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ABSTRACT

In this paper, we introduce the a—circle inversion by using a—distance function instead of
Euclidean distance in definition of classical inversion. We give some proporties of a—circle
inversion. Also this new transformation is applied to well known fractals. Then new fractal
patterns are obtained. Moreover we generalize the method called circle inversion fractal be means
of the a—circle inversion. In alpha plane, R?, we give a generalization of a—circle inversion fractal
by using the concept of star-shaped set inversion which is a generalization of circle inversion
fractal.
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1. Introduction

Imagine that you and your friend are in Himalayas for climbing experience. During the climb you notice
something on the opposite hill, and you ask your friend: "What is the distance between here and the opposite
hill?" Perhaps, you get the answer "it’s about 300 meters". The answer formally correct and still absolutely
useless. Of course, every mountaineers know that distance in mountains is a tricky thing. This answer may
be suitable for a bird. But creatures without wings or flight equipment have to take long detours with lots of
ups and downs. Similarly, if one want to measure the distance between two points on a plane, then one can
use frequently Euclidean distance which is defined as the length of segment between these points. Although
it is the most popular distance function, it is not practical when we measure the distance which we actually
move in the real world. For every two points on a surface in Euclidean space or in the Euclidean plane we
can measure Euclidean distance between the two points. What we do instead is we introduce a new distance
which is measured along the shortest path between the two points. Generalizing this idea, one says that a
distance function on a metric space is an intrinsic metric if the distance between two points can be realized by
paths connecting the points. For example, taxicab distance and Chinese checkers distance are intrinsic metrics.
Taxicab and Chinese checkers distance functions are similar to moving with a car or Chinese chess in the
real world. Later, Tian [27] defined a family of metrics, a—metric (alpha metric) for « € [0, 7/4]. The taxicab
and Chinese checker metrics are special cases of a—metric. Then, some authors developed and studied on
various aspect of these topics. For example, Gelisgen and Kaya [14, 15] extended the a—distance to three
and n dimensional spaces, respectively. Afterwards, Colakoglu [8] extended the a—metric for a € [0,7/2].
According to the latter, if P = (z1,y1) and Q = (z2,y2) are two points in R?, then for each a € [0,7/2] and
A (a) = sec a — tan ¢, the a—distance between P and @ is

do (P,Q) = max {|z1 — z2|, |y1 — y2|} + A (o) min {|z1 — 22|, |y1 — y2|}.

Obviously, there are infinitely many different distance function depending on values of «. But we assume
that value of « are initially determined and fixed unless otherwise stated.
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The linear structure of a—plane is the same as the Euclidean one. That is, the points and the lines are the
same, and the angles are measured in the same way. There are only one difference. This difference is that the
a—plane geometry has a different distance function. Therefore, it seems interesting to study the a—analog of
the topics that include the concepts of distance in the Euclidean geometry.

One of the concepts which include notation of distance is an inversion. As stated in Kozai and Libeskind
[17], this particular transformation was probably first introduced by Apollonius of Perga (225 BCE — 190
BCE). The systematic investigation of inversions began with Jakob Steiner (1796-1863) in the 1820s. During
the following decades, many physicists and mathematicians such as William Thomson, August F. Mobius and
Mario Pieri independently rediscovered inversions, proving the properties that were most useful for their
particular applications. For more detail see Kozai and Libeskind [17], and Patterson [23].

Inversion has attracted the attention of scientist from past to present. So there are a lot of study about
inversion. Many scientist studied and also are studying different aspect of this concept. In Childress [6] and
Ramirez [24], the authors investigated the inversions with respect to the central conics in real Euclidean plane.
The inversions with respect to taxicab circle was studied detailed in Nickel [21] ,and Bayar and Ekmekci [2].

One of the most famous mathematical topics in recent times is fractals. Fractal geometry is one of the rising
topics of mathematics even though it is a fairly new field. The concept of fractals was first presented by
Mandelbrot [20] in the 1970s. Afterwards Barnsley [1] introduced some revolutionary ideas with respect to
the practical aspect of fractals. He provided methods to model natural fractals and used the concept of the
iterated function system (IFS) as a tool to generate them. After that, therefore, fractal geometry has been used
in many applications from pattern recognition to medicine and also even in archaeology (See [19, 5, 22] for
more information).

In these application areas, fractals have been used to generate very complicated and pretty patterns.
Although fractal patterns are very complex, in fact they can be generated only a small amount of information.
For example, in the IFS, fractals can be produced with only information about a finite number of contractive
mappings. For IFSs there are two main algorithms used to generating fractal patterns. These are deterministic
algorithm and random iteration algorithm. Later in Frame and Cogevina [9] a new method which is termed
as circle inversion fractal was introduced by using circle inversion mappings. A similar method was also
observed in Zhang and He [28]. This method was generalized to sphere inversions by Leys [18]. In 2007, Helt
[16] used the idea inversion mapping created by using the centroids of the geometric objects instead of the
idea of inversion according to the circle for 2- and 3-dimensional space, and he examined the fractals with
formed by this idea. Later, Gdawiec [11] extended the method of circle inversion fractals to star-shaped sets.
The Euclidean circle inversion mapping is used in all of the mentioned studies of circle inversion mappings.
In 2016, Gdawiec [12] introduced new technique for obtaining new and diverse fractal patterns. Accordding to
this tecnique is based on the use of different metrics in the inversion mapping and a switching process between
different metric spaces. In 2017, Gdawiec [13] also advanced the idea of star-shaped set inversion fractals using
iterations known from fixed point theory like as Piccard, Mann Isakawa, ect. Most of the articles which some
of their are listed above on this subject focuses on the graphical aspect of such fractals, without presenting a
careful development of the underlying mathematical framework. In [4] Boreland and Kunze presented such
a framework, making a strong connection to iterated function systems (IFS) theory. Also in [10] Fitzsimmons
and Kunze showed that there exists an attractor to the iterated function system consisting of modified circle
inversion maps, and that the regular chaos game generate the attractor. In 2015, Ramirez [25] et al. carried
out these studies about circle inversion fractals from Euclidean plane to other plane which is furnished by
Minkowski metric (p—metric) by using p—circle inversion mapping. According to p—metric, circles are oval
convex closed curves except the cases of p =1 and p — co. In the cases of p =1 and p — oo, the circle is a
square. The Figure 1(a) presents some examples of the p—circles.

Now, in this paper we study another generalization of the circle inversion by using an a—distance. The circles

in the a—plane are octagon except the cases of « = 0 and o — g In these excepted cases, the circle is a square
as like as excepted cases of p—circle. The a—circle is generally an octagon which is not uniform. If one take
o= %, then the a—circle is a regular octagon. The Figure 1(b) presents some examples of the a—circles. The

planes with p—metric and a—metric have similar character about circles according to changing value of p and
a. The difference is that the circles in the p—plane are smooth while the circles in the a—plane are not smooth,
that is, they have vertices. So we firstly introduce a—circle inversion and develop some properties of this term.
Later we modify and carry out studies about circle inversion fractals to a—plane. Then new fractal patterns are
obtained.
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Figure 1(a): Some examples of p—circles Figure 1(b): Some examples of a—circles

2. The a—circle Inversion and Some Properties

In this section we firstly define the a—circle inversion by using the a—metric instead of the well-known
Euclidean metric in classic definition of circle inversion. Later we give some properties of the a—circle
inversion. Now, we give some knowledge about Euclidean circle inversion.

As it has been stated in Blair [3], in the Euclidean plane an inversion in a circle of radius r is a mapping
in which a point P and its image P’ are on a ray emanating from the center O of the circle such that
d(0, P)d(O, P") = r2. This mapping is also conformal.

Clearly if P’ is the inverse of P, then P is the inverse of P’. Note also that if P is in the interior of C, P’ is
exterior to C, and vice versa. So the interior of C' except for O is mapped to the exterior and the exterior to the
interior C itself is left pointwise fixed O has no image, and no point of the plane is mapped to O. However,
points close to O are mapped to points far from O and points far from O map to points close to O. Thus
adjoining one "ideal point"”, or "point at infinity", to the Euclidean plane, we can include O in the domain and
range of inversion.

Now in the alpha plane, R2, the definition of inversion with respect to an a—circle can be given as follows:

Definition 2.1. Let C be an a-circle centered at a point O with radius r in R?, and let P, be the ideal point
adjoining one to the alpha plane. In R? the alpha circle inversion with respect to O is the function such that

I, (0,7) : RZU{Py} — R U{P,}

defined by I, (O,7) (O) = Ps, 1o (0,7) (Ps) = O and I, (O, r) (P) = P’ for P # O, Py, , where P’ is on the ray
OP and d, (O, P)d, (O, P") = r?. The point P’ is called the alpha circle inverse of P according to the a—circle C,
C is said to be the circle of inversion, O is called the center of inversion.

The following propositions states some basic properties which are immediately obtained from definition of
the a—circle inversion.

Proposition 2.1. Let C be an alpha circle with center O and radius r and I, (O,r) be an alpha circle inversion with
respect to C. Then the following statements are valid.

i) I the point P is in the interior of C' then the point P’ is exterior to C, and conversely.

ii) The points of the circle C are invariant under the mappings I, (O, 7).

iii) I, (O, r) is involutive, that is, (I, (O,r))* = identity.

iv) I, (O, r) is a contraction on exterior of C and I, (O, r) is an expansion on interior of C.

Proposition 2.2. Let I, (O,r) be an alpha circle inversion with respect to an alpha circle C centered at origin and the
radius r in R2. If P = (z,y) and P' = (2, y') are inverse points according to the alpha circle inversion, then

2

’ rYr
xr = - 3
(max {|z[, [y|} + A (o) min {|z[, [y|})
r sz
y =

(max {|z|, |y|} + A (&) min {Ja] ,ly[})*
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In more general since all translations are an isometry of R2, if C' is centered at the point O = (a,b) , then the a—inverse
of point P = (x,y) is stated by

. r? (@~ a)
(max {|z — al, [y = 0]} + A (a) min {|z — al |y - b[})*’
y/ = b4+ T2(y_b)

(max {|z — al, |y = 0]} + A (a) min {|z — a |y = b[})*

Proof. The a-circle C' with the center at origin and the radius r consists of the points which satisfies the
equation max {|z|, |y|} + A (o) min {|z|, |y|} = r. Let P = (x,y) and P’ = (2/,y’) be inverse points with respect

—
to C. Since the points O, P and P’ are collinear and the rays OP and OP are same direction, OP’ = kOP for

2
k € R*. Since do(O, P)da(O, P') = 12, it is obtained that k = 4

. | o (maxx {[z [y} + A (o) min {Ja, [y]})? .
the required results are obtained by substituting the value of k in (', y') = (kx, ky). If C is centered at the point
O = (a,b) , then one can obtain the required result by applying the translation to point O = (a, b) in the previous
statement. O

. Obviously

The following useful properties are well known in Euclidean plane:

i. Lines passing through the center of inversion map into themselves.

ii. Circles with center of inversion map to circles with center of inversion.

iii. Circles not passing through the center of inversion map into circles that do not pass through the center of
inversion.

iv. Lines not through the center of inversion map into circles through the center of inversion and conversely.

Unfortunately all of these properties which holds in the Euclidean plane are not valid in the alpha plane. The
following theorem states that whether which one of these properties are satisfied or not. Since one can easily
give an example for properties which do not satisfy and one can easily prove the satisfying properties by using
definition of the alpha circle inversion, the next theorem is given without proof. The Figure 2 present examples
for the cases of Theorem 2.1.

Theorem 2.1.

i. The alpha circle inversion 1, (O, r) maps the lines passing through O onto themselves.

ii. The alpha circler inversion I, (O, r) maps the alpha circles with the center O onto the alpha circles with the center O.
iii. The alpha circle inversion 1, (O,r) does not map the alpha circles not through O onto any alpha circles.

iv. The alpha circle inversion 1, (O,r) does not map the lines not containing the center of the alpha circle inversion circle
onto alpha circles the center O.

v. The alpha circle inversion I, (O, r) does not map the alpha circles containing the center of the inversion circle onto
straight lines not containing O.

Figure 2: An example from left to right for the every cases of Theorem 2.1, respectively.

3. Some Famous Fractals and a—Circle Inversion

In this section, we will find to representations of several most familiar fractals objects under the a—circle
inversion.

As stated in Smith [26], at present, there does not exist a universally agreed upon definition for ‘fractal’.
Barnsley [1] defines fractal as “A fractal is a geometrically complex subset of a geometrically simple space”.
Whilst this definition conveys the idea of a fractal, it is not precise in that it does not specify what is meant
by ‘geometrically complex” or ‘geometrically simple’. Thus, Barnsley’s definition is usually accompanied
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by examples such as The Sierpinski Triangle, The Koch Curve and The Cantor Middle Third Set. Barnsley
popularized the idea of fractal construction by means of an Iterated Function System (IFS). Now we recall the
definition of IFS from Barnsley [1].

Definition 3.1. An Iterated Function System consists of a complete metric space (X, d) together with a finite set
of contraction mappings w, : X — X , with respective contractivity factor s, , for n = 1,2, ..., N. The notation
for the IFSis {X : w,,n = 1,2, ..., N} and its contractivity factor is s = max{s,, : n = 1,2, ...N}. Starting with any
given a non-empty compact subset of X, iteration under these maps will converge to the same set. This set, the
limit set of the IFS, is termed as the attractor for the IFS.

Now we give some examples of well known fractals by generating with IFS and their representations under
a—circle inversion. The each of following four example have illustrate figures. These figures are numbered as
from Figure 3(a)-3(b) to Figure 6(a)-6(b). In every figure there are three objects. These are standartly the original
fractal which is red one, the « inversion circle which is green one and representation of original fractal under
the mapping « inversion of which is blue one.

Example 3.1. Barnsley’s fern is constructed within the complete metric space R? U { P,,} by using following
contraction mappings:

g
£

(0,0.16y)
= (0.85z + 0.04y, —0.4z + 0.85y + 0.16)
= (0.2z — 0.26y,0.23z + 0.22y + 0.16)
= (—=0.15z + 0.28y,0.26x + 0.24y + 0.44) .

g
S

g
w
—~ o~ o~ —~
8 =B
SIS

—_ — — —

g

4\ T,

Barnsley’s fern is the limit set of this IFS, and it is shown as red one in the Figure 3(a) and 3(b). The Figure 3(a)
and 3(b) show the images (blue) of Barnsley’s fern (red) under inversion with respect to the a—circle (green)

T m .
for a = 1 and o — 5 respectively.
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Figure 3(a) Figure 3(b)

Barnsley’s fern and its image under /= (O,r) Barnsley’s fern and its image under /= (O, r)

Example 3.2. The dragon curve can be obtained by using the IFS {w;, w2} where

wy(z,y) = (0.52 —0.5y,0.52 + 0.5y),
wa(z,y) = (—0.5z — 0.5y +1,0.52 —0.5y)
and Levy dragon can be obtained by using the IFS {w1, w2} where
wi(z,y) = (0.5z —0.5y,0.5z + 0.5y),
wa(z,y) = (0.5z+ 0.5y + 0.5, —0.5z + 0.5y + 0.5).

Figure 4 show the images of a dragon curve (left one) and Levy dragon (right one) under inversion with respect

to the a—circle for a = 7.
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Figure 4(a) Figure 4(b)
The dragon curve and its image under /= (O,r) The Levy dragon curve and its image under /= (O, r)

Example 3.3. The Sierpinski triangle and Sierpinski pentagon can be obtained by using following contraction
mappings:

wy(z,y) = (0.5z,0.5y),

wa(z,y) = (0.5z + 0.5,0.5y),

ws(z,y) = (0.5 +0.25,0.5y + V/3/4)

and

wy(z,y) = (0.382x,0.382y),
wa(z,y) = (0.382x + 0.618,0.382y),
wy(z,y) = (0.382z +0.809,0.382y + 0.588),
wy(z,y) = (0.382z + 0.309,0.382y + 0.951),
ws(x,y) (0.382z — 0.191,0.382y + 0.588)

srespectively. Figure 5 shows the images of the Sierpinski triangle (left one) and Sierpinski pentagon (right one)
under inversion with respect to the a— circle for a = %, respectively.

Figure 5(a) Figure 5(b)
The Sierpinski triangle and its image under /= (O,r) The Sierpinski pentagon and its image under /= (O, 1)
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Example 3.4. The Koch snowflake and the Koch anti snowflake can be generated with the following contraction
mappings:

wi(z,y) = (3o — LBy, Lo+ Ly), wi(z,y) = (3z, 3y),

wa(,y) = (32 + 75,59 + 3), wa(z,y) = (32 + 3, 3y + %),
ws(z,y) = (32,39 + 3), ws(z,y) = (32 + 3, 59)
wa(z,y) = (52— 75,59 + 3), and  ws(z,y) = (—3z+ 5, —30+ %),
ws(@,y) = (52 = 559~ 5), ws(w,y) = (—52 + 5, — 5y + %),
we(z,y) = (37, 39 — 3), we(w,y) = (—32+ 3, -3y + %),
wele,y) = (b + L, 4y — 3)

respectively. In Figure 6, one can see the images of the boundary of Koch snowflake (left one) and Koch anti
snowflake (right one) under inversion with respect to the a—circle for o = 7. In fact the first IFS of Example 3.4
is the attractor of filled the Koch snowflake. But Figure 6(a) illustrate the boundary of it.

Figure 6(a) Figure 6(b)

The Boundary of Koch snowflake and its image under /= (O,r) The Koch anti snowflake and its image under = (C

4. Alpha Circle Inversion Fractal

In this section, we study a—circle inversion fractals, and generalize the circle inversion fractals method which
is introduced by Frame and Cogevina [9] with using a—circle inversion.

Let Cy,Cy, ...,C, be distinct n alpha circles and I, (O1,71), 14 (O2,72) , ..., Io (Oy, ) be a—circle inversion
with respect to C1, Cs, ..., C,, respectively. Let G be collection of all combinations of the a—circle inversions.
For any point X external to all the C;, G (X) = {I. (O,r) (X) : I, (O,r) € G} is called the orbit of X. The set
of accumulation points of the orbit of X under G is termed as the limit set and denoted by A (C4,...,C),).
There are the limit sets of alpha circle inversions such as the fractals generated by iterated function
systems (IFS), and they are often fractal. An Iterated Alpha Circle Inversion System (IACIS) is a finite
collection {I, (O1,71) , 1o (O2,72) , ..., Io (On,15)} of alpha circle inversion mappings. But an IACIS is not an IFS.
According to the definition of IFS, IFSs require a complete metric space and a finite set of contraction mappings
which are defined on complete metric space. But a—circle inversion mappings are not contraction mappings
for all sets within R? U { P} . Case (iv) of Proposition 2 states that the a—circle inversions are only contraction
mappings for exterior to the circle of inversion. Then it is necessary to make restriction on the initial placement
of the inversion circles and also domain of inversion mappings in order to be able to use IACIS such as IFS. In
this case there are two situations according to the initial circle placement. These situations are non-overlapping
circle placement and overlapping circle placement. In non-overlapping circle placement, circles have disjoint
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interior but they can have common point(s) on their boundaries. We will start with the non-overlapping circle
case. If the initial circle placement is totally disjoint, then the resulting limit set is wholly contained within

N

U Ci. Throughout the iteration process all point are inverted by using contractive inversion mappings. This
i=1

process results in a nested sets of inversion image closed curve being formed. The length of radii of these image
closed curve decrease throughout the iteration process coverging to zero, forming a collection of limit points.
The union of these limit points is named the limit set of IACIS.

Now we consider the overlapping circle case. If the interiors of the circles of inversion overlap we can not
assume convergence to a limit set. Once a point is contained with a circle of inversion, all subsequent inversion
must lie within or on the boundary of an initial circle of inversion under IACIS for non-overlapping circle.
If circles of inversion overlap, then it is possible for a point within a circle of inversion, more specifically in
the section of overlap, to be inverted outside all circles of inversion. To get over this problem, the concept of
restricted limit set was introduced by Clancy and Frame [7]. The restricted limit set is defined as follows: “Limit
set of the orbit of a point, with the restriction that if some orbit point P; lies in the disc bounded by C; , then
the next orbit point P, , cannot be in I, (O;,7;) (P;)”. If the circle placement has disjoint interiors the above
restriction reduces to “never inverting in the same circle twice”.

Now in order to visualize the limit set of IACIS we give an algorithm which is modified version of the
random inversion algorithm introducing by Frame and Cogevina [9]. The modification is only Euclidean circle
inversion replaced by a—circle inversion.

Algorithm 1 Random a—circle inversion algorithm
Input: The set of a—circle {C1, Cs, ...,Cy, } of
inversion. P, is starting point external to all the C;.
n > 20 number of iterations.

Output: Approximation of a restricted

limit set (a—circle inversion fractal)

1) j =random number from {1,...,n}

2) P = Ia (Oj,rj) (PQ)

3) for i from 2 to n do

4) [ = random number from {1, ...,n}
5) while j = or P € int(C;) do

6) ! = random number from {1, ...,n}
7) end while

8) j=1

9)  P=1,(041;)(P)
10) if i > 20 then

11) Plot P
12) end if
13) end for

A set of a—circle inversion mappings, a starting point that lies outside of all the a—circles and the number
of iterations are required to visualize and produce the approximation of the restricted limit set.

First, starting point which lies outside of all the C; is mapped to the point which lies in any a—circles C; by
using randomly choosing a—circle inversion. Then for each new iteration an a—circle inversion is randomly
chosen with two restrictions. Since the inversion is an involution, the first restriction is that any mapping be
not used consecutively. The second restriction is that the point which is obtained the previous iteration must
not be inside the a—circle which is randomly chosen inversion mapping. Because we want to the inversion
mappings to be a contraction not an expansion. Moreover, the contraction guarantees the convergence of the
algorithm.

The a—circle inversion fractals which are shown in Figures 7-12 are obtained by using Algorithm 1.

Example 4.1. Figure 7 illustrate one each example two different cases about limit set of some a—circles
according to placements of these circles. Each of these example shows that the limit set of four a—circles such
that a = Pi/4. Looking at the leftmost figure, four circles positioned tangentially to each other and their limit
set is seen. Note that since all circles are connected, there is no gap in the limit set which is obtained using
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these circles. That is, limit set would be a Cantor set wrapped around limit set in the case which is not include
gap. In the middle figure, four circles positioned so that they have no common point with each other and their
limit set is seen. Therefore since all possible intersections of these circles is empty, limit set of corresponding to
this situation would be gaps. If the small black rectangle on the middle figure in Figure 7 is magnified, then as
shown in rightmost figure in Figure 7, in the limit set of these situation has been gaps like as Cantor set.

e

Figure 7
a—circle inversion fractal for touching a—circles and non-touching a—circles

Example 4.2. Figure 8 and Figure 9 illustrate some examples of the limit set of non-overlapping but tangent
a—circles with different initial circle placement of which their produced by using Algortihm 1. In each cases
of Figure 8, there are five non-overlapping and tangent alpha circles as initial circle placements. In the first
two figures of Figure 8, when the a—circles have same type but different radii, in the last figure of Figure 8
the a—circles have different type and radii. Similarly in each cases of Figure 9, there are nine non-overlapping
and tangent a—circles as initial circle placements. First, second and third figure of Figure 9 have one type, two
different type and three different type a—circles, respectively.

Figure 8
Three example of a—circle inversion fractal of five non-overlapping and tangent a—circles

¥
»
&
N
/.

Sl LT . d

Figure 9
Three example of a—circle inversion fractal of nine non-overlapping and tangent a—circles
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Example 4.3. Each figure in Figure 10 has four red a—circles of the same or different type, none of which
are inside the other, positioned only externally tangentially. Let first of all each a—circle invert according to
the other a—circles except itself. Later we invert again obtained images according to a—circles. At this stage,
we invert only to the obtained images that are outside the inversion a—circle. This process is then repeated
indefinitely. Ultimately, the limit set is reached at infinity. This process also explains whether consist of gaps
or not which is highlighted in Example 4.1. In Figure 10, we see the first four stages of this process for three
different situations.

Figure 10
The process inverting all each a—circle and their images according to the other a—circles except itself.

Example 4.4. Figure 11 and Figure 12 illustrate some examples of the limit set of overlapping a—circles with
different initial circle placement of which their produced by using Algortihm 1. In each cases of Figure 11, there
are five overlapping a—circles such that two different types as initial circle placements. Similarly in each cases
of Figure 12, there are eight or nine overlapping a—circles such that two or three different types as initial circle
placements. While mostleft and most right figure of Figure 12 have nine a—circles with three different types,
the middle figure of the Figure 12 have eight a—circles with two different types.

Figure 11
Three example of a—circle inversion fractal of five overlapping a—circle
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Figure 12
Three example of a—circle inversion fractal of eight or nine overlapping a—circle

5. Fractal Patterns By Using Star-Shaped Set Inversion

In [11] Gdawiec states that since circles are star-shaped sets, circle inversion is the special case of star-shaped
set inversion. In other words, star-shaped set inversion is an expansion of circle inversion. Now we give some
required definitions and properties from [11].

Definition 5.1. A set S C R? is star-shaped if there exists a point P € int(S) such that for all points F' € S the
line segment PF lies entirely within S. The locus of the points P having the above property is the kernel of S.

Definition 5.2. Let S be a star-shaped set and Q=(a,b) be a point belongs to the kernel of S. The star-shaped
set inversion with respect to S is the mapping ¢s:R*\{Q} — R*\{Q} defined by ¢5(P) = P’, where P’ lies on

the ray Q? and d(Q, P)d(Q, P') = d(Q,T)?, where T is the intersection of the ray Qﬁ with the boundary of S.

Let S be a star-shaped set and let Q = (a, ) be a point that belongs to the kernel of S. Then the star-shaped
set inversion of the point P = (z,y) with respect to S is the point

d(Q,T)? (x —a)
(lo—alf +1y—o*)

d(Q.T)* (y —b)
(lo—alf +1y—o*)

where T is the intersection of the ray Q? with the boundary of S.
Now, we define alpha star-shaped set inversion.

!

r = a—+

y = b+

Definition 5.3. Let S be an star-shaped set and point @ belongs to kernel of S. Also P, denote the ideal point
adjoining one to the alpha plane. In R? the alpha star-shaped set inversion with respect to Q is the function
such that

I, (Q) : R2U {Px} — R U{Py}
defined by I, (Q) (Q) = Px, 1o (Q) (Px) = Q and I, (Q) (P) = P’ for P # Q, P», where P’ is on the ray Q? ,
point T is intersection point Q? and S, and d,(Q, P)da(Q, P') = [ds (Q,T))*. The point P’ is called the alpha
star-shaped set inverse of P in S, @ is called the center of inversion.

Note that we obtain the alpha star-shaped set inversion replacing Euclidean distance in definition of star-
shaped set inversion by an «-distance. Therefore we get the following generalization of star-shaped set
inversion.

Theorem 5.1. Let S be a star-shaped set and let QQ = (a,b) be a point that belongs to the kernel of S. Then the alpha
star-shaped set inversion of the point P = (x,y) with respect to S is the point

7 = a + da(Q7T)2 (w _ a) ,
(max {|z — al, [y — b]} + A (@) min {|z — a| , |y - b[})”
y/ - b da(Qv T)2 (y B b)

(max {|z — a| ,|y = b]} + A (@) min {|z — al, |y — b[})*’
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where T is the intersection of the ray Cﬁ" with the boundary of S.

Now in order to visualize the limit set of alpha star-shaped set inversions we give an algorithm which is
modified version of the random inversion algorithm introducing by Gdawiec [11]. The modification relies
onthe replacement of the Euclidean star-shaped set inversion by the alpha star-shaped set inversion.

Algorithm 2 Random alpha star-shaped set inversion algorithm
Input: The set of a—star-shaped sets {51, S, ..., Sn }

with chosen centers of inversion.

Py is starting point external to all the S;.

n > 20 number of iterations.

Output: Approximation of a restricted

limit set (alpha star-shaped sets inversion fractal)

1) j =random number from {1, ...,n}

2) P =1, (Q;) (P)

3) for i from 2 to n do

4) = random number from {1, ...,n}
5) while j =l or P € int(S;) do

6) ! = random number from {1, ...,n}
7) end while

8) j=1

9) P=1I, (Q]) (P)
10) if 7 > 20 then

11) Plot P
12) end if
13) end for

A set of alpha star-shaped set inversion mappings, a starting point that lies outside of all the star-shaped sets
and the number of iterations are required to visualize and produce the approximation of the fractal set.

First, starting point which lies outside of all the S; is mapped to the point which lies in any star-shaped
sets S; by using randomly choosing alpha star-shaped set inversion. Then for each new iteration a alpha star-
shaped set inversion is randomly chosen with two restrictions. Since the alpha star-shaped set inversion is an
involution, the first restriction is that any mapping be not used consecutively. The second restriction is that the
point which is obtained the previous iteration must not be inside the star-shaped set which is randomly chosen
alpha star-shaped set inversion mapping. Because we want to the inversion mappings to be a contraction not
an expansion. Moreover, the contraction guarantees the convergence of the algorithm.

Example 5.1. Figure 13, Figure 14 and Figure 15 illustrate some examples of the alpha star-shaped set inversion
fractals obtained by applying Algorithm 2. Each of three figures in Figure 13 there are the same initial alpha
star-shaped sets placement which have nine overlapping a—circles with two different types. While every
figures of the Figure 13 have the same initial alpha star-shaped sets placement, every shapes of in all cases
of the Figure 13 have different inversion centers which is shown marked as black point. Thus, although the
initial alpha star-shaped sets placement is the same, it can be observed how the alpha star-shaped set inversion
fractals changed as the inversion centers changed.

Similarly, each of three figures in Figure 14 there are the same initial alpha star-shaped sets placement which
have eight overlapping the same type a—circles with two different radii. But in every cases of the Figure 14
every shapes have different inversion centers which is shown marked as black point. So just as the Figure
13, the Figure 14 give chance for observing how the alpha star-shaped set inversion fractals changed as the
inversion centers changed.

In Figure 15 like as Figure 13 and Figure 14 there are the same initial alpha star-shaped sets placement which
have nine overlapping a—circles with three different types. But in every cases of the Figure 15 every shapes
have different inversion centers which is shown marked as black point. So just as the Figure 14 and the Figure
14, the Figure 15 give chance for observing how the alpha star-shaped set inversion fractals changed as the
inversion centers changed. The alpha star-shaped set inversion fractals obtained by applying Algorithm 2 is
red points showing like dust cloud in Figure 13, 14, 15.
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Figure 13
The variation of alpha star-shaped set inversion fractals according to the position of the inversion centers

Figure 14
The variation of alpha star-shaped set inversion fractals according to the position of the inversion centers

Figure 15
The variation of alpha star-shaped set inversion fractals according to the position of the inversion centers

6. Conclusions

In this paper we defined the a—circle inversion by replacing Euclidean metric with a—metric. Later, we
presented modification of circle inversion fractals. The proposed modification was based on the use of a—circle
inversion in the circle inversion methods. Morever, in alpha plane, R%, we gave a generalization of a—circle
inversion fractal by using the concept of star-shaped set inversion which is a generalization of circle inversion
fractal. The patterns obtained with the proposed modifications is notably different from the original ones,
and they form new fractal shapes. Obtained interesting and aesthetic new fractals can be used as textiles,
wallpapers, or ceramic patterns.
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