝑡1
2 − 2

𝜕2𝑾1

𝜕𝑘𝜕𝜔

𝜕2𝒜1

𝜕𝑥1𝜕𝑡1
+

𝜕2𝑾1

𝜕𝑘2

𝜕2𝒜1

𝜕𝑥1
2 )] 𝑹 + (

𝜕𝑾1

𝜕𝑘

𝜕2𝒜1

𝜕𝑥1
2 −

𝜕𝑾1

𝜕𝜔

𝜕2𝒜1

𝜕𝑥1𝜕𝑡1
) (

𝜕𝑹

𝜕𝑘
+ 𝑉𝑔

𝜕𝑹

𝜕𝜔
) + 𝐅|𝒜1|2𝒜1.                         (46) 

Here 𝐅 is the constant vector. Since its components are so long, they are not written explicitly. The solvability 

condition 𝑳. 𝒃3
(1)

= 0 must be satisfied for (45). Consequently, the following NLS equation is obtained 

𝑖
𝜕𝒜

𝜕𝜏
+ Γ

𝜕2𝒜

𝜕𝜉2 + Δ|𝒜|2 = 0                          (47) 

where nondimensional variables are described by 

𝜏 = 𝜔𝑡2,   𝜉 = 𝑘(𝑥1 − 𝑉𝑔𝑡1),   𝒜 = 𝑘𝒜1 .                                       (48)  

The simple representation of Γ and Δ  are 

Γ =
𝑘2

2𝜔

𝑑2𝜔

𝑑𝑘2  , Δ = −
1

𝜔𝑘2
(𝐋. 𝐅) (𝐋

𝜕𝑾1

𝜕𝜔
𝐑) .⁄             (49) 

Now, we search for the soliton solutions of the NLS equation (47) through the following ansatz 

𝒜(𝜉, 𝜏) = 𝑔(𝜉)𝑒𝑖𝑟𝜏,  𝑟 : constant.             (50) 

For bright soliton solutions, we choose 𝑔(𝜉) = 𝑔0𝑠𝑒𝑐ℎ(𝜉) such that 𝑔0 ≠ 0. Hence putting (50) in the NLS 

equation (47) yields 

𝑔0 = √
2Γ

Δ
   and 𝑟 = Γ .              (51) 

Thus, the following bright soliton solution is constructed by means of (50) 

𝒜(𝜉, 𝜏) = √
2Γ

Δ
 𝑠𝑒𝑐ℎ(𝜉)𝑒𝑖Γ𝜏 ,  for ΓΔ > 0.            (52) 

When ΓΔ < 0,  to get the dark soliton solutions, we choose 𝑔(𝜉) in (50) as 𝑔(𝜉) = 𝑔0𝑡𝑎𝑛ℎ(𝜉). Putting (50) with 

𝑔(𝜉) in the NLS equation gives 

𝑔0 = √−
2Γ

Δ
   and 𝑟 = −2Γ .             (53) 

Hence, the dark soliton solution is identified as 

𝒜(𝜉, 𝜏) = √−
2Γ

Δ
 𝑡𝑎𝑛ℎ(𝜉)𝑒−2𝑖Γ𝜏 ,  for ΓΔ < 0.           (54) 

Since it is decisive in the solutions of (47), the ΓΔ sign should be investigated.  

4. NUMERICAL EVALUATION 

The effects of nonlinear constituent materials as well as heterogeneity of the layered semi-space on the 𝛤𝛥 sign 

and hence solitary Love wave propagation are studied. In the calculations, the following parameters are chosen as 

in the geophysical model given in [7] 

γ0=2.159,         𝑐2/𝑐1 = 1.297.  

Firstly, we investigate the influence of dimensionless linear heterogeneity parameters of the layer and semi-space  

𝐴1 = 𝛼1/𝑘, 𝐴2 = 𝛼2/𝑘,  respectively, on the change of nondimensional phase velocity 𝐶 = 𝑐/𝑐1  versus 

nondimensional wave number  𝐾 = 𝑘ℎ  for the dispersion relation's first branch.  Figure 2 illustrates the results 

for different values of (𝐴1, 𝐴2) which have been chosen as {(0.1,0.3), (0.3,0.1), (0.1,0.1), (0.3,0.3)}. It is seen 
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that the curves having same 𝐴2 approach to each other for small wave numbers whereas the curves with same 𝐴1 

approach to each other for  𝐾 ≫ 1. Consequently, linear heterogeneity of the layer dominates  𝐶  for short waves 

while that of half space is effective on 𝐶 for long waves. It is also observed that the upper limit of 𝐶 is 𝑐2 /𝑐1  chosen 

as 1.297, and the lower limit which is greater than 1 changes depending on 𝐴1, which is consistent with the 

inequality (36). The change of 𝛤 versus 𝐾  is also shown in Figure 3 for different values of (𝐴1, 𝐴2). The sign of  

𝛤, initially negative, changes at a certain 𝐾 values with variation in 𝐴1 and 𝐴2. 

 
Figure 2. C vs. K for various  (𝐴1, 𝐴2). 

 
Figure 3. 𝛤 vs. K for various (𝐴1, 𝐴2). 

To examine the effect of  heterogeneity associated with the linear constitution of both  layer and semi-space on 

nonlinear wave propagation, in the numerical evaluations of 𝛤𝛥, nonlinear material constants  𝛽01 = 𝑛1/𝑐1
2,  𝛽02 =

𝑛2/𝑐2
2   and the nondimensional nonlinear heterogeneity parameters  Λ1 =  𝜆1ℎ and Λ2 =  𝜆2ℎ are fixed while  

(𝐴1, 𝐴2)   is being changed. Note that when  𝛽0s > 0, the material has shear hardening (H) otherwise softening (S) 

properties.  Firstly, we examine the effect of  (𝐴1, 𝐴2) choosing as {(0.1,0.3), (0.3,0.1), (0.1,0.1), (0.3,0.3)} on 

the sign of 𝛥 and 𝛤𝛥 for a softening  layer and a hardening semi-space, (S, H) material model, with fixed 𝛽01 =
−1, 𝛽02 = 1 and the nonlinear heterogeneity parameters (Λ1 , Λ2)=(0.1, 0.1). The results are illustrated in Figures 

4a-4b. As shown in Figure 4a, 𝛥 >0 for all 𝐾 >0. Hence 𝛤𝛥 is negative in the interval in which 𝛤 <0.  Therefore, 

the presence of (54) is possible in this interval that is changing with (𝐴1, 𝐴2).  

 
                                                   (a)                                                                             (b) 

Figure 4.  For various  (𝐴1, 𝐴2) and for (S, H) material model with 𝛽01 = −1 and 𝛽02 = 1 , (Λ1 , Λ2) =  

(0.1, 0.1) a)  𝛥 vs. K,  b) 𝛤𝛥 vs. K. 
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When the media consists of the softening layered half-space, for (S,S) material model having nonlinear material 

constants 𝛽01= 𝛽02 = −1, changes of  𝛥 and 𝛤𝛥 versus 𝐾 are shown in Figures 5a-5b, respectively, for various 

values of (𝐴1, 𝐴2)  and for fixed (Λ1, Λ2)=(0.1, 0.1). As can be seen, 𝛤𝛥 is positive initially, thus existence of 

bright solitary waves is possible. The each 𝛤𝛥 curve has two zeros that belong to 𝛥 and 𝛤, respectively.  The 

positive intervals in which bright solitons (52) exist are varying with the change in 𝐴1 and 𝐴2. It is seen that the 

𝛤𝛥 curves having same 𝐴2 approach to each other for small wave numbers whereas the curves with same 𝐴1 

approach to each other for  𝐾 ≫ 1.  Consequently, linear heterogeneity of the layer dominates nonlinear 

modulation for short waves while that of half space is effective on nonlinear waves for long waves. Note that 

different choice of 𝛽02   makes the curves in Figure 4 and Figure 5 different from each other. Thus, the effect of 

not only  (𝐴1, 𝐴2)  but also  𝛽02   on the presence of solitary SH waves is demonstrated. 

  
                                            (a)                                                                                         (b) 

Figure 5. For various  (𝐴1, 𝐴2) and for (S, S) material model with 𝛽01=𝛽02 = −1 , (Λ1 , Λ2) =  (0.1, 0.1) a)  𝛥 

vs. K,  b) 𝛤𝛥 vs. K. 

Now, to investigate the effect of nonlinear heterogeneity of both layer and semi-space, 𝛥 and 𝛤𝛥 curves are 

depicted with fixed  (𝐴1, 𝐴2) = (0.3,0.3) and for various values of (Λ1, Λ2) which have been chosen as  

{(0.1,0.1), (0.4,0.1), (0.1,0.4), (0.4,0.4)}. 𝛥 and 𝛤𝛥 versus K for (S, H) material model with (𝛽01 , 𝛽02) = (−1,1) 

are presented in Figures 6a-6b, respectively. As can be observed in Figure 6a,  𝛥 > 0 for all 𝐾. In Figure 6b, the 

sign of each 𝛤𝛥 curve changes at 𝐾 = 3.85 in which 𝛤 = 0. Dark solitary SH waves exist for 0< 𝐾 <3.85 in which 

𝛤𝛥 <0. Note that, for (S, H) material model, the wave numbers where dark solitary waves exist do not affected by 

the change in (Λ1, Λ2) .  A similar examination is carried out for the media consisting of the softening layered half-

space for 𝛽01 = 𝛽02 = −1, with Figures 7a-7b. It is seen that 𝛤𝛥 curves have two zeros such that the first belongs 

to 𝛥 and the second belongs to 𝛤. Since 𝛤 does not dependent on nonlinear material parameters, the second zeros 

do not change, whereas the first zeros vary with the variation of (Λ1, Λ2) . It is also seen that 𝛤𝛥 curves having 

same Λ2 approach to each other when 𝐾 ≪ 1, 𝛤𝛥 curves with same Λ1  approach to each other for large wave 

numbers. This observation is consistent with the conclusion highlighted in [22] that the layer’s nonlinearity for 

short waves and the semi-space’s nonlinearity for long waves dominate the wave modulation. Consequently, 

intervals where bright and dark solitons exist change depending on the nonlinear heterogeneous structures of layer 

and semi-space. The reason why the curves in Figure 6 and Figure 7 are different from each other is the different 

𝛽02  selection. Thus, the effect of not only (Λ1 , Λ2) but also  𝛽02 of the half-space on the presences of solitons is 

observed. 

         
         (a)                                                                                              (b) 

Figure 6. For various (Λ1, Λ2)  and for (S, H) material model with 𝛽01 = −1, 𝛽02 = 1,  (𝐴1, 𝐴2) = (0.3,0.3) 

a)  𝛥 vs. K,  b) 𝛤𝛥 vs. K. 
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          (a)                                                                                             (b) 

Figure 7. For various (Λ1, Λ2)  and for (S, S) material model with 𝛽01 = −1, 𝛽02 = −1,  (𝐴1, 𝐴2) = (0.3,0.3)   

a) 𝛥 vs. K, b) 𝛤𝛥 vs. K. 

For all models having hardening half-space, 𝛤𝛥 is negative for 𝐾 ≪ 1, thus dark solitary waves propagate. 

However, for all models having softening half-space,  𝛤𝛥 is positive for 𝐾 ≪ 1, hence bright solitons propagate. 

It is concluded that the semi-space’s nonlinearity dominates the wave motion for long waves. 

𝛥 and 𝛤𝛥 curves for hardening layer overlying the softening half-space and for hardening layer overlying the 

hardening half-space are not given due to limited space. These curves are symmetrical about the 𝐾 axes of the 

opposite sign (𝛽01 , 𝛽02) curves in Figures 4-7. 

We also examine the influence of nonlinearity and nonhomogeneity on the evolution of solitary Love waves.  As 

shown in Figures 4b-5b when 𝐾 =0.6, for (S, S) models 𝛤𝛥 >0 and bright solitons propagate, for (S, H) models 

𝛤𝛥 <0 and dark soliton propagation exists. Hence nonlinear evolutions of dark and bright solitons are presented in 

Figures 8a-8b for (S, H) and (S, S) material models, respectively, for different (𝐴1, 𝐴2) selected as 

{(0.1,0.3), (0.3,0.1)},  with fixed 𝐾 =0.6 and (Λ1, Λ2)=(0.1, 0.1). Consequently, the considerable effects of both 

(𝐴1, 𝐴2) and 𝛽2 on the nonlinear evolutions of waves are demonstrated. Similar observation is made for different  
(Λ1, Λ2) values selected as (Λ1, Λ2) = {(0.4,0.1), (0.1,0.4)} with 𝐾=0.6 and fixed (𝐴1, 𝐴2) = (0.3,0.3) in Figures 

9a-9b, respectively, for (S, H) and (S, S) models. Thus, the influence of not only (Λ1 , Λ2) but also 𝛽2 on the 

nonlinear evolutions of waves is observed. Notice that for the (S, H) material model, though the change in (Λ1, Λ2)   
does not affect the interval of existence of dark solitons, it has a significant effect on the nonlinear evolution of 

waves. 

 
(a)                                                                                              (b) 

Figure 8. For various (𝐴1, 𝐴2) with (Λ1, Λ2) =  (0.1, 0.1) and K=0.6 a) Nonlinear evolution of the dark 

solitons in the (S, H) model with 𝛽01 = −1, 𝛽02 =1 b) Nonlinear evolution of the bright solitons in the (S, S) 

model with 𝛽01= −1, 𝛽02 = −1. 
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(a)                                                                                              (b) 

Figure 9. For various (Λ1, Λ2) with (𝐴1, 𝐴2) = (0.3, 0.3) and K=0.6 a) Nonlinear evolution of the dark 

solitons in the (S, H) model with 𝛽01 = −1, 𝛽02 = 1 b) Nonlinear evolution of the bright solitons in the (S, S) 

model with 𝛽01= −1, 𝛽02 = −1. 

5. CONCLUDING REMARKS 

Existence and nonlinear evolution of solitary Love waves in a layered semi-space consisting of different nonlinear, 

elastic, heterogeneous constituent materials varying exponentially with depth are examined. Firstly, dispersion 

relation is derived, and it is shown that linear heterogeneity of the layer dominates   𝐶  for short waves while that 

of half space is dominant on 𝐶 for long waves. Then an NLS equation is obtained for nonlinear modulation of 

waves via multiple scales method. For two different material models, (S, H) and (S, S), the variation of 𝛤𝛥 sign 

with heterogeneity of both layer and half-space is examined due to its distinctive effect on the presence of solitary 

wave solutions. As it is seen in the Figures 4-7, linear and nonlinear heterogeneity parameters of the semi-space 

affects strongly the existence of envelope solitary waves for long waves while those of layer dominate the existence 

of solitary waves for short waves. Furthermore, the considerable influence of heterogeneity properties of both layer 

and semi-space on the nonlinear evolutions of bright and dark solitons are shown graphically. It is observed that 

for the (S, H) material model, the change in (Λ1, Λ2) does not affect the interval of existence of dark solitons 

whereas it has a considerable effect on nonlinear evolution of dark solitons. 
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APPENDIX 

𝑾𝑙 = (

(𝑖𝑘𝑙𝑝𝑙 − 𝛼1/2)𝑒𝑖𝑙𝑘𝑝𝑙ℎ (−𝑖𝑘𝑙𝑝𝑙 − 𝛼1/2)𝑒−𝑖𝑙𝑘𝑝𝑙ℎ 0

𝑖𝑘𝑙𝑝𝑙−𝛼1/2 −𝑖𝑘𝑙𝑝𝑙 − 𝛼1/2 (−𝑘𝑙𝜈𝑙 + 𝛼2/2) √𝛾0

1 1 − 1 √𝛾0⁄

)  

𝑹 = (𝑅1, 𝑅2, 𝑅3)𝑇;   𝑅1 =
(2𝑘𝑝−𝑖𝛼1)(1−𝑖 𝑡𝑎𝑛(ℎ𝑘𝑝))

2√𝛾0(2𝑘𝑝−𝛼1𝑡𝑎𝑛(ℎ𝑘𝑝))
, 𝑅2 =

(2𝑘𝑝+𝑖𝛼1)(1+𝑖 𝑡𝑎𝑛(ℎ𝑘𝑝))

2√𝛾0(2𝑘𝑝−𝛼1𝑡𝑎𝑛(ℎ𝑘𝑝))
 , 𝑅3 = 1  

𝑳 = (𝐿1, 𝐿2, 𝐿3);     𝐿1 =
2𝑘𝑝 𝑠𝑒𝑐(ℎ𝑘𝑝)

−2𝑘𝑝+𝛼1𝑡𝑎𝑛(ℎ𝑘𝑝)
,   𝐿2 = 1,    𝐿3 = −

(4𝑘2𝑝2+𝛼1
2 )𝑡𝑎𝑛(ℎ𝑘𝑝)

4𝑘𝑝−2𝛼1𝑡𝑎𝑛(ℎ𝑘𝑝)
.  

𝑓1 = 𝑛(1)(𝑦)
𝑒𝑖𝑘𝑝𝑦

(𝜇1𝑒𝛼1𝑦)3/2 ,   𝑓2 =
𝑑𝑛(1)(𝑦)

𝑑𝑦

𝑒𝑖𝑘𝑝𝑦

(𝜇1𝑒𝛼1𝑦)3/2 ,  𝑓3 =
𝑒𝑖𝑘𝑝𝑦

√𝜇1𝑒𝛼1𝑦
,   𝑓4 = 𝑦

𝑒𝑖𝑘𝑝𝑦

√𝜇1𝑒𝛼1𝑦
 , 

𝑓5 = 𝑛(1)(𝑦)
𝑒−𝑖𝑘𝑝𝑦

(𝜇1𝑒𝛼1𝑦)3/2 ,   𝑓6 =
𝑑𝑛(1)(𝑦)

𝑑𝑦

𝑒−𝑖𝑘𝑝𝑦

(𝜇1𝑒𝛼1𝑦)3/2 ,  𝑓7 =
𝑒−𝑖𝑘𝑝𝑦

√𝜇1𝑒𝛼1𝑦
,   𝑓8 = 𝑦

𝑒−𝑖𝑘𝑝𝑦

√𝜇1𝑒𝛼1𝑦
 , 

𝑓9 = 𝑛(1)(𝑦)
𝑒3𝑖𝑘𝑝𝑦

(𝜇1𝑒𝛼1𝑦)3/2 ,   𝑓10 =
𝑑𝑛(1)(𝑦)

𝑑𝑦

𝑒3𝑖𝑘𝑝𝑦

(𝜇1𝑒𝛼1𝑦)3/2 ,  𝑓11 = 𝑛(1)(𝑦)
𝑒−3𝑖𝑘𝑝𝑦

(𝜇1𝑒𝛼1𝑦)3/2 ,   𝑓12 =
𝑑𝑛(1)(𝑦)

𝑑𝑦

𝑒−3𝑖𝑘𝑝𝑦

(𝜇1𝑒𝛼1𝑦)3/2, 

𝑓13 =
𝑒𝑘𝑣𝑦

√𝜇2𝑒𝛼2𝑦 ,   𝑓14 = 𝑦
𝑒𝑘𝑣𝑦

√𝜇2𝑒𝛼2𝑦 ,  𝑓15 = 𝑛(2)(𝑦)
𝑒3𝑘𝑣𝑦

(𝜇2𝑒𝛼2𝑦)3/2 ,   𝑓16 =
𝑑𝑛(2)(𝑦)

𝑑𝑦

𝑒3𝑘𝑣𝑦

(𝜇2𝑒𝛼2𝑦)3/2 .  

𝐷1 = |𝐴1|2𝐴1𝑅1
2𝑅2 (

9

16
𝛼1

4 −
9

4
𝑖𝑘𝑝 𝛼1

3 − 𝑖𝑘3𝛼1(𝑝 + 9𝑝3) − 𝑘4(9 + 2𝑝2 + 9𝑝4)), 

𝐷2 = |𝐴1|2𝐴1𝑅1
2𝑅2

𝑖

8
(9𝑖 𝛼1

3 + 18𝑘𝑝 𝛼1
2 + 12𝑖𝑘2𝛼1(1 + 3𝑝2) + 8𝑘3𝑝(1 + 9𝑝2)), 
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𝐷3 = 2𝑖𝑅1(ℳ12
(1)

+ ℳ21
(1)

) + 𝑅1𝒩(1) + 2Λ1
𝜕

𝜕𝑥1
ℳ11

(1)
,  

𝐷4 = −
2𝑖𝑅1

𝑝𝑘𝑐1
2 (𝜔

𝜕

𝜕𝑡1
+ 𝑘𝑐1

2 𝜕

𝜕𝑥1
) ℳ11

(1)
,  

𝐷5 = |𝐴1|2𝐴1𝑅2
2𝑅1 (

9

16
𝛼1

4 +
9

4
𝑖𝑘𝑝 𝛼1

3 + 𝑖𝑘3𝛼1(𝑝 + 9𝑝3) − 𝑘4(9 + 2𝑝2 + 9𝑝4)), 

𝐷6 = |𝐴1|2𝐴1𝑅2
2𝑅1

1

8
(−9 𝛼1

3 − 18𝑖𝑘𝑝 𝛼1
2 − 12𝑘2𝛼1(1 + 3𝑝2) − 8𝑖𝑘3𝑝(1 + 9𝑝2)), 

𝐷7 = 2𝑖𝑅2(ℳ12
(1)

+ ℳ21
(1)

) + 𝑅2𝒩(1) + 2Λ2
𝜕

𝜕𝑥1
ℳ11

(1)
, 

𝐷8 =
2𝑖𝑅2

𝑝𝑘𝑐1
2 (𝜔

𝜕

𝜕𝑡1
+ 𝑘𝑐1

2 𝜕

𝜕𝑥1
) ℳ11

(1)
,  

𝐷9 = |𝐴1|2𝐴1𝑅1
3 (

3

16
𝛼1

4 −
9

4
𝑖𝑘𝑝 𝛼1

3 − 9𝑘2𝑝2𝛼1
2

+ 𝑖𝑘3𝑝𝛼1(−1 + 15𝑝2) + 𝑘4(−3 − 2𝑝2 + 9𝑝4)), 

𝐷10 = |𝐴1|2𝐴1𝑅1
3 1

8
(−2𝑖𝑘𝑝 + 𝛼1)(4𝑘2(−1 + 3𝑝2) + 12 𝑖𝑘𝑝 𝛼1 − 3 𝛼1

2), 

𝐷11 = |𝐴1|2𝐴1𝑅2
3 (

3

16
𝛼1

4 +
9

4
𝑖𝑘𝑝 𝛼1

3 − 9𝑘2𝑝2𝛼1
2

+ 𝑖𝑘3𝑝𝛼1(1 − 15𝑝2) + 𝑘4(−3 − 2𝑝2 + 9𝑝4)), 

𝐷12 = |𝐴1|2𝐴1𝑅2
3 1

8
(2𝑖𝑘𝑝 + 𝛼1)(4𝑘2(−1 + 3𝑝2) − 12 𝑖𝑘𝑝 𝛼1 − 3 𝛼1

2), 

𝐷13 = 2𝑖𝑅3(ℳ12
(2)

+ ℳ21
(2)

) + 𝑅3𝒩(2) + 2Λ3
𝜕

𝜕𝑥1
ℳ11

(2)
, 

𝐷14 =  
2𝑅3

𝑣𝑘𝑐2
2 (𝜔

𝜕

𝜕𝑡1
+ 𝑘𝑐2

2 𝜕

𝜕𝑥1
) ℳ11

(2)
, 

𝐷15 =  
1

16
(3𝛼2

4 + 16𝑘4(9𝜈4 + 2𝜈3 − 3) − 16𝛼2𝑘3(15𝜈3 + 𝜈) + 144𝛼2
2𝑘2𝜈2 − 36𝛼2

3𝑘𝜈)𝑅3
3|𝐴1|2𝐴1 , 

𝐷16 =  
1

8
(2𝑘𝜈 − 𝛼2)(4𝑘2(3𝜈2 + 1) − 12𝛼2𝑘𝜈 + 3𝛼2

2)𝑅3
3|𝐴1|2𝐴1  

ℳ𝛽𝛾
(𝛼)

= 𝜔
𝜕𝐴𝛽

𝜕𝑡𝛾

+ 𝑘𝑐𝛼
2

𝜕𝐴𝛽

𝜕𝑥𝛾

,      𝒩(𝛼) = 𝑐𝛼
2

𝜕2𝐴1

𝜕𝑥1
2 −

𝜕2𝐴1

𝜕𝑡1
2  ,    Λ𝛼 = (

𝜕𝑅𝛼

𝜕𝑘
+ 𝑉𝑔

𝜕𝑅𝛼

𝜕𝜔
) 
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