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Abstract
In this paper, we aim to investigate the qualitative behavior of a general class of non-linear difference
equations. That is, the prime period two solutions, the prime period three solutions and the stability
character are examined. We also use a new technique introduced in [1] by E. M. Elsayed and later
developed by O. Moaaz in [2] to examine the existence of periodic solutions of these general equations.
Moreover, we use homogeneous functions for the investigation of the dynamics of the aforementioned
equations.
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1. Introduction
Since the emergence of the difference equation theory, many pioneering studies have been carried out that

will benefit both the development of the theory and other applied sciences (see [3], [4], [5], [6], [7]). The use of
difference equations is not only in theory but also in many applied sciences outside the field of mathematics in
terms of applying mathematical models of physical phenomena to daily life. Especially in mathematical biology,
ecology, and economics, different mathematical models are needed to study populations, population growth and
the spread of epidemics (see [8], [9], [10]). Therefore, the difference equations create mathematical models that can
be applied to the basic living conditions of physical phenomena. At the same time, it can be said that the solution of
even the simplest problem encountered in differential equations, which is another branch of applied mathematics,
is more complex and more difficult than the difference equations. For this reason, difference equations have been
used as an approach in the mathematical modelling of many physical, chemical and biological phenomena that can
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express with ordinary and partial differential equations (ODE and PDE) and in equations that are difficult to solve
analytically [11].

In recent years, difference equation research has attracted great interest from researchers. In particular, applica-
tions of higher-order non-linear difference equations have influenced many researchers (see [12], [13], [14], [15], [16],
[17], [18], [19]). It is very important to examine especially the oscillation, the asymptotic behavior and the stability
character of the solutions of the general classes of the higher-order non-linear difference equations, which have a
complex structure and contain different states. However, there are not many articles and books that handle with the
qualitative studies of non-linear difference equations. Therefore, there are many aspects of non-linear difference
equations that need to be investigated and developed.

In [1], Elsayed introduced a new method for the prime period two solutions and the prime period three solutions
of the rational difference equation

δm+1 = µ+ φ
δm
δm−1

+ γ
δm−1
δm

, m = 0, 1, . . .

where the parameters µ, φ, γ ∈ R+ and initial values δ−1, δ0 ∈ R+. Besides, the global convergence and the
boundedness nature have been investigated.

In [20], Moaaz et al. examined the dynamical behaviors of solutions of a general class difference equation

zm+1 = g(zm, zm−1), m = 0, 1, . . .

where the initial conditions z−1, z0 ∈ R and g is a continuous homogeneous function with degree zero. Namely, the
stability, the oscillation and the periodicity character have been investigated.

In [21], Moaaz studied the global dynamics of solutions of the following general class of difference equations

δm+1 = g(δm−l, δm−k), m = 0, 1, . . .

where l, k are positive integers, the initial conditions δ−ρ, δ−ρ+1, . . . , δ0 ∈ R for ρ = max{l, k} and g is a continuous
homogeneous real function of degree γ. That is, the global attractiveness, the periodic character, and the stability
nature have been investigated. Furthermore, the author investigated the periodic solutions with used the new
method [1].

In [22], Moaaz et al. studied the existence and the non-existence of periodic solutions of some non-linear
difference equations. Especially, they investigated the existence of periodic solutions of the difference equation

ωm+1 = γωm−1F (ωm, ωm−1), m = 0, 1, . . .

where the parameter γ ∈ R+, the initial values ω−1, ω0 ∈ R+ and F is a homothetic function, namely there exists
a strictly increasing function F1 : R→ R and F2 : R2→ R are homogenous function with degree ρ, such that
F = F1(F2) and also studied the following second-order difference equation

ωm+1 = µ+ η
ωρm−1

h(ωm, ωm−1)
, m = 0, 1, . . .

where ρ ∈ R+, the parameters µ, η ∈ R, the initial values ω−1, ω0 ∈ R and h is a continuous homogeneous function
with degree ρ.

In [23], Abdelrahman investigated the dynamical behavior of solutions of the general class of difference equations

ωm+1 = h(ωm, ωm−1, . . . , ωm−k), m = 0, 1, . . .

where h : (0,∞)k+1 → (0,∞) is a continuously homogeneous function of degree zero and k is positive integer. That
is, the stability, the periodicity and the oscillation nature have been examined.

The aim of this paper is to investigate the global behavior of solutions, that is, the prime period two solutions,
the prime period three solutions and the stability character of a new general class of the second-order difference
equation

δm+1 = ω + ζ
f(δm, δm−1)

δβm−1
, m = 0, 1, . . . (1.1)

where the parameters ω, ζ ∈ R, the initial conditions δ−1, δ0 ∈ R and f : (0,∞)2 → (0,∞) is a continuous
homogeneous function with degree β. Also, in particular, the two periodic solutions and the three periodic solutions
are examined by using the new method [1, 2]. In addition, we specify the new sufficient conditions for the stability
character of the positive equilibrium point.
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2. Preliminaries
In the following, we give some basic definitions and theorems that we will benefit from in this paper.
Assume that J be an interval of real numbers and let the initial conditions for every z−1, z0 ∈ J. If h : J × J → J

be a continuously differentiable function, then the difference equation

zn+1 = h(zn, zn−1), n ∈ N (2.1)

has a unique positive solution {zn}∞n=−1.

Definition 2.1. [24] (Periodicity) Let t be a positive integer. Then, the solution {xn}∞n=−1 of Eq.(2.1) is said to be
periodic with period t if

xn+t = xn, n = 0, 1, . . .

where t is the smallest integer.

Theorem 2.1. [24] (The Linearized Stability Theorem)
(i) If both roots of the quadratic equation

λ2 − pλ− q = 0 (2.2)

lie in the open unit disk |λ| < 1, then the equilibrium point x of Eq.(2.1) is locally asymptotic stable.
(ii) If at least one of the roots of Eq.(2.2) has absolute value greater than one, then the equilibrium point x of Eq.(2.1) is

unstable.

Theorem 2.2. [5] (Clark Theorem) Assume that ρ0, ρ1 ∈ R and k ∈ {0, 1, . . .}. Then, the difference equation

δm+1 + ρ0δm + ρ1δm−k = 0, m = 0, 1, . . .

is the asymptotic stability if
|ρ0|+ |ρ1| < 1.

Definition 2.2. [25] (Homogeneous Function) Assume that f : Rn+ → R is called a homogeneous function with
degree k if for every x ∈ Rn+ and every λ > 0

f(λx) = λkf(x).

Theorem 2.3. [25] (Euler’s Homogeneous Function Theorem) Assume

f : Rn+ → R

is a continuous function and also differentiable on Rn+. Then, f is homogeneous function with degree k if only if for every
x ∈ Rn+

kf(x) =

n∑
i=1

Dif(x)xi.

Corollary 2.1. [25] Let f : Rn+ → R be continuous function, and also differentiable on Rn+. If f is homogeneous function
with degree k, then Djf(x) is homogeneous with degree k − 1.

3. Asymptotic behavior of solutions of the non-linear difference equation (1.1)

In this section, we will examine the two periodic solutions, the three periodic solutions and the stability character
of the second-order non-linear difference equation (1.1).
Here, we investigate the stability character of the positive equilibrium point of Eq.(1.1). From the definition
equilibrium point, we obtain that

δ̄ = ω + ζ
f(δ̄, δ̄)

δ̄β

= ω + ζ
δ̄βf(1, 1)

δ̄β
.
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Thus, the positive equilibrium point is
δ̄ = ω + ζf(1, 1).

Now, let’s define the function f : (0,∞)2 → (0,∞) by

f(u, v) = ω + ζ
f(u, v)

vβ
.

Thus, we obtain that
∂f

∂u
(u, v) = ζ

fu(u, v)vβ

(vβ)2
,

and
∂f

∂v
(u, v) = ζ

fv(u, v)vβ − βvβ−1f(u, v)

(vβ)2
.

In the next theorem, the locally asymptotic stability for Eq.(1.1) will be investigated.

Theorem 3.1. The equilibrium point of Eq.(1.1) δ̄ = ω + ζf(1, 1) is locally asymptotically stable if

|fu(1, 1)|+ |fv(1, 1)− βf(1, 1)| <
∣∣∣∣ω + ζf(1, 1)

ζ

∣∣∣∣ .
Proof. Using Euler’s Homogeneous Function Theorem, and from Corollary (2.1), we can easily obtain that

fu(δ̄, δ̄) = ζ
fu(δ̄, δ̄)δ̄β

δ̄2β

= ζ
δ̄2β−1fu(1, 1)

δ̄2β

= ζ
fu(1, 1)

δ̄
,

and

fv(δ̄, δ̄) = ζ
fv(δ̄, δ̄)δ̄

β − βvβ−1f(δ̄, δ̄)

δ̄2β

= ζ
δ̄2β−1fv(1, 1)− βδ̄2β−1f(1, 1)

δ̄2β

= ζ
fv(1, 1)− βf(1, 1)

δ̄
.

Hence, by using Clark Theorem, we obtain that∣∣∣∣ζ fu(1, 1)

δ̄

∣∣∣∣+

∣∣∣∣ζ fv(1, 1)− βf(1, 1)

δ̄

∣∣∣∣ < 1.

Since δ̄ = ω + ζf(1, 1), we find ∣∣∣∣ζ fu(1, 1)

ω + ζf(1, 1)

∣∣∣∣+

∣∣∣∣ζ fv(1, 1)− βf(1, 1)

ω + ζf(1, 1)

∣∣∣∣ < 1,

and so

|fu(1, 1)|+ |fv(1, 1)− βf(1, 1)| <
∣∣∣∣ω + ζf(1, 1)

ζ

∣∣∣∣ .
The proof is completed.

In the following theorem, the two periodic solutions of Eq.(1.1) will be examined.
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Theorem 3.2. Eq.(1.1) has the prime period two solution

. . . , σ, µ, σ, µ, . . .

if and only if

ω = ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
(3.1)

where φ = σ
µ , φ ∈ R− {0,±1}.

Proof. Suppose that Eq.(1.1) has a prime period two solution in the following form

. . . , σ, µ, σ, µ, . . . .

Let’s define δm−(2s+1) = σ and δm−2s = µ for s = 0, 1, 2, . . .. From the definition of the periodicity, we can rewrite
the following equalities

σ = ω + ζ
f(µ, σ)

σβ
,

and

µ = ω + ζ
f(σ, µ)

µβ
.

Therefore, we obtain that

σ = ω + ζ
σβf

(
µ
σ , 1
)

σβ
⇒ σ = ω + ζf

(
1

φ
, 1

)
, (3.2)

and

µ = ω + ζ
σβf

(
1, µσ

)
µβ

⇒ µ = ω + ζφβf

(
1,

1

φ

)
. (3.3)

Now, by using the fact σ − φµ = 0, we get

0 = σ − φµ = ω + ζf

(
1

φ
, 1

)
− φ

(
ω + ζφβf

(
1,

1

φ

))
,

and so

ω(1− φ) = ζφβ+1f

(
1,

1

φ

)
− ζf

(
1

φ
, 1

)
.

Therefore, we find

ω = ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
.

Thus, from (3.2) and (3.3), we obtain that

σ = ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
+ ζf

(
1

φ
, 1

)
(3.4)

= ζ
φβ+1f

(
1, 1

φ

)
− φf

(
1
φ , 1
)

(1− φ)
,

and

µ = ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
+ ζφβf

(
1,

1

φ

)
(3.5)

= ζ
φβf

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
.
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Secondly, suppose (3.1) holds. Let’s choose the initial conditions

δ−1 = σ and δ0 = µ,

where σ, µ defined as (3.2) and (3.3), respectively. Therefore, we see that

δ1 = ω + ζ
f(δ0, δ−1)

δβ−1

= ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
+ ζ

f(µ, σ)

σβ

= ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
+ ζ

σβf
(
µ
σ , 1
)

σβ

= ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
+ ζf

(
1

φ
, 1

)

= ζ
φβ+1f

(
1, 1

φ

)
− φf

(
1
φ , 1
)

(1− φ)
= σ

and

δ2 = ω + ζ
f(δ1, δ0)

δβ0

= ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
+ ζ

f(σ, µ)

µβ

= ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
+ ζ

σβf
(
1, µσ

)
µβ

= ζ
φβ+1f

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
+ ζφβf

(
1,

1

φ

)

= ζ
φβf

(
1, 1

φ

)
− f

(
1
φ , 1
)

(1− φ)
= µ.

Then, by induction, we can obtain for all m ≥ 0

δ2m−1 = σ and δ2m = µ.

Hence, Eq.(1.1) has a prime period two solution. The proof is completed.

In the following theorem, the three periodic solutions of Eq.(1.1) will be investigated.

Theorem 3.3. Eq.(1.1) has the prime period three solution {δm}∞m=−1 where

δm =

 σ, for m = 3z − 1
µ, for m = 3z
ρ, for m = 3z + 1

, z = 0, 1, . . .

if and only if

η

(
ω + ζ

f(ψ, η)

ηβ

)
= ω + ζ

f(1, ψ)

ψβ
(3.6)

ψ

(
ω + ζ

f(ψ, η)

ηβ

)
= ω + ζf(η, 1)

where η = µ
σ and ψ = ρ

σ , η, ψ ∈ R−{0,±1}.
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Proof. Suppose that Eq.(1.1) has a prime period three solution in the following form

. . . , σ, µ, ρ, σ, µ, ρ, . . . .

From Eq.(1.1), we find

σ = ω + ζ
f(ρ, µ)

µβ
,

µ = ω + ζ
f(σ, ρ)

ρβ
,

and

ρ = ω + ζ
f(µ, σ)

σβ
.

Since f is a homogeneous function with degree β, we find

σ = ω + ζ
σβf(ψ, η)

µβ
⇒ σ = ω + ζ

f(ψ, η)

ηβ
,

µ = ω + ζ
σβf(1, ψ)

ρβ
⇒ µ = ω + ζ

f(1, ψ)

ψβ
,

and

ρ = ω + ζ
σβf(η, 1)

σβ
⇒ ρ = ω + ζf(η, 1).

Therefore, we can obtain that

η =
µ

σ
=
ω + ζ f(1,ψ)

ψβ

ω + ζ f(ψ,η)
ηβ

,

and

ψ =
ρ

σ
=
ω + ζf(η, 1)

ω + ζ f(ψ,η)
ηβ

.

Hence, we find

η

(
ω + ζ

f(ψ, η)

ηβ

)
= ω + ζ

f(1, ψ)

ψβ
,

ψ

(
ω + ζ

f(ψ, η)

ηβ

)
= ω + ζf(η, 1).

Secondly, assume that (3.6) holds. Let’s choose the initial values for all η, ψ ∈ R−{0, 1}

δ−1 = ω + ζ
f(ψ, η)

ηβ

and

δ0 = ω + ζ
f(1, ψ)

ψβ
.
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Thus, we obtain that

δ1 = ω + ζ
f(δ0, δ−1)

δβ−1

= ω + ζ
f
(
ω + ζ f(1,ψ)

ψβ
, ω + ζ f(ψ,η)

ηβ

)
(
ω + ζ f(ψ,η)

ηβ

)β
= ω + ζ

f
(
η
(
ω + ζ f(ψ,η)

ηβ

)
, ω + ζ f(ψ,η)

ψβ

)
(
ω + ζ f(ψ,η)

ηβ

)β
= ω + ζ

(
ω + ζ f(ψ,η)

ψβ

)β
f(η, 1)(

ω + ζ f(ψ,η)
ψβ

)β
= ω + ζf(η, 1) = ρ,

δ2 = ω + ζ
f(δ1, δ0)

δβ0

= ω + ζ
f
(
ω + ζf(η, 1), ω + ζ f(1,ψ)

ψβ

)
(
ω + ζ f(1,ψ)

ψβ

)β
= ω + ζ

f
(
ψ
(
ω + ζ f(ψ,η)

ηβ

)
, η
(
ω + ζ f(ψ,η)

ηβ

))
(
η
(
ω + ζ f(ψ,η)

ηβ

))β
= ω + ζ

(
ω + ζ f(ψ,η)

ηβ

)β
f (ψ, η)(

η
(
ω + ζ f(ψ,η)

ηβ

))β
= ω + ζ

f (ψ, η)

ηβ
= σ

and

δ3 = ω + ζ
f(δ2, δ1)

δβ1

= ω + ζ
f
(
ω + ζ f(ψ,η)

ηβ
, ω + ζf(η, 1)

)
(ω + ζf(η, 1))

β

= ω + ζ
f
(
ω + ζ f(ψ,η)

ηβ
, ψ
(
ω + ζ f(ψ,η)

ηβ

))
(
ψ
(
ω + ζ f(ψ,η)

ηβ

))β
= ω + ζ

(
ω + ζ f(ψ,η)

ηβ

)β
f (1, ψ)(

ψ
(
ω + ζ f(ψ,η)

ηβ

))β
= ω + ζ

f (1, ψ)

ψβ
= µ.

Then, by induction, we can obtain that for all m ≥ 0

δ3m+1 = ρ, δ3m+2 = σ and δ3m+3 = µ.

Hence, Eq.(1.1) has a prime period three solution. The proof is completed.
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4. Conclusions and suggestions

Mathematical models are of great importance in the natural sciences, including biology, ecology, engineering
sciences and genetics (see [8], [9], [10]). Mathematical models are developed to explain a system, study the effects of
its various components, and make predictions about their behavior. Discrete models treat time or system states as
discrete. Mathematical models can be created with the help of difference equations. In this respect, each study in
the field of difference equation theory is very valuable both in terms of its own importance and has applications in
other disciplines.

In this work, we introduced a new general class of non-linear difference equations. we investigated the
qualitative behavior of solutions of the introduced second-order non-linear difference equations. In other words,
we dealt with the two periodic solutions, the three periodic solutions and the stability character of given difference
equations. In particular, we obtained the periodic solutions using the new method. Finally, we obtained new
sufficient conditions for local asymptotic stability for the given difference equations. We can say that the results we
have obtained here have gathered and developed many previous studies under one roof. Contributing to the theory
of difference equations introduced with the help of homogeneous functions [20–23, 26] in this article has been one
of the main aims.

It can be suggested to those who do research in this field that research can be done in the equations established
with the help of homogeneous functions. Difference equations created with these functions are very convenient and
useful for researching general classes of difference equations.

In our future studies, we will aim to investigate some general classes of difference equations formed by
homogeneous functions of different degrees.
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[5] Kocić, V., Ladas, G.: Global behavior of non-linear difference equations of higher-order with applications.
Kluwer Academic Publishers. Dordrecht (1993).



The difference equation δm+1 = ω + ζ f(δm,δm−1)

δβm−1

65

[6] Levin, S. A., May, R. M.: A note on difference-delay equations. Theoretical Population Biology. 9 (2), 178-187 (1976).

[7] Mickens, R. E.: Difference equations, theory and applications. Van Nostrand Rheinhold. (1990).

[8] Allen, L. J. S.: An introduction to mathematical biology. Pearson/Prentice Hall. New Jersey (2007).

[9] Murray, J. D.: Mathematical biology I: An introduction. 3rd ed. Springer. (2002).

[10] Pielou, E. C.: An introduction to mathematical ecology. Wiley Interscience. New York (1969).

[11] Oztepe, G. S.: An investigation on the Lasota-Wazewska model with a piecewise constant argument. Hacettepe Journal
of Mathematics and Statistics. 50 (5), 1500-1508 (2021).

[12] Abo-Zeid, R.: Global attractivity of a higher-order difference equation. Discrete Dynamics in Nature and Society.
2012, 930410 (2012).

[13] Abo-Zeid, R.: Global behavior of a higher-order difference equation. Mathematica Slovaca. 64 (4), 931-940 (2014).

[14] Belhannache, F., Touafek, N., Abo-Zeid, R.: Dynamics of a third-order rational difference equation. Bulletin Mathe-
matique de La Societe Des Sciences Mathematiques de Roumanie. 59(107) (1), 13-22 (2016).

[15] Gumus, M.: Global dynamics of solutions of a new class of rational difference equations. Konuralp Journal of Mathe-
matics. 7 (2), 380-387 (2019).

[16] Gumus, M.: Analysis of periodicity for a new class of non-linear difference equations by using a new method. Electron. J.
Math. Anal. Appl. 8, 109-116 (2020).

[17] Halim, Y., Touafek, N.,Yazlik, Y.: Dynamic behavior of a second-order non-linear rational difference equation. Turkish
Journal of Mathematics. 39 (6), 1004-1018 (2015).

[18] Touafek, N., Halim, Y.: Global attractivity of a rational difference equation. Mathematical Sciences Letters. 2 (3),
161-165 (2013).

[19] Yalçınkaya, I.: On the difference equation xn+1 = α+ xn−m/x
k
n. Discrete Dynamics in Nature and Society. 2008,

805460 (2008).

[20] Moaaz, O., Chalishajar, D., Bazighifan, O.: Some qualitative behavior of solutions of general class of difference equation.
Mathematics. 7, 585 (2019).

[21] Moaaz, O.: Dynamics of difference equation xn+1 = f(xn−l, xn−k). Advances in Difference Equations. 2018, 447
(2018).

[22] Moaaz, O., Mahjoub, H., Muhib, A.: On the periodicity of general class of difference equations. Axioms. 9, 75 (2020).

[23] Abdelrahman, M. A. E.: On the difference equation zm+1 = f(zm, zm−1, . . . , zm−k). Journal of Taibah University
for Science. 13 (1), 1014-1021 (2019).
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ADDRESS: Zonguldak Bülent Ecevit University, Faculty of Science, Department of Mathematics, Farabi Campus,
67100, Zonguldak, TURKEY.
E-MAIL: m.gumus@beun.edu.tr
ORCID ID:0000-0002-7447-479X
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