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Abstract
In this study, nonlinear ¢-Favard-Szasz-Mirakjan operators of max-product kind are defined and approximation
properties of these operators are investigated. Classical approximation and A-statistical approximation theorems
are given.
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1. Introduction

The approximation of functions by using linear positive operators introduced via g-Calculus and (p, g)-Calculus is currently
under intensive research. Firstly, generalizations of Bernstein polynomials based on the g-integers has been investigated by
Lupas [1] and Phillips [2]. Later, generalized q-Bernstein operators and the g-generalization of other operators were studied in
[3]-[8]. Also, in recent years, a nonlinear modification of the classical Bernstein polynomial has been introduced by Bede and
Gal [9]. All the max-product operators are nonlinear and piecewise rational, and they present, for many subclasses of functions,
essentially better approximation properties than the classical linear operators. In [10]-[13], Favard-Sz4sz-Mirakjan operator of
max-product kind and Bernstein operator of max-product kind were studied. Duman constructed a nonlinear approximation
operator by modifying the g-Bernstein polynomial in [14].

In this study, we define nonlinear ¢g-Favard-Szdsz-Mirakjan operators of max-product kind. But, before that the classical
Favard-Szasz-Mirakjan operators (see [15]) and its g-generalization (see [16]) are given respectively by

Y (nx)* [k
Su(f:x) = k;)_k! f<n) (1.1)
and
O E (—nlo) Y (nlgx)* . ( Kl
Snalf0) =By (=lnlex) X = f(—[n]q), (12)
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where n € N, f is bounded, f € C[0,+), x € [0,4+), g € (0,1) and E,(x) = Z:f:oq@ ﬁ;,

The aim of this paper is to study the nonlinear approximation properties of g-Favard-Szasz-Mirakjan operators of max-
product kind.

We first recall some basic definitions in g-calculus. Let parameter g be a positive real number and n a non-negative integer.

[n], denotes a g integer, defined by

1=¢"
[n]q:{ T—¢° qg#1
n, g=1.

Let ¢ > 0 be given. We define a g-factorial, [n],! of k € N, as

n],! = { (1g[2]g---[nlg,

n=1,2,..
1, n=0.

The g-binomial coefficient [ﬂ by
q

2. Construction of the Operators

The approximation properties of the classical Favard-Szasz-Mirakjan operators of max-product kind were investigated in [9]. In
this section, we construct nonlinear g-Favard-Sz4sz-Mirakjan operators of max-product kind. We consider the operations V'
(maximum) and ”.” (product) over the interval [0, +o0). Then ([0, +o0), V,.) has a semiring structure and is called “max-product
algebra” (see, for instance [13]).

Let C[0,4) := {f : [0,4) — [0,4) : f is continuous on [0,+o)}. We define nonlinear g-Favard-Szasz-
Mirakjan operators of max-product kind as follows:

B Vicosnk(x,9)f (%)

M)

(
F - - 2.1
sq (f) (x) \/k:() Sni ()C, q) ( )
where n € N, f € C1[0,+00) , x € [0,+00), g € (0,1) and s,,4(x,q) is given by
_ ()
Sni(X,q) = W, 2.2)

Since it easy to check that F,fl,lf) ()(0) — f£(0) = 0 for all n, notice that in the notations, proofs and statements of all

approximation results in fact we always may suppose that x > 0.

Since f € C4[0,4e0) and s, x(x,q) is positive for all x € [0, 4-c0), Fn(ﬁ;]) (f)(x) is a positive operator. Now, we show that

Fn(ﬁ;[) (f)(x) is not linear operator on C4.[0, +o0) .

Let f,g € C4[0,4). Then, by definition we see that
M M
f<g = Fiy () <Y (). 23)
Thus, F,SZI) (f)(x) is increasing with respect to f € C [0, +o0). Besides, for any f,g € C;[0,4) we have

ES(f+8)(x) < E (N )+ Eiy (9) (). 2.4)

In general, @, (f,0), 6 > 0 denote the modulus of continuity of f € C, [0, +o) defined by

(Dl(f76) = Sup{'f(x) _f(y)‘ X,y € [Oa+°°)a ‘x_y| < 6}
Now, using (2.3), (2.4) and also applying Corollary 2.3 in [11] or Corollary 3 in [13], we have the following inequality:

(1)) — () < (1 T ;HFJ,’Z’R%)(x)) 01 (F,8), 25)

where n €N, f € C;[0,+00) ,x € [0,+00), g € (0,1) and @.(¢) = [x —1¢|.
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3. Auxiliary Results

For each k, j € {0,1,2,...} and x € [@ UH]"}, let us denote

(g [nlg
Sn,k<x7¢]) [ ]q x‘
Mk7n7j (‘x7 q) = s ( ) 9
n, j
Snk\X,q
M (%, 4) = snjgx qi'

It can easily see that if k > j+ 1 then

sn,k(xvq) (% —X)
S"J(xa Q)

Mk,n,j (X, Q) =

)

and if k < j— 1 then

s (-~ )

Mk,mj(xvCI): P '(X q)
n,j\Ay

Lemma 3.1. Let g € (0,1). Forallk,j € {0,1,2,...} and x € [@, UH]"}, we get

nlg” [nlq

My, j(x,) < 1

Proof. We consider two cases: (i) k > j and (ii) k < j.
Case (i). From (3.2), we have

mk,n,j(xa Q) _ [k+ 1]‘1 1
Mt 1,7 (X, q) [y x
Since the function A(x) = % is non-increasing on {%, U [: }11]‘1] , from here we get

Minj(6:q) _ [k+1]g [nlg

mkH,n,j(xa‘I) [”]q U‘f'l]q
k41,
RS

which immediately implies
Mjnj(X:q) = Mjs1,j(X,q) > Mo (x,q) >
Case (ii) We get

mk,n,j(x7Q) — @x> @@ _ @ >1

M 10,(x,q)  [klgo T [klg [nly Kl
which immediately implies
Mjnj(X,q) = mj1n,j(X,q) Zmj2nj(x,q) = ... 2 mopj(x,q).

Since m; ,, j(x,q) = 1 the proof of the lemma is finished.

s

Lemma 3.2. Letq <€ (0,1), j€{1,2,...} andx € [% [j[:ﬁ,] }

() Ifke{j+1,j+2,. }lssuchlhat [k+1] kk—i—l}q + 1]y, then My j(x,q) > Mis1,,j(x,q).

(ii) If k € {1,2,..., j — 1} is such that [k] \/ klg < [Jlg then
M1, (x,q) < M p,j(x,9)-

3.1)

(3.2)

(3.3)



Nonlinear Approximation by ¢-Favard-Szasz-Mirakjan Operators of Max-Product Kind — 107/114

Proof. (i)Letk € {j+1,j+2,..} and [k+ 1], — \/¢*[k+ 1]4 > [j + 1],. Then, we can write that

Ky
My, j(x,9) _ k+1]g1 T,
Mic10,j(%,q) [l x kily
[]q
Mg R
[ clearly is decreasing on the interval {%, b [:] ]"} , we have
q q

Since the g(x) = % [ki]f’] "
Wy *
(4] [j+1q
[i+1], g Ty — Tl
> g
g(x)_g( [l [j+ 1], kg _ Litlg
(g [nq
nlg  [klg—[i+1

g kg [+ 1
Since the condition [k+ 1], — \/¢*[k+ 1], > [j+ 1], is equivalent to [k+ 1], — \/[k—i— 1]2 — [k]4[k +1]4 > [j+1]4 which implies
that [k +1]g ([klg — [j+ 1g) = [/ + g (k+1]g — [+ 1]g)-
So, we achieve that

Mk,n,j(-xvq) >1

MkJrl,n,j(xaQ) h
which proves Lemma 3.2 (i).
(ii) Letk € {1,2,...,j— 1} and [k]; — \/q*'[k]4 < [j];- Then, we can write that
o M
My j(x,q) _ @x [n]q
My—1j(x,q)  [Klg" x— Kl
[n]q
x— g 1ot
Since the h(x) = x [k['l]l"]q clearly is increasing on the interval [%, U [: }q}q] , we have
SO
g\ _ Ul T
> Ulg \ _ Llg Mg "tlq
e = () = e o
nly [nlq
_ @ j]q — [k]q
nlq Lilg— k=1
Since the condition [k], ++/¢*~ [k 4 1], < [j] is equivalent to [k], — | /[K]2 — [k]4[k1], <[], which implies that [f], ([/]4 — [k]¢) >
[Klg ([j]g = [k = 1g)-
So, we achieve that
My, j(x,q) > 1
O

Mkfl,n,j(xa CI)

which proves Lemma 3.2 (ii).
g [/""I]q}. We get

Lemma3.3. Letg € (0,1), j € {0,1,2,...} and x € [Wq’ 2
\/ sn,k(xa q) = Sn,j(x7('I)'
k=0
Proof. Firstly, we show that for fixed n € N and 0 < k we get

k+1
0< Sn,k-‘rl(xaq) < Sﬂ7k(x’q) = xE |:07 [ [l’l] ]q:| .
q
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k
Indeed, from s, (x,q) = q?/l}";) we have

0< Snk+1 (xa t]) < sn,k(x7Q)

() _ (o)t
O Tt = T,

which after simplifications is obviously equivalent to

[k+1]q.

0<x<
[n] q

So, if we take k =0, 1,2, ..., then we achieve that

ST
Sn,l(x»CI) S Sn,O(xaQ) — xc 07 & )
L [”]q_
[ 2]g]
Sn,z(X»CI) S Sn,l(xaq) — xc 07 )
L [”]q_
[ Blg ]
sn3(x,q) <spo(x,q) <= x€ |0, ,
L [”]q_
SO On,
k+ 1],
Snk+1 (x,q) < Sn7k(x7 CI) < x¢€ |0, [n} s
q

and so on.
From above inequalities, we can easily write:

[
if xe€ O,wq} then spi(x,q) <sno(x,q), for all k=0,1,2,..,
L Mg '
: Mg 2l _
if xe€ , then syi(x,q) <sni1(x,q), for all k=0,1,2,..,
Lnlg " [nq
: 2y Blg _
if xe€ , then sni(x,q) <sn2(x,q), for all k=0,1,2,..,
LInlg " [n]g
and so on, as a result, we obtain
e -
if xe€ @,U—’— ]q} then  $,(x,q) < snj(x,q), for all k=0,1,2,...,
LIl [nlq
which completes the proof of Lemma 3.3. O

4. Approximation Results

Theorem 4.1. Let f : [0,4c0) — [0,4c0) be bounded and continuous on [0,+e0) and g € (0,1). Then we get the following
estimation

(D) — 1) < s (f; v ) 7 @

[nly
where n € N, x € [0,40) and

@1 (f,8) = sup{|f(x) = f(¥)| : 2,y € [0, +eo), |x =y < &}
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Proof. Taking q = g, € (0,1) such that lim, g, = 1, we deduce lim,[n],, = c. From (2.5), we have

AP - s < (14 55 (00 a1(7.8) @2)

where @,(¢) = |x —¢|. Thus, it is enough to estimate

Viosnelea) | B —x
(M) [y
A’M](x) T F’l-,q ((PX)( ) - \/k Osnk( ) )

where x € [0, +o0). Letx € Hﬁ" [jfr]l] ] where j € {0,1,2,...} is fixed,

arbitrary. By Lemma 3.3 we can easily achieve

Ang(x) = max{Mpp,j(x,q) : x €

"} k=0,1,...}.

Firstly, we show that for j =0and k =0,1,2,... we obtain A, ,(x) < \/‘fr%] for all x € [ , @} .
([mg2)* | K

Indeed, for j = 0 we get My, 0(x,q) = o ﬁ —x‘ which for k = 0 gives My, 0(x,q) = x = y/x\/x < \/;C\/%T]
' q

< Ky and we obtain
[”]q

thermore, for any k = 1,2, ... we have ﬁ

O R S U R

[nl, [k—1], [k— l]q[n]kféq [”]t/

My no(x,q) < [klg!  [n]q

Now we claim that for each M, j(x,q) when j=1,2,...and k=0, 1,2,... the following inequality

oy < V[l i
M) € S, e | Ui “3)

which immediately will imply that

4
Ang(x) < ﬁ , Vx€0,),neN,
q
and taking 6, = \j‘[/% in (4.2) we complete the proof of Theorem 4.1.
g
In order to prove (4.3) we consider the following three cases: 1) k= j,2) k> j+1,3) k< j—1.
Case 1) If k = j then from (3.1) M; , j(x,q) = ‘[ﬂ —x‘ Since x € HJ]Z’ [/[:]l}q} we can easily see that M, ;(x,q) < ﬁ

Since j > 1 we have x > op ] which implies
1 1 1 1
— = <Vax ,
Mg VInlg VInlg Vg
Case 2) Subcase a) We suppose that k > j+ 1 and [k + 1], — \/¢*[k+ 1], < [j + 1]4. We have from Lemma 3.1 that

My j(x,q) = mycp j(x,q) (UC]" —x> < Ky @.

[n]y nlg [nlg

M;,j(x,q) <

By hypothesis, since

Q[k]q - qk[k+ uq < Q[j]rh

we have

klg [kl — \/‘1"72[1‘Jr 1, ¢qk72[k+ 1, .

My j(x,9) < T, I, - [n,
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Since k > 2 and g € (0,1), we obtain
Mk,n,j(-xa Q) S

But we necessarily have k < 3. Indeed, if we suppose that k > 3, then because g(k) = [k + 1], — \/¢* [k + 1], is increasing
with respect to k. Indeed, we can write that

g+ 1) = g(k) = [k+ 2]y — [k+ 1y + /gt k+ 1], — /g1 [k + 2],

> [kt 2y — [k g4/t + 1]y — gk +-2),

gt g ’£<\/[k+ Iy \/[k+2]q>

i qk+1q§
VIk+1]g = /Tk+2]g
— gkt (1 ‘I% )
V1] —/[k+2]
k+1 (1 1
= ( ﬂkmq—ﬂmz]q)
>0

Hence, we get that [j + 1], > [k+ 1], — \/¢*[k+ 1] > [3j + 1]g — \/¢%/[3j + 1], which implies the obvious contradiction

[3j+1],— [+ 1y < /@¥[3j+ 1], is to equivalent ¢/ 12 ], < /¢ [3j + 1],
As a result, we achieve

Vi1, _ VBi+1,

My j(%,q) < e = [nlg
VI PR e
[n]q "
j 21y V2 v
(I+4¢/)(144¢%) [n}qu\/E’

taking into account that /x > V
Subcase b) We suppose that k 2 j+land [k+ 1], — \/¢k[k+1], > [j + 1],. Since, the function
g(k) = [k+ 1], — \/qF[k + 1], is increasing with respect to k, it follows that there exits k € {0,1,2,...}, of maximum value,
such that
10y =/ g T+ 1]y < [+ 14
Let k = k+ 1. Then for all k > k we have
k+1]g—/d"k+ 1]y = [+ 1]

and

My, ;j(x,q) =myg, ;(x,q) <[:]‘1 x> < k+1]g @

Since
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we can see that

IN

necessarily implies k < 3 (see the similar reasoning in the above Subcase a)). Also, we get k > j+ 1. Indeed, this is a
consequence of the fact that g is increasing function and because it is easy to see that g(j) < [j +1],.

By Lemma 3.2, (i) it follows that

ME*’FI N, J (x7 Q) Z ME+2,n,j (x’ q) 2

So, we achieve My, j(x,q) < 4 VE for any k€ {k+1,k+2,...}.

[n]q

Case 3) Subcase a) We suppose that k < j — 1 and [k], + \/¢*~'[k]4 > [j];- We have from Lemma 3.1 that

(x.a) = mu . (x x—@ [j+1]q_&:[j]q+qj_@
M) =m0 (3= (i) < Fpp -t = - g

By hypothesis, we get

< [Kg + /4" Tklg + ¢’ kg

Mk.,n,j (xvq) [n]q m
Ve VRt
[n]q - [

VAV Ve SR SRRVA Vel VR
B [l Vinlg Vg
L 2Ve 5 V5

[”}q [n}q B [”]q .

Subcase b) We suppose that k < j— 1 and [k], +/¢*'[k], < [j]4- Let k € {0,1,2,...} be the minimum value such that

[kl +1/¢* [kl > [j]4- Then k =k — 1 satisfies [k — 1], +1/¢*2[k — 1], < [j],- Also we have

ME—I,n,j(xaCI) :mﬁ—l,n,j(va) X — [k—1q < [j+ 1], B k—1],
[T’l]q [l’l]q [n]q

g t+d’  [k—1],
[l [l
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Since [k]4 + 1/ ¢*~'[k]4 > [j]4. we obtain

<3

By Lemma 3.2, (ii) it follows that

My, ;(6q) 2 My, (x,q) = .. = Mo j(x,q).

. . VX . Llg [j‘*‘l]q}
So, we achieve My , ;(x,q) < I forany k < j—landxe {[,,]q, Wy |
Collecting all the above estimates we have (4.3), which completes the proof of Theorem 4.1. O

5. A-Statistical Approximation

In this section, we will give an A-statistical approximation theorem for the (2.1) operators. Firstly, we have to replace a fixed
q € (0,1) consider in the previous sections with an appropriate sequence (g,) whose terms are in the interval (0, 1). This idea
was first used by Philips [2] for the g-Bernstein polynomials.

Let (g, )is a real sequence satisfying the following conditions,

0<gy<1 for every neN, (GR))
sta —limg, =1 5.2)
n
and
sty —limg) = 1. (5.3)
n

Note that the notations in (5.2) and (5.3) denote the A-statistical limit of (g,) where A = [a;,], (j,n € N) is an infinite non-
negative regular summability matrix, i.e., a;, > 0 for every j,n € Nand lim;} ;> ; a;,x, = L provided that, for a given sequence
(x), we say that (x,) is A-statistically convergent to a number L if, for every € > 0, lim; Z;\x,,—L\ze ajnx, = 0 (see [17]).
We should remark that this method of convergence generalizes both the classical convergence and the concept of statistical
convergence which first introduced by Fast [18]. We give the following A-statistical approximation theorem.

Theorem 5.1. Let A = [a,j| be a non-negative regular summability matrix and (g,) be a sequence satisfying (5.1)-(5.3). Then
Jor every f € C[0,00) we have

sta n;,n< sup [E) (1) (x) f<x>]> ~0. (5.4)

€[0,00)

Proof. Let f € C[0,0). Replacing g with (g, ), taking supremum over x € [0,0) and using the monotonicity of the modulus
of continuity, we achieve from Theorem 4.1 that

E,:= sup
x€[0,00)

E (N0 -] < 80 <f; v ) , 5.5)

[n]q
holds for every n € N. Then, let we prove

sty —limE, = 0.
n



Nonlinear Approximation by ¢-Favard-Szasz-Mirakjan Operators of Max-Product Kind — 113/114

From (5.1)-(5.3), we get
1

sty —lim ——— = 0.
n [n]qn
So we can write
sty —lim o, (f; ﬁ) =0. (5.6)
" [n]g
So, the proof of Theorem 5.1 follows from (5.1)-(5.6) immediately. O

We should note that the A-statistical approximation result in Theorem 5.1 includes the classical approximation by choosing
A = the identity matrix.
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