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ABSTRACT. In this article, we study the space Bµ(BX , Y ) of Y -valued Bloch-type functions on the unit ball BX of
an infinite dimensional Hilbert spaceX with µ is a normal weight onBX and Y is a Banach space. We also investigate
the characterizations of the spaceWBµ(BX) of Y -valued, locally bounded, weakly holomorphic functions associated
with the Bloch-type space Bµ(BX) of scalar-valued functions in the sense that f ∈ WBµ(BX) if w ◦ f ∈ Bµ(BX) for
every w ∈ W, a separating subspace of the dual Y ′ of Y.
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1. INTRODUCTION

The space of classical Bloch functions on the unit disk B1 of the complex plane C was ex-
tended to the higher dimension cases. In 1975, using terminology from differential geometry
[5], K. T. Hahn introduced the notion of Bloch functions on bounded homogeneous domains
in Cn. Further, Bloch functions on bounded homogeneous domains in terms of the Bergman
metric was studied by R. M. Timoney in [12, 13]. In [7], S. G. Krantz and D. Ma considered func-
tion theoretic and functional analytic properties of Bloch functions on strongly pseudoconvex
domain.

Recently, O. Blasco and his colleagues extended the notion to the infinite dimensional setting
by considering Bloch functions on the unit ball of an infinite dimensional Hilbert space (see
[1, 2, 3]) and, after that, Z. Xu continued the study this topic (see [14]). C. Chu, H. Hamada,
T. Honda, G. Kohr generalized the Bloch space to a bounded symmetric domain in a complex
Banach space realized as the open unit ball of a JB∗-triple (see [4]). H. Hamada [6] introduced
Bloch-type spaces on the unit ball of a complex Banach space.

Motivated by the above results, in this article, the space of Banach-valued Bloch-type func-
tions on the unit ball BX of an infinite dimensional Hilbert space X with a normal weight
(say Bloch-type space) is introduced. We will consider two possible extensions of the classi-
cal Bloch space. The first one extends the classical Bloch space by considering the Bloch-type
spaces Bµ(BX , Y ) of holomorphic functions f on BX with values in a Banach space Y such
that supz∈BX µ(z)‖♦f(z)‖ < ∞ where µ is a normal weight on BX and ♦f denotes either the
holomorphic gradient∇f or the radial derivative Rf of f. Basing on the idea in [1] with minor
modifications, we give the connection between functions in Bµ(BX , Y ) and their restrictions
to finite dimensional ones, which leads to the fact that if for a given m ≥ 2, the restrictions of
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the function to the m-dimensional subspaces have their Bloch-type norms uniformly bounded,
then the function is a Bloch-type one and conversely. The second one gives the characteriza-
tions of the space WBµ(BX) of Banach-valued, locally bounded, weakly holomorphic func-
tions associated with the Bloch-type space Bµ(BX) of scalar-valued functions in the sense that
f ∈ WBµ(BX) if w ◦ f ∈ Bµ(BX) for every w ∈ W, a separating subspace of the dual Y ′ of
Banach space Y.

Finally, some open problems are proposed at the end of the paper.

2. THE BLOCH-TYPE SPACES ON THE UNIT BALL OF A HILBERT SPACE

Throughout the forthcoming, unless otherwise specified, we shall denote by X a complex
Hilbert space with the open unit ball BX and Y a Banach space. By H (BX , Y ), we de-
note the vector space of Y -valued holomorphic functions on BX . We write H (BX) instead
of H (BX ,C). Denote

H ∞(BX , Y ) =
{
f ∈H (BX , Y ) : sup

z∈BX
‖f(z)‖ <∞

}
.

It is easy to check that H ∞(BX , Y ) is Banach under the sup-norm

‖f‖∞ := sup
z∈BX

‖f(z)‖.

Let (ek)k∈Γ be an orthonormal basis of X that we fix at once. Then every z ∈ X can be written
as

z =
∑
k∈Γ

zkek, z =
∑
k∈Γ

zkek.

Given f ∈ H (BX , Y ) and z ∈ BX . We will denote, as usual, by ∇f(z) the gradient of f at z;
that is, the unique element representing the linear operator f ′(z) ∈ L(X,Y ). We can write

∇f(z) =
( ∂f
∂zk

(z)
)
k∈Γ

and hence

f ′(z)(x) =
∑
k∈Γ

∂f

∂zk
(z)(xkek) ∀x ∈ X.

We define the radial derivative of f at z ∈ BX as follows:

Rf(z) :=
∑
k∈Γ

∂f

∂zk
(z)(zkek) = f ′(z)(z).

It is obvious that
‖Rf(z)‖ ≤ ‖∇f(z)‖‖z‖ ∀z ∈ BX

and
‖∇f(z)‖ := sup

u∈Y ′,‖u‖=1

‖∇(u ◦ f)(z)‖, ‖Rf(z)‖ := sup
u∈Y ′,‖u‖=1

|R(u ◦ f)(z)|.

Definition 2.1. A positive, continuous function µ on the interval [0, 1) is called normal if there are
three constants 0 ≤ δ < 1 and 0 < a < b <∞ such that

(W1)
µ(t)

(1− t)a
is decreasing on [δ, 1), lim

t→1

µ(t)

(1− t)a
= 0,

(W2)
µ(t)

(1− t)b
is increasing on [δ, 1), lim

t→1

µ(t)

(1− t)b
=∞.
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If we say that a function µ : BX → [0,∞) is normal, we also assume that it is radial, that is, µ(z) =
µ(‖z‖) for every z ∈ BX .

Then, it follows from (W1) that a normal function µ is strictly decreasing on [δ, 1) and µ(t)→
0 as t→ 1. Note that, for every non-increasing, normal weight µ,

(2.1) Sµ := sup
t∈[0,1)

(1− t)b

µ(t)
<∞.

Throughout this paper, a weight always is assumed to be normal. For a normal weight µ on
BX , we denote

Iµ(z) :=

∫ ‖z‖
0

dt

µ(t)
∀z ∈ BX .

In the sequel, when no confusion can arise, we will use the symbol ♦ to denote either ∇ or R.
We define Bloch-type spaces on the unit ball BX as follows:

B♦µ (BX , Y ) :=
{
f ∈H (BX , Y ) : ‖f‖sB♦

µ (BX ,Y ) := sup
z∈BX

µ(z)‖♦f(z)‖ <∞
}
.

It is easy to check ‖ · ‖sB♦
µ (BX ,Y ) is a semi-norm on B♦µ (BX , Y ) and this space is Banach under

the sup-norm
‖f‖B♦

µ (BX ,Y ) := ‖f(0)‖+ ‖f‖sB♦
µ (BX ,Y ).

We also define little Bloch-type spaces on the unit ball BX as follows:

B♦µ,0(BX , Y ) :=
{
f ∈ B♦µ (BX , Y ) : lim

‖z‖→1
µ(z)‖♦f(z)‖ = 0

}
endowed with the norm induced by B♦µ (BX , Y ). In the case Y = C, we write B♦µ (BX), B♦µ,0(BX)

instead of the respective notations. For µ(z) = 1 − ‖z‖2, we write B♦(BX , Y ) instead of
B♦µ (BX , Y ) and when dimX = m, Y = C we obtain correspondingly the classical Bloch space
B♦(Bm).We will show below that the study of Bloch-type spaces on the unit ball can be reduced
to studying functions defined on finite dimensional subspaces.

Now, for each finite subset F ⊂ Γ, in symbol |F | = m < ∞, we denote by B[F ] the unit ball
of span{ek, k ∈ F}. Without loss of generality we may assume that F = {1, . . . ,m}, and hence
B[F ] = Bm. For each m ∈ N, we denote

z[m] := (z1, . . . , zm) ∈ Bm.

For m ≥ 2 by
OSm := {x = (x1, . . . , xm), xk ∈ X, 〈xk, xj〉 = δkj},

we denote the family of orthonormal systems of order m. It is clear that OS1 is the unit sphere
of X. For every x ∈ OSm, f ∈H (BX , Y ), we define

fx(z[m]) = f

( m∑
k=1

zkxk

)
.

Then

(2.2)
∥∥∥∇fx(z[m])

∥∥∥ =

∥∥∥∥∇f( m∑
k=1

zkxk

)∥∥∥∥.
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Definition 2.2. Let B1 be the open unit ball in C and f ∈H (BX , Y ). We define an affine semi-norm
as follows

‖f‖sBaff
µ (BX ,Y ) := sup

‖x‖=1

‖f(·x)‖sBµ(B1,Y ),

where f(·x) : B1 → Y given by f(·x)(λ) = f(λx) for every λ ∈ B1, and

‖f(·x)‖sBRµ (B1,Y ) = sup
λ∈B1

µ(λx)‖f ′(·x)(λ)‖.

It is easy to see that ‖ · ‖sBaff
µ (BX ,Y ) is a semi-norm on Bµ(BX , Y ). We denote

Baff
µ (BX , Y ) := {f ∈ Bµ(BX , Y ) : ‖f‖sBaff

µ (BX ,Y ) <∞}.

It is also easy to check that Baff
µ (BX , Y ) is Banach under the norm

‖f‖Baff
µ (BX ,Y ) := ‖f(0)‖+ ‖f‖sBaff

µ (BX ,Y ).

We also define little affine Bloch-type spaces on the unit ball BX as follows:

Baff
µ,0(BX , Y ) :=

{
f ∈ Baff

µ (BX , Y ) : lim
|λ|→1

sup
‖x‖=1

µ(λx)‖f ′(·x)(λ)‖ = 0
}
.

As the above, for µ(z) = 1 − ‖z‖2 we use notation B and B0 instead of Bµ and Bµ,0, respec-
tively.

Proposition 2.1. Let f ∈H (BX , Y ). The following are equivalent:

(1) f ∈ B∇µ (BX , Y );
(2) sup

x∈OSm
‖fx‖B∇

µ (Bm,Y ) <∞ for every m ≥ 2;

(3) There exists m ≥ 2 such that sup
x∈OSm

‖fx‖B∇
µ (Bm,Y ) <∞.

Moreover, for each m ≥ 2

(2.3) ‖f‖sB∇
µ (BX ,Y ) = sup

x∈OSm
‖fx‖sB∇

µ (Bm,Y ).

Proof. (1)⇒ (2): Let m ≥ 2 and z[m] ∈ Bm. According to (2.2)

∥∥∇fx(z[m]

)∥∥ =

∥∥∥∥∇f( m∑
j=1

zjej

)∥∥∥∥.
Denote µ[m] = µ

∣∣
Bm
. Since

∥∥∑m
j=1 zjej

∥∥ =
∥∥z[m]

∥∥we get

(2.4)

‖fx‖sB∇
µ[m]

(Bm,Y ) = sup
z[m]∈Bm

µ[m](z[m])‖∇fx(z[m])‖

≤ sup
z∈BX

µ[m](z[m])

∥∥∥∥∇f( m∑
j=1

zjej

)∥∥∥∥
≤ ‖f‖sB∇

µ (BX ,Y ).

In particular, we obtain (2).
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(2)⇒ (1): Let z =
∑
k∈Γ zkek. We denote the partial sums of this series by sn. Because f is

holomorphic, ∂f
∂zj

are continuous. Then with e[m] := (e1, . . . , em) we have

‖∇f(z)‖ = sup
u∈Y ′,‖u‖=1

‖∇(u ◦ f)(z)‖

= sup
u∈Y ′,‖u‖=1

lim
n→∞

‖∇(u ◦ f)(sn)‖

≤ sup
u∈Y ′,‖u‖=1

sup
m≥2
‖∇(u ◦ fe[m]

)(z[m])‖

= sup
x∈OSm,m≥2

‖∇fx(z[m])‖.

Then, it follows from the assumption (2) and ‖z[m]‖ ≤ ‖z‖, that

(2.5)
µ[m](z[m])‖∇f(z)‖ ≤ µ[m](z[m])‖∇f(z)‖

≤ sup
x∈OSm,m≥2

µ[m](z[m])‖∇fx(z[m])‖ <∞.

Thus f ∈ B∇µ (BX , Y ).
(2)⇒ (3): It is obvious.
(3) ⇒ (1): Assume that there exists m ≥ 2 such that supx∈OSm ‖fx‖Bµ(BX ,Y ) < ∞. We fix

z ∈ BX , z 6= 0. Consider x = ( z
‖z‖ , x2, . . . , xm) ∈ OSm and put z[m] := (‖z‖, 0, . . . , 0) ∈ Bm.

Then ‖z[m]‖ = ‖z‖ and

(2.6)
∥∥∇fx(z[m])

∥∥ =

∥∥∥∥∇f( m∑
k=1

zkxk

)∥∥∥∥ = ‖∇f(z)‖.

This implies that

(2.7)

‖f‖sB∇
µ (BX ,Y ) = sup

z∈BX
µ(z)‖∇f(z)‖

≤ sup
z∈BX

µ(z[m])‖∇fx(z[m])‖

≤ sup
x∈OSm

‖fx‖Bµ(Bm,Y ) <∞.

Thus f ∈ B∇µ (BX , Y ). On the other hand, it is obvious that

(2.8) sup
x∈OSm

‖fx‖B∇
µ (Bm,Y ) ≤ ‖f‖sB∇

µ (BX ,Y ) ∀m ≥ 2.

Hence, we obtain (2.3) from (2.4), (2.5), (2.7) and (2.8). �

Remark 2.1. The proposition is not true for the case m = 1. Indeed, let X be a Hilbert space with the
orthonormal basis {en}n≥1. Consider f : BX → C given by

f(z) :=

∞∑
n=1

〈z, en〉√
n

∀z ∈ BX .

Then f ∈H (BX) because
∞∑
n=1

|〈z, en〉|2

n
≤
∞∑
n=1

|〈z, en〉|2 = ‖z‖2 < 1.
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For each x =
∑∞
n=1〈x, en〉en ∈ OS1 and for every z[1] := z1 ∈ B1, we have

∇fx(z[1]) = ∇f(z1x1) = ∇f
( ∞∑
n=1

〈z1x1, en〉√
n

)
,

and thus, since ‖∇fx(z[1])‖2 = |x1|2 ≤ 1 we get

sup
x∈OS1

‖fx(z[1])‖B∇(B1) = sup
x∈OS1

(1− ‖z[1]‖2)‖∇fx(z[1])‖ ≤ 1.

However, f 6∈ B∇(BX) because for every z ∈ BX , we have

‖∇f(z)‖2 =

∞∑
n=1

∣∣∣ ∂f
∂zn

(z)
∣∣∣2 =

∞∑
n=1

1

n
.

Proposition 2.2. Let f ∈H (BX , Y ). The following are equivalent:

(1) f ∈ B∇µ,0(BX , Y );
(2) ∀ε > 0 ∃% > 0 ∀z ∈ BX with ‖z[m]‖ > % for every m ≥ 2

sup
m≥2

sup
x∈OSm

µ(z[m])‖∇fx(z[m])‖ < ε;

(3) ∃m ≥ 2 ∀ε > 0 ∃% > 0 ∀z ∈ BX with ‖z[m]‖ > %

sup
x∈OSm

µ(z[m])‖∇fx(z[m])‖ < ε.

Proof. The implications (1)⇒ (2)⇒ (3) are obvious.
(3)⇒ (1): The proof is straight-forward by putting x ∈ OSm and z[m] ∈ Bm as in the proof

of (3)⇒ (1) in Proposition 2.1 for each z ∈ BX with ‖z‖ > %. �

In the next proofs below we need the following lemma.

Lemma 2.1. For every f ∈ B∇µ (BX , Y ) and x ∈ X with ‖x‖ = 1, we have

(2.9) Rf(λx) = λf ′(·x)(λ) ∀λ ∈ B1

and

(2.10) f ′(·x)(λ)(µ) = f ′(λx)(µx) ∀λ, µ ∈ B1.

Proof. First, it follows from the Bessel inequality that every x ∈ X has only a countable number
of non-zero Fourier coefficients 〈x, ej〉. Indeed, for every ε > 0 the set {j ∈ Γ : |〈x, ej〉| >
ε} is finite. Then we still have x =

∑
j∈Γ〈x, ej〉ej =

∑
j∈Γ xjej where the sum is in fact a

countable one, and it is independent of the particular enumeration of the countable number of
non-zero summands. Hence, we can write x =

∑∞
j=1 xjej . Then, by the definitions of f(·x)
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and f ′(·x)(λ), we have∥∥∥∥∥1

t

∞∑
k=1

(
f
( k∑
j=1

λxjej + tλxkek +

∞∑
j=k+1

(λ+ tλ)xjej

)

− f
( k∑
j=1

λxjej +

∞∑
j=k+1

(λ+ tλ)xjej

))
− λf ′(·x)(λ)

∥∥∥∥∥
=

∥∥∥∥∥f((λ+ tλ)x)− f(λx)

h
− λf ′(·x)(λ)

∥∥∥∥∥
=

∥∥∥∥∥f(·x)(λ+ tλ)− f(·x)(λ)

t
− λf ′(·x)(λ)

∥∥∥∥∥→ 0 as t→ 0.

Hence (2.9) is proved.
For λ, η ∈ B1 we have

‖ηf ′(·x)(λ)− f ′(λx)(ηx)‖

=

∥∥∥∥∥f(·x)(λ+ tη)− f(·x)(λ)

t
− ηf ′(·x)(λ)− f(λx+ tηx)− f(λx)

t
+ f ′(λx)(ηx)

∥∥∥∥∥
≤

∥∥∥∥∥f(·x)(λ+ tη)− f(·x)(λ)

t
− ηf ′(·x)(λ)

∥∥∥∥∥+

∥∥∥∥∥f(λx+ tηx)− f(λx)

t
+ f ′(λx)(ηx)

∥∥∥∥∥
→ 0 as t→ 0.

Then f ′(·x)(λ)(η) = ηf ′(·x)(λ) = f ′(λx)(ηx), and (2.10) is proved. �

Proposition 2.3. (1) The spaces BRµ (BX , Y ) and Baff
µ (BX , Y ) coincide. Moreover,

‖f‖sBRµ (BX ,Y ) ≤ ‖f‖sBaff
µ (BX ,Y ) . ‖f‖sBRµ (BX ,Y ) ∀f ∈ BRµ (BX , Y ).

(2) The spaces BRµ,0(BX , Y ) and Baff
µ,0(BX , Y ) coincide.

Proof. (1) Let f ∈ Baff
µ (BX , Y ). In order to prove f ∈ BR(BX , Y ) it suffices to show that

(2.11) Rf(z) = ‖z‖f ′
(
· z

‖z‖

)
(‖z‖) ∀z ∈ BX \ {0}.

It is easy to see that (2.11) follows immediately from (2.9) for y = z
‖z‖ and λ = ‖z‖ for every

z ∈ BX \ {0}. Moreover, it follows from (2.11) that

‖f‖sBRµ (BX ,Y ) ≤ ‖f‖sBaff
µ (BX ,Y ).

Thus, the first inequality in (1) is proved. Now, let f ∈ BRµ (BX , Y ) and x ∈ X be such that ‖x‖ =
1. Since f is holomorphic at 0 ∈ BX , its derivative f ′ : BX → L(X,Y ) is also holomorphic, and
thus there are r ∈ (0, 1) and M > 0 such that

‖f ′(z)‖L(X,Y ) ≤M ∀z ∈ B(0, r) := {u ∈ X : ‖u‖ ≤ r}.



Banach-Valued Bloch-Type Functions on the Unit Ball of a Hilbert Space and Weak Spaces of Bloch-Type 13

Then, by (2.10) we have

sup
|λ|≤r

µ(λx)‖f ′(·x)(λ)‖ = sup
|λ|≤r

µ(λx) sup
|η|≤1

‖f ′(·x)(λ)(η)‖

= sup
|λ|≤r

µ(λx) sup
|η|≤1

‖f ′(λx)(ηx)‖

≤ sup
|λ|≤r

µ(λx)‖f ′(λx)‖ ≤M.

For the case where ‖z‖ > r, by (2.9), (2.10) and the increasing monotony of the function 1−t
t ,

similar calculation to [1, Proposition 2.4], we have

(2.12) µ(λx)|f ′(·x)(λ)| ≤
(
µ(λx)

1− r
r

+ µ(λx)
)
‖Rf(λx)‖.

This implies that

sup
|λ|>r

µ(λx)|f ′(·x)(λ)| ≤ 1

r
sup
z∈BX

µ(z)‖Rf(z)‖.

Therefore, f ∈ Baff
µ (BX , Y ), and we also obtain ‖f‖sBµaff (BX ,Y ) ≤ 1

r‖f‖sBRµ (BX ,Y ). Hence, the
second inequality in (1) is proved

(2) Let f ∈ Baff
µ,0(BX , Y ). Then, using (2.11) it is easy to see that f ∈ BRµ,0(BX , Y ). In the

converse direction, it follows from (2.12) that f ∈ Baff
µ,0(BX , Y ) if f ∈ BRµ,0(BX , Y ). �

Next, we will compare the spaces B∇µ (BX , Y ) and BRµ (BX , Y ). We need a vector-valued ver-
sion of Lemma 4.11 in [12]. First we note that

(2.13) f ∈ Bµ(B1, Y ) if and only if u ◦ f ∈ Bµ(B1) for all u ∈ Y ′

and, interchanging the suprema, we have

(2.14) ‖f‖B∇
µ (B1,Y ) � sup

‖u‖=1

‖u ◦ f‖B∇
µ (B1).

Lemma 2.2. Let f ∈ Baff(B2, Y ). If there exists M > 0 such that ‖f(·x)‖sBaff (B1,Y ) ≤ M for any
x = (x1, x2) ∈ B2, then

(2.15) µ((x1, 0))‖∇f(x1, 0)‖ ≤ 2
√

2MRµ ∀x1 ∈ C, |x1| < 1,

where Rµ := 1 + maxt∈[0,δ] µ(t)Iµ(δ).

Proof. We modify the proof of Lemma 4.11 in [12]. Fix u ∈ Y ′ with ‖u‖ = 1. By the hypothesis,
f(·x) ∈ B(B1, Y ). Then it follows from (2.13) that u ◦ f(·x) ∈ Bµ(B1).

‖u ◦ f(·x)‖sB∇
µ
≤ ‖u‖‖f(·x)‖sBaff

µ
≤M.

First of all, the hypotheses imply that

µ((x1, 0))
∣∣∣∂(u ◦ f)

∂x1
(x1, 0)

∣∣∣ ≤M,

and so it is sufficient to show that

µ((x1, 0))
∣∣∣∂(u ◦ f)

∂x2
(x1, 0)

∣∣∣ ≤ 2
√

2M.

Indeed, from the hypotheses, we have

|f(z)− f(0)| =
∣∣∣ ∫ 1

0

〈∇f(tz), z〉dt
∣∣∣ ≤M ∫ ‖z‖

0

dt

µ(t)
= MIµ(z).
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Then, using the Cauchy integral formula and a simple estimate, we obtain

µ((x1, 0))
∣∣∣∂(u ◦ f)

∂x2
(x1, 0)

∣∣∣
≤µ((x1, 0))

1

2π

∫
|w|=1/ 4√2

‖u‖|f(x1, w)− f(0) + f(0)− f(x1, 0)|
|w|2

dw

≤µ((x1, 0))
2MIµ(x1)

2π

∫
|w|=1/ 4√2

dw

w2
≤ 2
√

2MRµ

as required. �

Theorem 2.1. (1) The spaces B∇µ (BX , Y ) and BRµ (BX , Y ) coincide. Moreover,

‖f‖BRµ (BX ,Y ) � ‖f‖B∇
µ (BX ,Y ).

(2) The spaces B∇µ,0(BX , Y ) and BRµ,0(BX , Y ) coincide.

Proof. We prove this theorem by modifying the method of Timoney which was used in [12].
(1) Let us show that ‖f‖sB∇

µ (BX ,Y ) ≤ 2
√

2Rµ‖f‖sBaff
µ (BX ,Y ) and the result follows using Pr-

position 2.3. Fix u ∈ Y ′ with ‖u‖ = 1. Let z ∈ BX and v ∈ X with ‖v‖ = 1 be fixed. We may
assume that dimX ≥ 2. Then there exist orthonormal unit vectors e1, e2 ∈ X and s, t1, t2 ∈ C
with |s| < 1 and |t1|2 + |t2|2 = 1 such that z = se1, v = t1e1 + t2e2. For f ∈ BRµ (BX , Y ) put

F (z1, z2) = (u ◦ f)(z1e1 + z2e2), (z2, z2) ∈ B2.

Then F ∈ H(BX) and it is easy to check that F satisfies the assumptions of Lemma 2.2. Then

µ(z)|∇(u ◦ f)(z)| = µ(s)|∇(u ◦ f)(se1)| = µ(s, 0)|∇F (s, 0)| ≤ 2
√

2MRµ,

hence, ‖f‖sB∇
µ (BX ,Y ) ≤ 2

√
2Rµ‖f‖sBaff

µ (BX ,Y ) as required.
(2) Because ‖Rf(z)‖ < ‖∇f(z)‖ for every z ∈ BX , it suffices to show that BRµ,0(BX , Y ) ⊂

B∇µ,0(BX , Y ). Let f ∈ BRµ,0(BX , Y ) and consider the function F (z1, z2) defined in the proof of
the part (1). In exactly the same estimates in [6, Theorem 2.8(i)] we obtain that

(2.16)
∣∣∣∣ ∂F∂z2

(z1, 0)

∣∣∣∣ ≤ π|z1|
2µ(|z1|)δ

sup
r0≤‖z‖<1

µ(z)|Rf(z)| for |z1| ≥ r0

and

(2.17)
∣∣∣∣ ∂F∂z1

(z1, 0)

∣∣∣∣ =

∣∣∣∣Rf(z1e1)

z1

∣∣∣∣ ≤ 1

µ(|z1|)δ
sup

r0≤‖z‖<1

µ(z)|Rf(z)| for |z1| ≥ r0.

From (2.16) and (2.17), we obtain

(2.18)

µ(z)|〈∇f(z), v〉| = µ(s)|〈∇f(se1), t1e1 + t2e2〉|

= µ(s)

∣∣∣∣t1 ∂F∂z1
(s, 0) + t2

∂F

∂z2
(s, 0)

∣∣∣∣
≤ µ(s)

(∣∣∣∣ ∂F∂z1
(s, 0)

∣∣∣∣2 +

∣∣∣∣ ∂F∂z2
(s, 0)

∣∣∣∣2)1/2

≤ π√
2δ

sup
r0≤‖z‖<1

µ(z)|Rf(z)|, ‖z‖ ≥ r0, ‖v‖ = 1.

Now, by the hypothesis, for every ε > 0 we can find r0 ∈ (δ, 1) such that µ(z)‖Rf(z)‖ < ε
for ‖z‖ > r0. Therefore, it follows from (2.18) that lim‖z‖→1 µ(z)‖∇f(z)‖ = 0, that means f ∈
B∇µ,0(BX , Y ). �
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We can now combine the results of Proposition 2.3 and Lemma 2.2 with an argument analo-
gous to the Theorem 2.6 in [1] and obtain the following theorem:

Theorem 2.2. The spacesB∇µ (BX , Y ),BRµ (BX , Y ) andBaff
µ (BX , Y ) coincide. The spacesB∇µ,0(BX , Y ),

BRµ,0(BX , Y ) and Baff
µ,0(BX , Y ) coincide. Moreover,

‖f‖BRµ (BX ,Y ) ≤ ‖f‖B∇
µ (BX ,Y ) ≤ 2

√
2Rµ‖f‖Baff

µ (BX ,Y ).

Next, we present a Möbius invariant norm for the Bloch-type space B(BX , Y ).Möbius trans-
formations on a Hilbert space X are the mappings ϕa, a ∈ BX , defined as follows:

(2.19) ϕa(z) =
a− Pa(z)− saQa(z)

1− 〈z, a〉
, z ∈ BX ,

where sa =
√

1− ‖a‖2, Pa is the orthogonal projection from X onto the one dimensional sub-
space [a] generated by a, and Qa is the orthogonal projection from X onto X 	 [a]. It is clear
that

Pa(z) =
〈z, a〉
‖a‖2

a, (z ∈ X) and Qa(z) = z − 〈z, a〉
‖a‖2

a, (z ∈ BX).

When a = 0,we simply define ϕa(z) = −z. It is obvious that each ϕa is a holomorphic mapping
from BX into X. We will also need the following facts about the pseudohyperbolic distance in
BX . It is given by

%X(x, y) := ‖ϕ−y(x)‖ for any x, y ∈ BX .
For details concerning Möbius transformations and the pseudohyperbolic distance, we refer to
the book of K. Zhu [15]. It is well known that, in the case n ≥ 2, the equality ‖f ◦ ϕ‖B∇(Bn,Y ) =
‖f‖B∇(Bn,Y ) is false. Our goal is to find a semi-norm on B(BX , Y ) which is invariant under the
automorphisms of the ball BX .

Definition 2.3. Let X be a complex Hilbert space, Y be a Banach space and f ∈ H(BX , Y ). Consider
the invariant gradient norm

‖∇̃f(z)‖ := ‖∇(f ◦ ϕz)(0)‖ for any z ∈ BX .
We recall the following result of Blasco and his colleagues in [1]:

Lemma 2.3 (Lemma 3.5, [1]). Let f ∈ H(BX). Then

‖∇̃f(z)‖ = sup
w 6=0

|〈∇f(z), w〉|(1− ‖z‖2)√
(1− ‖z‖2)‖w‖2 + |〈w, z〉|2

.

We define invariant semi-norm as follows

‖f‖sBinv(BX ,Y ) := sup
z∈BX

‖∇̃f(z)‖ = sup
z∈BX

sup
u∈Y ′,‖u‖≤1

‖∇̃(u ◦ f)(z)‖.

We denote
Binv(BX , Y ) := {f ∈ B(BX , Y ) : ‖f‖sBinv(BX ,Y ) <∞}.

It is also easy to check that Binv(BX , Y ) is Banach under the norm

‖f‖Binv(BX ,Y ) := ‖f(0)‖+ ‖f‖sBinv(BX ,Y ).

Now, applying Theorem 3.8 in [1] to the functions u ◦ f for every u ∈ Y ′, we obtain the follow-
ing:

Theorem 2.3. The spaces B∇(BX , Y ), and Binv(BX , Y ) coincide. Moreover,

‖f‖B∇(BX ,Y ) ≤ ‖f‖Binv(BX ,Y ) . ‖f‖B∇(BX ,Y ).
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3. WEAK HOLOMORPHIC SPACES ASSOCIATED WITH BLOCH-TYPE SPACES

Let X,Y be complex Banach spaces andW ⊂ Y ′ be a separating subspace of the dual Y ′ of
Y. Let E ⊂H (BX) be a Banach space. We say that the space

WE := {f : BX → Y : f is locally bounded and w ◦ f ∈ E , ∀w ∈ W}

equipped with the norm

(3.1) ‖f‖WE := sup
w∈W,‖w‖≤1

‖w ◦ f‖E

is the Banach spaceW-associated with E of Y -valued functions.

Remark 3.2. In the case the norm ‖ · ‖E of Banach space E is written in the form

‖f‖ = |f(0)|+ ‖f‖sE ∀f ∈ E

the spaceWE can be equipped with the norm

(3.2) ‖f‖WE+ := sup
w∈W,‖w‖≤1

|w ◦ f(0)|+ sup
w∈W,‖w‖≤1

‖w ◦ f‖sE ∀f ∈ E .

However, it is easy to check thatWE =WE+ and

‖ · ‖WE � ‖ · ‖WE+

onWE where

WE+ :=

{
f : BX → Y : f is locally bounded and sup

w∈W,‖w‖≤1

‖w ◦ f‖sE <∞
}
.

Therefore, byWE we always mean that is (WE , ‖ · ‖WE).

Suppose now that E ⊂H (BX) is a Banach space such that
(e1) E contains the constant functions,
(e2) the closed unit ball BE is compact in the compact open topology τco of BX .

It is easy to check that the properties (e1), (e2) are satisfied by a large number of well-known
function spaces, such as classical Hardy, Bergman, BMOA, and Bloch spaces.

Proposition 3.4. Let X,Y be complex Banach spaces and W ⊂ Y ′ be a separating subspace. Let
E ⊂ H (BX) a Banach space satisfying (e1)-(e2) and WE be the Banach space W-associated with E .
Then, the following assertions hold:
(we1) f 7→ f ⊗ y defines a bounded linear operator Py : E → WE for any y ∈ Y, where (f ⊗ y)(z) =

f(z)y for z ∈ BX ,
(we2) g 7→ w ◦ g defines a bounded linear operator Qw :WE → E for any w ∈ W,

(we3) For all z ∈ BX the point evaluations δ̃z : WE → (Y, σ(Y,W )), where δ̃z(g) = g(z), are
continuous.

In the case the hypothesis “separating” ofW is replaced by a stronger one thatW is “almost norming”,
we obtain the assertion (we3’) below instead of (we3):

(we3’) For all z ∈ BX the point evaluations δ̃z :WE → Y are bounded.

Here, the subspaceW of Y ′ is called almost norming if

qW(x) := sup
w∈W,‖w‖≤1

|w(x)|

defines an equivalent norm on Y.
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Proof. (i) Fix y ∈ Y. In fact, for every f ∈ E we have w ◦ (f ⊗ y) = w(y)f. Then

‖Py(f)‖WE = sup
‖w‖≤1

‖w ◦ (f ⊗ y)‖E = sup
‖w‖≤1

‖w(y)f‖E

≤ ‖w‖ · ‖y‖ · ‖f‖E
≤ ‖y‖ · ‖f‖E .

Thus (we1) holds.
(ii) Fix w ∈ W, for every g ∈ WE we have

‖Qw(g)‖E = ‖w ◦ g‖E = ‖w‖
∥∥∥ w

‖w‖
◦ g
∥∥∥
E

≤ ‖w‖ sup
‖u‖≤1

‖u ◦ g‖E

= ‖w‖ · ‖g‖WE .

Thus (we2) is true.
(iii) Fix z ∈ BX .Note first that since E satisfies (e1) and (e2), then the evaluation maps δz ∈ E ′

for z ∈ BX where δz(f) = f(z) for f ∈ E . It is obvious thatw(δ̃z(g)) = δz(w◦g) for every g ∈ WE
and for every w ∈ W. Let V be a σ(Y,W)-neighbourhood of 0 in Y. Without loss of genarality
we may assume V = {y ∈ Y : |w(y)| < 1} for some w ∈ W. Then δ̃z(‖δz‖−1‖w‖−1BWE) ⊂ V,
where BWE is the unit ball ofWE . Indeed, for every g ∈ BWE we have

|w(δ̃z(‖δz‖−1‖w‖−1g))| = ‖δz‖−1|δz(‖w‖−1w ◦ g)|
≤ ‖δz‖−1‖δz‖ ·

∥∥‖w‖−1w ◦ g
∥∥
E

≤ sup
u∈W,‖u‖≤1

‖u ◦ g‖E

= ‖g‖WE < 1.

Thus, (we3) holds.
In the case where W is almost norming, since qW defines an equivalent norm, there exists

C > 0 such that
‖δ̃z(g)‖ = ‖g(z)‖ ≤ CqW(g(z))

= C sup
w∈W,‖w‖≤1

|w(g(z))|

≤ C sup
w∈W,‖w‖≤1

‖w ◦ g‖

= C‖g‖WE ∀g ∈ WE .
The assertion (we3’) is proved. �

Now letW ⊂ Y ′ be a separating subspace of the dual Y ′. Applying Proposition 2.3, Theo-
rems 2.2 and 2.3 to functionsw◦f for each f ∈ H(BX , Y ) andw ∈ W , we obtain the equivalence
of the norms inW-associated Bloch-type spaces:

‖ · ‖WBRµ (BX)
∼= ‖ · ‖WB∇

µ (BX )
∼= ‖ · ‖WBaff

µ (BX),

‖ · ‖WBR(BX)
∼= ‖ · ‖WB∇(BX)

∼= ‖ · ‖WBaff (BX)
∼= ‖ · ‖WBinv(BX).

Hence, for the sake of simplicity, from now on we write Bµ instead of BRµ . Recall that, the space
WBµ(BX) equipped with the norm in the form either (3.1) or (3.2). It is clear that for every
separating subspaceW of Y ′ we have

B♦µ (BX , Y ) ⊂ WB♦µ(BX), B♦µ,0(BX , Y ) ⊂ WB♦µ,0(BX).



18 Thai Thuan Quang

The main result of this section is the following:

Theorem 3.4. LetW ⊂ Y ′ be a separating subspace. Let µ be a normal weight onBX . ThenWBµ(BX)
andWBµ,0(BX) satisfy (we1)-(we3).

We need the following lemma whose proof parallels that of Lemma 13 in [11] and will be
omitted.

Lemma 3.4. Let µ be a normal weight on BX . Then there exists Cµ > 0 such that

Cµ ≤
µ(r)

µ(r2)
≤ 1 ∀r ∈ [0, 1).

Proof of Theorem 3.4. By Proposition 3.4, it suffices to show that Bµ(BX), Bµ,0(BX) satisfy (e1)
and (e2). It is obvious that Bµ(BX), Bµ,0(BX) satisfy (e1). Because Bµ,0(BX) is the subspace of
Bµ(BX), it suffices to check (e2) for the space Bµ(BX). In order to prove (e2) holds for Bµ(BX),
we will show that the closed unit ball U of Bµ(BX) is pointwise bounded and equicontinuous.

(i) First, we prove that U is pointwise bounded. It suffices to prove that

(3.3) |f(z)| ≤ max
{

1, Iµ(z)
}
‖f‖Bµ(BX) ∀f ∈ Bµ(BX),∀z ∈ BX .

Fix f ∈ Bµ(BX) and put g(z) = f(z) − f(0) for every z ∈ BX . Note that g(0) = 0 and
‖g‖Bµ(BX) = ‖f‖sBµ(BX). As in Lemma 2.2 by Cauchy-Schwarz inequality, we have

|g(z)| ≤
∫ 1

0

‖f‖sBµ(BX)‖z‖
µ(tz)

dt = ‖f‖sBµ(BX)Iµ(z) = ‖g‖Bµ(BX)Iµ(z).

Consequently,
|f(z)| ≤ |f(0)|+ |g(z)| ≤ |f(0)|+ ‖g‖Bµ(BX)Iµ(z)

≤ max
{

1, Iµ(z)
}(
|f(0)|+ ‖f‖sBµ(BX)

)
= max

{
1, Iµ(z)

}
‖f‖Bµ(BX).

(ii) Next, we show that U is equicontinuous. For each f ∈ U, by Proposition 2.1 we can find
m ≥ 2 such that

‖f‖sBµ(BX) = sup
y∈OSm

‖fy‖sBµ(Bm).

Fix e[m] = (e1, . . . , em) ∈ OSm. Then, for every z = (zk)k∈Γ, w = (wk)k∈Γ ∈ BX , we consider
z[m] := (z1, . . . , zm), w[m] := (w1, . . . , wm). By Theorem 3.6 in [15] and Lemma 3.4, we have

|fe[m]
(z[m])− fe[m]

(w[m])|

≤β(z[m], w[m]) sup
x[m]∈Bm

‖∇̃fe[m]
(x[m])‖

≤β(z[m], w[m]) sup
x[m]∈Bm

sup
y∈Bm\{0}

|〈∇fe[m]
(x[m]), y〉|(1− ‖x[m]‖2)√

(1− ‖x[m]‖2)‖y‖2 + |〈y, x[m]〉|2

≤β(z[m], w[m])C
−1
µ sup

x[m]∈Bm

µ[m](‖x[m]‖)|∇fe[m]
(x[m])

√
1− ‖x[m]‖2

µ[m](‖x[m]‖2)

≤β(z[m], w[m])C
−1
µ ‖fe[m]

‖Bµ(Bm)

√
1− ‖x[m]‖2

µ[m](‖x[m]‖2)
,
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where β is the Bergman metric on Bm given by

β(s, t) =
1

2
log

1 + |(ϕm)s(t)|
1− |(ϕm)s(t)|

with (ϕm)s is the involutive automorphism of Bm that interchanges 0 and s. If ‖x[m]‖2 ≤ δ it is
clear that √

1− ‖x[m]‖2

µ[m](‖x[m]‖2)
≤ 1

mµ,δ
<∞,

where mµ,δ = mint∈[0,δ] µ(t) > 0; if ‖x[m]‖2 > δ and b ≥ 1/2, by (2.1) we have√
1− ‖x[m]‖2

µ[m](‖x[m]‖2)
≤

(1− ‖x[m]‖2)b

µ[m](‖x[m]‖2)
< Sµ <∞;

if ‖x[m]‖2 > δ and b < 1/2, we get√
1− ‖x[m]‖2

µ[m](‖x[m]‖2)
=

(1− ‖x[m]‖2)b

µ[m](‖x[m]‖2)
(1− ‖x[m]‖2)1/2−b ≤ Sµ(1− δ)1/2−b <∞.

Consequently,
|fe[m]

(z[m])− fe[m]
(w[m])| ≤ β(z[m], w[m])Ŝµ‖fe[m]

‖Bµ(Bm),

where
Ŝµ := C−1

µ max
{
m−1
µ,δ, Sµ(1− δ)1/2−b}.

Since β(s, t) is the infimum of the set consisting of all `(γ) where γ is a piecewise smooth curve
in Bm from s to t (see [15, p. 25]) we have

|fe[m]
(z[m])− fe[m]

(w[m])| ≤ ‖z[m] − w[m]‖Ŝµ‖fe[m]
‖Bµ(Bm) ≤ Ŝµ‖z − w‖.

Consequently,

|f(z)− f(w)| = lim
m→∞

|fe[m]
(z[m])− fe[m]

(w[m])| ≤ Ŝµ‖z − w‖.

This yields that U is equicontinuous. �

Remark 3.3. In fact, the estimate (3.3) can be written as follows

|f(z)| ≤ |f(0)|+ Iµ(z)‖f‖sBµ .

Finally, we discuss the linearization theorem for spacesWBµ(BX) which will be usefull in
investigation some related problems, especially the theory of operators between these spaces.
In fact, this theorem holds for spaces WE where E ⊂ H (BX) is a Banach space satisfying
(e1)-(e2). In this paper, we will state and prove this theorem for the general case.

Theorem 3.5 (Linearization). Let X,Y be complex Banach spaces and W ⊂ Y ′ be a separating
subspace. Let E ⊂ H (BX) be a Banach space satisfying (e1)-(e2). Then there exist a Banach space ∗E
and a mapping δX ∈ H (BX ,

∗E) with the following universal property: A function f ∈ WE if and
only if there is a unique mapping Tf ∈ L(∗E , Y ) such that Tf ◦ δX = f. This property characterize ∗E
uniquely up to an isometric isomorphism.

Moreover, the mapping
Φ : f ∈ WE 7→ Tf ∈ L(∗E , Y )

is a topological isomorphism.

We will prove this theorem by Mujica’s method [8, Theorem 2.1], which is based on the
Dixmier–Ng theorem, with a little improvement.
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Proof. Let us denote by ∗E the closed subspace of all linear functionals u ∈ E ′ such that u
∣∣
BE

is τco-continuous. As in the proof of Mujica [8, Theorem 2.1], we get the evaluation mapping
δX : BX → ∗E given by δX(x) = δx with δx(g) := g(x) for all g ∈ E , is holomorphic and

(3.4) span{δx : x ∈ BX} is a dense subspace of ∗E .

Now, we show that ∗E and δX have required universal property. First, given a locally bounded
function f : BX → Y. Assume that there exists Tf ∈ L(∗E , Y ) such that Tf ◦ δX = f. Since Tf
is continuous and δX is holomorphic, it follows that u ◦ f ∈ H (BX) for every u ∈ W. Since
W is separating, according to [10, Lemma 4.2] we have f ∈HLB(BX , Y ). Next, it follows from
(∗E)′ = E (see [9]) that u ◦ f ∈ E for each u ∈ W, and then f ∈ WE . Now, we will prove the
converse of the statement. Fix f ∈ WE .

(i) The case of Y = C: We define Tf := Jf, where J : E → (∗E)′ is the evaluation mapping
given by (Jf)(u) = u(f) for all u ∈ ∗E , which is a topological isomorphism by the Ng Theorem
[9, Theorem 1]. Since (Jg) ◦ δX(x) = δx(g) = g(x) for all g ∈ E , x ∈ BX , it implies that
Tf ◦ δX = f. From (3.4) we obtain the uniqueness of Tf .

(ii) The case of Y is Banach: We define Tf : ∗E → W ′ by

(3.5) (Tfu)(ϕ) = Tϕ◦f (u) = u(ϕ ◦ f) ∀u ∈ ∗E , ∀ϕ ∈ W,

i.e. Tϕ◦f is defined as in the case (i).
It is easy to check that Tf ∈ L(∗E ,W ′) and ‖Tf‖ = ‖f‖WE , hence, Φ is a isometric isomor-

phism. Furthermore,
(Tfδx)(ϕ) = (ϕ ◦ f)(x)

for every x ∈ BX and ϕ ∈ W and, therefore, since W is separating we get Tfδx = f(x) ∈ Y
for every x ∈ BX . Then, by (3.4) Tf ∈ L(∗E , Y ). The uniqueness of Tf follows also from the fact
(3.4) that δX(BX) generates a dense subspace of ∗E .

Finally, the uniqueness of ∗E up to an isometric isomorphism follows from the universal
property, together with the isometry ‖Tf‖ = ‖f‖WE . This completes the proof. �

Our results suggest the following questions.
Problems.

(1) Let Ei, i = 1, 2, be spaces of holomorphic functions on the unit ball BX of a Banach
space X and WE i be the Banach spaces W-associated with Ei of Y -valued functions.
Let ψ be a holomorphic on BX and ϕ a holomorphic self-map of BX . Consider the
extended Cesàro composition operators Cψ,ϕ : E1 → E2, C̃ψ,ϕ : WE1 → WE2, and the
weighted composition operators Wψ,ϕ : E1 → E2, W̃ψ,ϕ :WE1 →WE2.

Is there any relationship between the boundedness as well as the (weak) compact-
ness of Cψ,ϕ, Wψ,ϕ and of C̃ψ,ϕ, W̃ψ,ϕ? How does separating subspace W ⊂ Y ′ affect
that relationship?

(2) In the case where E1 = Bν(BX), E2 = Bµ(BX) with ν and µ are normal weights on the
unit ball BX of a infinite dimensional Hilbert space X, is it possible to characterize the
boundedness as well as the (weak) compactness of C̃ψ,ϕ, W̃ψ,ϕ via the estimates for the
restrictions of ψ and ϕ to a m-dimensional subspace of X for some m ≥ 2?
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