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ABSTRACT. In this paper, we pose the∞-Laplace equation as a Dirichlet Problem in a class of Grushin-type spaces
whose vector fields are of the form

Xk(p) := σk(p)
∂

∂xk
and σk is not a polynomial for indices m+ 1 ≤ k ≤ n. Solutions to the∞-Laplacian in the viscosity sense have been
shown to exist and be unique in [3], when σk is a polynomial; we extend these results by exploiting the relationship
between Grushin-type and Euclidean second-order jets and utilizing estimates on the viscosity derivatives of sub- and
supersolutions in order to produce a comparison principle for semicontinuous functions.
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1. INTRODUCTION

In [3] the author considers the Dirichlet Problem

(1.1)

{
∆∞ w = 0 in Ω

w = g on ∂Ω

and establishes conditions under which a viscosity solution (see Section 3) to (1.1) exists and
is unique when the problem is posed in a wide variety of Grushin-type spaces. The goal of
the current paper is to extend the existence/uniqueness results of [3] to a more general class of
Grushin-type spaces.

The spaces under consideration in [3] are defined by Lie Algebras consisting of vector fields
of the form

(1.2) Yk(p) := Pk(p)
∂

∂xk
for k ≤ n,

where Pk is a polynomial in the variables xi (i ≤ k−1) and P1 ≡ 1. The current paper considers
the situation when the vector fields are of the form

(1.3) Xk(p) := σk(p)
∂

∂xk
for k ≤ n,

where σk : Rn → R need not be a polynomial when k > m ≥ 1. Grushin-type spaces defined
by vector fields as in (1.2) are known to possess certain desirable properties – e.g. it is known
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that the vector fields Yj and their commutators

[Yj , Yk], [Yj , [Yk, Y`]], [Yj , [Yk, [Y`, Ym]]], . . .

span Rn and hence we may apply Chow’s Theorem to conclude that points of the related
Grushin-type space may be connected by appropriately smooth curves. Spaces defined by
vector fields as in (1.3), however, can not be treated this way and require modified techniques.

The article will proceed as follows. In Section 2 we will define the spaces of interest and
consider notions of geometry and calculus. The trappings of viscosity theory are introduced in
Section 3, and a lemma relating Euclidean and Grushin second-order jets is presented. We con-
clude with Section 4 in which we produce results necessary to establish a comparison principle
for sub- and supersolutions and existence of solutions – the culmination of these results is the
theorem below.

Main Theorem. Let G be a Grushin-type space whose Lie Algebra consists of vectors fields as defined
in the forthcoming section. Then there exists a unique solution to the Dirichlet Problem (1.1).

2. THE GRUSHIN-TYPE ENVIRONMENT G

Let n ≥ 2 and 1 ≤ m < n be given. Fixing any p = (x1, . . . , xn) ∈ Rn, consider the frame
{Xi, Xj} containing the vector fields

(2.4) Xi(p) :=
∂

∂xi
(1 ≤ i ≤ m)

and

(2.5) Xj(p) := σ(p)
∂

∂xj
(m+ 1 ≤ j ≤ n),

where we will assume that:
(1) σ(p) = σ(x1, . . . , xm). That is, σ(p) is independent of xm+1, . . . , xn.
(2) σ is Euclidean C2 (denoted C2

eucl for what follows).
(3) The set of zeroes for σ is given by Z × Rn−m, where Z is a discrete subset of Rm.

In the case that σ is a polynomial the frame {Xi, Xj} defines a generalized Grushin space such
as the ones under consideration in [3]; otherwise {Xi, Xj} corresponds to a member of a more
general class of Grushin-type spaces.

The Lie Algebra g := span {Xi, Xj} may be endowed with an inner-product 〈·, ·〉 which
is singular on Z × Rn−m and makes {Xi, Xj} an orthonormal basis otherwise. Defining the
space G to be the image of g under the exponential map, note that points of G are also n-tuples
p = (x1, . . . , xn) and that the tangent space to G at any point p is g(p). One consequence of
this definition is that G is not a group: Indeed, the dimension of the tangent space to G at p is
dim g(p) which equals m if p ∈ Z × Rn−m and otherwise equals n.

The natural metric to impose upon G is the Carnot-Carathéodory (or CC) metric

(2.6) dCC (p, q) := inf
γ∈Γ

∫ 1

0

‖γ′(t)‖dt,

where Γ is the collection of all curves γ satisfying (i) γ(0) = p, γ(1) = q and (ii) γ′ ∈ g. Because
Xj ≡ 0 on Z × Rn−m, Chow’s Theorem (see, for example, [5]) does not apply. However, since
the vector fields Xi are nonzero, points of G can always be connected by concatenating curves
– so Γ 6= ∅ and dCC (·, ·) is an honest metric.
We may therefore define balls in G by

B(p0, r) := {p ∈ G : dCC (p0, p) < r}
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and consider notions of bounded domains, which we shall typically denote by Ω b G.
Given a smooth function u : O → R where O ⊆ G is open, the gradient of u in G is defined

by
∇G u := (X1u, . . . ,Xnu)

and the second derivative matrix
(
D2u

)? is the symmetric n×nmatrix whose entries are given
by

[
(
D2u

)?
]k` :=

1

2
(X`Xku+XkX`u) .

We also have notions of regularity.

Definition 2.1. A function u : O → R is said to be C1
G(O) if Xku is continuous for each 1 ≤ k ≤ n.

The function u is C2
G(O) if X`Xku is continuous for each 1 ≤ k, ` ≤ n.

Finally, given 1 ≤ p ≤ ∞, we also may define the function spaces Lp(O), Lploc(O),W 1,p(O)

and W 1,p
loc (O) in the obvious way.

3. JETS & VISCOSITY SOLUTIONS

With the appropriate definitions of derivatives and function spaces introduced in the previ-
ous section, we turn our attention to homogeneous PDEs of the form

(3.7) H(p, η,X) = 0

for η ∈ Rn and symmetric n × n matrices X (frequently denoted X ∈ Sn). The operators H
will be continuous and proper in the sense of [6]: That is, for X ≤ Y we will have H(p, η, Y ) ≤
H(p, η,X). Specifically, assuming that w is smooth, we will have interest in the ∞-Laplace
operator

∆∞ w := −
〈(
D2w

)?∇G w,∇G w
〉

;

the related p-Laplace operators (for 1 < p <∞)

∆pw := − div
(
‖∇G w‖p−2∇G w

)
= −‖∇G w‖p−2

n∑
a=1

XaXaw + (p− 2)‖∇G w‖p−4 ∆∞ w;

and Jensen’s Auxiliary Functions (see [7])

Fε(p,∇G w,
(
D2w

)?
) := min

{
‖∇G w‖2 − ε2,∆∞ w

}
and

Gε(p,∇G w,
(
D2w

)?
) := max

{
ε2 − ‖∇G w‖2,∆∞ w

}
,

where ε ∈ R will be given. In what follows, we will useH to represent any of the four operators
above.

In order to introduce the machinery of viscosity solutions to Hw = 0, we first must consider
the following classes of test functions which “touch” the function u : O → R. Given an open
set O ⊆ G, a point p0 ∈ O, and a function u : O → R, we have the so-called “touching above”
functions

T A(u, p0) :=
{
ϕ ∈ C2

G(Ω) : 0 = ϕ(p0)− u(p0) < ϕ(p)− u(p) near p0

}
;

we have also the “touching below” functions at p0 defined by

T B(u, p0) :=
{
ϕ ∈ C2

G(Ω) : 0 = u(p0)− ϕ(p0) < u(p)− ϕ(p) near p0

}
.

Comparisons between the derivatives of smooth functionsw and the touching functions ϕ, and
between the operations Hw,Hϕ then lead us to make the following definition.
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Definition 3.2. Let Ω b G be a domain and let u ∈ USC(Ω). We say that u is a viscosity subsolution
to (3.7) in Ω if the following is satisfied: For every p ∈ Ω and each ϕ ∈ T A(u, p),

H(p,∇G ϕ(p),
(
D2ϕ

)?
(p)) ≤ 0.

We say that v ∈ LSC(Ω) is a viscosity supersolution to Equation (3.7) if −v is a viscosity subsolution
to Equation (3.7). We say that w ∈ C(Ω) is a viscosity solution to Equation (3.7) if it is both a viscosity
sub- and supersolution.

When convenient, we may also speak in terms of “jets” for a function u at a point p0.

Definition 3.3. Given u : O → R, we define the second-order upper jet for u by

J2,+ u(p0) :=
{(
∇G ϕ(p0),

(
D2ϕ

)?
(p0)

)
∈ Rn × Sn : ϕ ∈ T A(u, p0)

}
and the second-order lower jet for u by J2,− u(p0) := − J2,+[−u](p0). We say that the ordered pair
(η,X) ∈ Rn × Sn belongs to the closure of the upper jet, written (η,X) ∈ J2,+

u(p0), if there exists
(pk) ⊆ O and jet entries (ηk, Xk) ∈ J2,+ u(pk) so that

(pk, u(pk), ηk, Xk)→ (p0, u(p0), η,X);

the definition for J
2,−

u(p0) is similar.

Remark 3.1. Definition 3.2 above can also be stated equivalently through the lens of the jet closures:
u ∈ USC(Ω) is a viscosity subsolution if for every p ∈ Ω

H(p, η,X) ≤ 0

for each (η,X) ∈ J2,+
u(p). Similar restatements can be made for viscosity supersolutions and viscosity

solutions.

Remark 3.2. If it should happen that H = ∆p, then we will call solutions to (3.7) p-harmonic; if
H = ∆∞, then we call solutions to (3.7) infinite harmonic.

The jets for G can be related to Euclidean jets via the following lemma, which is an applica-
tion of [4, Corollary 3.2].

Lemma 3.1 (The G Twisting Lemma). Let O ⊆ G be open, let u : O → R, and let p0 ∈ O. Suppose
that we know (η,X) ∈ J2,+

eucl (u, p0): Then

(3.8)
(
A(p0) · η,A(p0) ·X ·AT(p0) + M(η, p0)

)
∈ J2,+(u, p0),

where

(3.9) (A(p0))k` =


1, k = ` ≤ m
σ(p0), m+ 1 ≤ k = ` ≤ n
0, otherwise

and

(3.10) (M(η, p0))k` =


1

2
· ∂σ
∂xk

(p0)η`, 1 ≤ k ≤ m < ` ≤ n
1

2
· ∂σ
∂x`

(p0)ηk, 1 ≤ ` ≤ m < k ≤ n

0, otherwise.
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Proof. The result in (3.8) is known (see [4, Corollary 3.2] and [1, Lemma 3]); we shall restrict
our attention to verifying Equations (3.9) and (3.10). The n × n matrix A is defined by [4] as
A(p) := (Ak`(p)), where

Xk(·) =

n∑
`=1

Ak`(·)
∂

∂x`
.

The definitions (2.4) and (2.5) imply:
(1) Ak` ≡ 0 if k 6= `;
(2) Akk ≡ 1 if k ≤ m and Akk = σ if m+ 1 ≤ k ≤ n.

This justifies (3.9).
To verify (3.10), recall the definition of M(η, p0) in [4]:

(M(η, p0))k` :=


1

2

n∑
r=1

n∑
s=1

(
Aks(p0)

∂A`r
∂xs

(p0) +A`s(p0)
∂Akr
∂xs

(p0)

)
ηr, k 6= `

n∑
r=1

n∑
s=1

Aks(p0)
∂Akr
∂xs

(p0)ηr, k = `.

Because Ars ≡ 0 whenever r 6= s, we may simplify the equation above:

(3.11)
(M(η, p0))k` =

1

2

n∑
r=1

((
Akk(p0)

∂A`r
∂xk

(p0) + 0

)
+

(
0 +A``(p0)

∂Akr
∂x`

(p0)

))
ηr

=
1

2

(
Akk(p0)

∂A``
∂xk

(p0)η` +A``(p0)
∂Akk
∂x`

(p0)ηk

)
if k 6= `,

and

(3.12) (M(η, p0))kk =

n∑
r=1

Akk(p0)
∂Akr
∂xk

(p0)ηr = Akk(p0)
∂Akk
∂xk

(p0)ηk if k = `.

First consider Equation (3.12). If k = 1, . . . ,m, then ∂Akk/∂xk ≡ 0. If k = m + 1, . . . , n
we also have ∂Akk/∂xk ≡ 0 because σ is independent of the variables xm+1, . . . , xn. Hence,
(M(η, p0))kk = 0 for all k ≤ n.

Turning our attention to Equation (3.11), we reduce the expression utilizing Item 2 and the
definition of σ:

• If k, ` ≤ m, then Akk ≡ 1 ≡ A`` and hence

(M(η, p0))k` =
1

2
(1 · 0 · η` + 1 · 0 · ηk) = 0.

• If k ≤ m < ` ≤ n, then Akk ≡ 1 and A`` = σ. Since σ is constant with respect to
xm+1, . . . , xn,

(M(η, p0))k` =
1

2

(
1 · ∂σ

∂xk
(p0)η` + σ(p0) · 0 · ηk

)
=

1

2
· ∂σ
∂xk

(p0)η`.

• If ` ≤ m < k ≤ n, then work similar to the above shows

(M(η, p0))k` =
1

2
· ∂σ
∂x`

(p0)ηk.

• If m < k, ` ≤ n, then Akk = σ = A`` and so

(M(η, p0))k` =
1

2
(σ(p0) · 0 · η` + σ(p0) · 0 · ηk) = 0.
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We conclude from the above that the matrix given by (3.10) is indeed M(η, p0). �

4. UNIQUENESS OF INFINITE HARMONIC FUNCTIONS

It is standard knowledge (see, for example, [2] and [8]) that there exist solutions to the Equa-
tion (3.7), so we turn our attention to uniqueness of these solutions. This will be achieved by
proving uniqueness for the operatorsFε and Gε, and will rely upon the properties of jet entries.

4.1. Iterated Maximum Principle & Estimates on Derivatives. The focus of this subsection is
Lemma 4.4, which requires the Iterated Maximum Principle of [3]. As we shall show in Lemma
4.4, the Iterated Maximum Principle gives conditions for finding points possessing nonempty
jet closures for viscosity sub- and supersolutions – this will enable us to produce necessary
estimates on the “viscosity derivatives”. As in [6], we will have need for a “penalty function”;
specifically, we make use of the function

ϕτ1,τ2,τ3,...,τn(p, q) = ϕ~τ (p, q) :=
1

2

n∑
k=1

τk(xk − yk)2,

where the entries of ~τ = (τ1, τ2, τ3, . . . , τn) are positive, real numbers. The use of n real param-
eters as opposed to the one employed by [6] allows us to take the set Z × Rn−m into account.

Lemma 4.2 (The Iterated Maximum Principle). Let Ω b G be a domain, u ∈ USC(Ω), and v ∈
LSC(Ω); assume that there exists some p0 ∈ Ω so that

u(p0)− v(p0) > 0.

Let ~τ = (τ1, τ2, τ3, . . . , τn) ∈ Rn have positive coordinates and, for each pair of points in G p =
(x1, x2, x3, . . . , xn), q = (y1, y2, y3, . . . , yn) define the functions

ϕτ1,τ2,τ3,...,τn(p, q) :=
1

2

n∑
k=1

τk(xk − yk)2

ϕτ2,τ3,...,τn(p, q) :=
1

2

n∑
k=2

τk(xk − yk)2

ϕτ3,...,τn(p, q) :=
1

2

n∑
k=3

τk(xk − yk)2

...

ϕτn(p, q) :=
1

2
τn(xn − yn)2.
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Appealing to the compactness of Ω and to upper semicontinuity, we may also define

Mτ1,τ2,τ3,...,τn := sup
Ω×Ω

{u(p)− v(q)− ϕτ1,τ2,τ3,...,τn(p, q)}

= u(pτ1,τ2,τ3,...,τn)− v(qτ1,τ2,τ3,...,τn)− ϕτ1,τ2,τ3,...,τn(pτ1,τ2,τ3,...,τn , qτ1,τ2,τ3,...,τn)

Mτ2,τ3,...,τn := sup
Ω×Ω

{u(p)− v(q)− ϕτ2,τ3,...,τn(p, q) : x1 = y1}

= u(pτ2,τ3,...,τn)− v(qτ2,τ3,...,τn)− ϕτ2,τ3,...,τn(pτ2,τ3,...,τn , qτ2,τ3,...,τn)

Mτ3,...,τn := sup
Ω×Ω

{u(p)− v(q)− ϕτ3,...,τn(p, q) : xk = yk, k = 1, 2}

= u(pτ3,...,τn)− v(qτ3,...,τn)− ϕτ3,...,τn(pτ3,...,τn , qτ3,...,τn)

...

Mτn := sup
Ω×Ω

{u(p)− v(q)− ϕτ3,...,τn(p, q) : xk = yk, k = 1, . . . , n− 1}

= u(pτn)− v(qτn)− ϕτn(pτn , qτn).

Then
lim

τn→∞
· · · lim

τ3→∞
lim
τ2→∞

lim
τ1→∞

Mτ1,τ2,τ3,...,τn = u(p0)− v(p0)

and
lim

τn→∞
· · · lim

τ3→∞
lim
τ2→∞

lim
τ1→∞

ϕτ1,τ2,τ3,...,τn(pτ1,τ2,τ3,...,τn , qτ1,τ2,τ3,...,τn) = 0.

Additionally, the first ` coordinates of pτ`+1,...,τn and qτ`+1,...,τn are identical – that is,

x
τ`+1,...,τn
k = y

τ`+1,...,τn
k , k = 1, . . . , `.

The proof of the Iterated Maximum Principle leads immediately to the following results
which permit us to take the parameters τk → ∞ in any order, and to speak of the full limit as
τk1 , τk2 , . . . , τkn →∞.

Corollary 4.1 (cf. [3, Corollary 4.4]). Under the conditions of Lemma 4.2, each iterated limit of
Mτ1,τ2,τ3,...,τn exists and is equal to u(p0)− v(p0) – in other words,

lim
τk1
→∞
· · · lim

τkn−2
→∞

lim
τkn−1

→∞
lim

τkn→∞
Mτ1,τ2,τ3,...,τn = u(p0)− v(p0).

Consequently,

lim
τk1
→∞
· · · lim

τkn−2
→∞

lim
τkn−1

→∞
lim

τkn→∞
ϕτ1,τ2,τ3,...,τn(pτ1,τ2,τ3,...,τn , qτ1,τ2,τ3,...,τn) = 0.

Lemma 4.3 (cf. [3, Lemma 4.5]). Under the conditions of Lemma 4.2, the full limit of Mτ1,τ2,τ3,...,τn

exists and is equal to u(p0)− v(p0) – more precisely,

lim
τn,...,τ3,τ2,τ1→∞

Mτ1,τ2,τ3,...,τn = u(p0)− v(p0).

In addition,
lim

τn,...,τ3,τ2,τ1→∞
ϕτ1,τ2,τ3,...,τn(pτ1,τ2,τ3,...,τn , qτ1,τ2,τ3,...,τn) = 0.

Remark 4.3. Owing to Lemma 4.3, there is no ambiguity in relabeling the intermediate points pτ1,τ2,τ3,...,τn ,
qτ1,τ2,τ3,...,τn and function ϕτ1,τ2,τ3,...,τn as p~τ , q~τ , and ϕ~τ . We will also denote the coordinates of p~τ , q~τ
as x~τk, y

~τ
k respectively.

Applying the results above and [6, Theorem 3.2], we have the following estimates.
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Lemma 4.4. Let u, v, ϕ~τ , and (p~τ , q~τ ) be as in Lemma 4.2 and assume additionally that at least one of
u, v is locally G-Lipschitz. Then:

(A) There exist (η+
~τ ,X~τ ) ∈ J2,+

u(p~τ ) and (η−~τ ,Y~τ ) ∈ J2,−
v(q~τ ).

(B) Define (p�q)k to be the point whose k-th coordinate coincides with q and whose other coordinates
coincide with p – in other words,

(p � q)k = (x1, . . . , xk−1, yk, xk+1, . . . , xn).

Then for each index k,

(4.13) τk(x~τk − y~τk)2 . dCC (p~τ , (p~τ � q~τ )k) .

For the indices i ≤ m,

(4.14) τi
∣∣x~τi − y~τi ∣∣ = O(1) as τi →∞.

(C) The vector estimate

(4.15)
∣∣∣∥∥η+

~τ

∥∥2 −
∥∥η−~τ ∥∥2

∣∣∣ = o (1) as τk →∞ for all k ≤ n

holds.
(D) The matrix estimate

(4.16)
〈
X ~τη+

~τ , η
+
~τ

〉
−
〈
Y~τη−~τ , η

−
~τ

〉
= o (1) as τk →∞ for all k ≤ n

holds.

Proof. For clarity, we split the proof between the items above.
Item (A).

[6, Theorem 3.2] guarantees the existence of elements in the Euclidean jet closures: In partic-
ular, for each fixed δ > 0 we will have(

Dpϕ~τ (p~τ , q~τ ), X~τ
)
∈ J2,+

euclu(p~τ ) and
(
−Dqϕ~τ (p~τ , q~τ ), Y ~τ

)
∈ J2,−

euclv(q~τ ).

Applying the G Twisting Lemma (Lemma 3.1) produces the members (η+
~τ ,X~τ ) ∈ J

2,+
u(p~τ )

and (η−~τ ,Y~τ ) ∈ J2,−
v(q~τ ).

Item (B).
By the definition of the points p~τ , q~τ , for all points p, q ∈ Ω the inequality

u(p)− v(q)− ϕ~τ (p, q) ≤ u(p~τ )− v(q~τ )− ϕ~τ (p~τ , q~τ )

is satisfied. Hence assuming (without loss of generality) that u is G-Lipschitz, decreeing p :=
(p~τ � q~τ )k and q := q~τ , and recollecting terms, we obtain

(4.17)

τk(x~τk − y~τk)2 = ϕ~τ (p~τ , q~τ )− ϕ~τ ((p~τ � q~τ )k, q~τ )

≤ u(p~τ )− u ((p~τ � q~τ )k)

≤ K dCC (p~τ , (p~τ � q~τ )k) ,

where K is the Lipschitz constant for u. This is Inequality (4.13), so to complete 4.4 we turn our
attention to to the expression τi

∣∣x~τi − y~τi ∣∣ (i ≤ m). If x~τi 6= y~τi then (4.17) shows

(4.18) τi
∣∣x~τi − y~τi ∣∣ = τi(x

~τ
i − y~τi )2 · 1∣∣x~τi − y~τi ∣∣ ≤ K dCC (p~τ , (p~τ � q~τ )i)∣∣x~τi − y~τi ∣∣ as τ1, · · · , τn →∞.

Note that

(4.19) dCC (p~τ , (p~τ � q~τ )i) ≤
∣∣x~τi − y~τi ∣∣
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as a consequence of [5, Theorem 7.34]. Combining (4.18) and (4.19) proves Equation (4.14) and
completes the proof of 4.4.
Item (C).

Observe that
∂

∂xk
ϕ(p~τ , q~τ ) = τk(x~τk − q~τk) = − ∂

∂yk
ϕ(p~τ , q~τ );

consequently, referring back to the definition of the matrix A, the coordinates of η+
~τ and η−~τ are

[
η+
~τ

]
k

=

{
τk(x~τk − y~τk), if k ≤ m
τk(x~τk − y~τk)σ(p~τ ), if m+ 1 ≤ k ≤ n

and [
η−~τ
]
k

=

{
τk(x~τk − y~τk), if k ≤ m
τk(x~τk − y~τk)σ(q~τ ), if m+ 1 ≤ k ≤ n.

Fixing ~τ for the moment, this leads to the estimate

(4.20)
∣∣∣∥∥η+

~τ

∥∥2 −
∥∥η−~τ ∥∥2

∣∣∣ ≤ n∑
k=m+1

∣∣σ2(p~τ )− σ2(q~τ )
∣∣ · τ2

k

(
x~τk − y~τk

)2
.

The values τi for i ≤ m are not present in Inequality (4.20). Taking the iterated limits of (4.20)
as τi →∞, recalling that σ(p) depends only upon the first m coordinates of p, and applying the
Iterated Maximum Principle yields

lim
τm→∞

· · · lim
τ1→∞

∣∣∣∥∥η+
~τ

∥∥2 −
∥∥η−~τ ∥∥2

∣∣∣ = 0.

The above implies

lim
τn→∞

· · · lim
τm+1→∞

lim
τm→∞

· · · lim
τ1→∞

∣∣∣∥∥η+
~τ

∥∥2 −
∥∥η−~τ ∥∥2

∣∣∣ = 0,

concluding Item (C).
Item (D).

[6, Theorem 3.2] and the Twisting Lemma imply〈
X ~τη+

~τ , η
+
~τ

〉
−
〈
Y~τη−~τ , η

−
~τ

〉
= I1 + I2,

where we define

I1 :=
〈(

A(p~τ ) ·X~τ ·AT(p~τ )
)
· η+
~τ , η

+
~τ

〉
−
〈(

A(q~τ ) · Y ~τ ·AT(q~τ )
)
· η−~τ , η

−
~τ

〉
and

(4.21) I2 :=
〈
M(Dpϕ~τ (p~τ , q~τ ), p~τ ) · η+

~τ , η
+
~τ

〉
−
〈
M(Dqϕ~τ (p~τ , q~τ ), q~τ ) · η−~τ , η

−
~τ

〉
.

Writing ε̃ := A(p~τ ) · ε, κ̃ := A(q~τ ) ·κ to mean the twisting of ε, κ ∈ Rn according to the Twisting
Lemma,〈

A(p~τ ) ·X~τ ·AT(p~τ )ε, ε
〉
−
〈
A(q~τ ) · Y ~τ ·AT(q~τ )κ, κ

〉
=
〈
X~τ · ε̃, ε̃

〉
−
〈
Y ~τ · κ̃, κ̃

〉
≤ 〈C ·Υ,Υ〉 ,

where Υ := (ε̃, κ̃) and C is a 2n× 2n block matrix resulting from [6, Theorem 3.2] of the form(
B −B
−B B

)
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and

[B]ab =

{
τa + 2δτ2

a , a = b

0, a 6= b.

(Recall that δ is a consequence of [6, Theorem 3.2].) Choosing ε := η+
~τ and κ := η−~τ , the above

shows

(4.22)

I1 ≤
〈
B ·
(
η̃+
~τ − η̃

−
~τ

)
, η̃+
~τ − η̃

−
~τ

〉
=

n∑
k=m+1

(τk + 2δτ2
k )(σ2(p~τ )− σ2(q~τ ))2 · τ2

k (x~τk − y~τk)2.

The right-hand side of Relation (4.22) is free of the τi for i ≤ m, so proceeding as in the proof
of Item (C), we find

lim
τm→∞

· · · lim
τ1→∞

I1 = 0

so that

(4.23) lim
τn→∞

· · · lim
τm+1→∞

lim
τm→∞

· · · lim
τ1→∞

I1 = 0.

For the term I2, let us begin by simplifying the notation for the matrix M(·, ·). Appealing to
Equation (3.10) in the Twisting Lemma, we see that

M(Dpϕ~τ (p~τ , q~τ ), p~τ ) =

(
0 S(p~τ )

S(p~τ )T 0

)
and

M(Dqϕ~τ (p~τ , q~τ ), q~τ ) =

(
0 S(q~τ )

S(q~τ )T 0

)
,

where, permitting t to represent either the point p~τ or q~τ , them× (n−m) matrix S(t) is defined
by

[S(t)]rs :=
1

2
· ∂σ
∂xr

(t) · τs(x~τs − y~τs ).

Calculations with (4.21) show

I2 =

n∑
`=m+1

m∑
r=1

∂σ

∂xr
(p~τ ) · τr(x~τr − y~τr ) · τ2

` (x~τ` − y~τ` )2σ(p~τ )

−
n∑

`=m+1

m∑
r=1

∂σ

∂xr
(q~τ ) · τr(x~τr − y~τr ) · τ2

` (x~τ` − y~τ` )2σ(q~τ ).

We adopt the notation

Tr` := τr(x
~τ
r − y~τr )τ2

` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(p~τ )− τr(x~τr − y~τr )τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(q~τ )

for the (r, `)-term of I2. Since the Iterated Maximum Principle implies

p~τ → (x0
1, . . . , x

0
i , x

~τ
i+1, . . . , x

~τ
n) and q~τ → (x0

1, . . . , x
0
i , y

~τ
i+1, . . . , y

~τ
n)
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as τ1, . . . τi → ∞ (i ≤ m), and since 1 ≤ r ≤ m < ` ≤ n and σ ∈ C2
eucl, we obtain the iterated

limit

lim
τi→∞

· · · lim
τ1→∞

Tr` = τr(x
~τ
r − y~τr )τ2

` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
i , x

~τ
i+1, . . . , x

~τ
n)

− τr(x~τr − y~τr )τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
i , y

~τ
i+1, . . . , y

~τ
n)

if i < r; if r ≤ i we may apply Item 4.4, Inequality (4.14), and arrive at

lim
τi→∞

· · · lim
τ1→∞

Tr` ≈ τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
i , x

~τ
i+1, . . . , x

~τ
n)

− τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
i , y

~τ
i+1, . . . , y

~τ
n).

This second limit in particular implies that

(4.24)
lim

τm→∞
· · · lim

τ1→∞
Tr` ≈ τ2

` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
m, x

~τ
m+1, . . . , x

~τ
n)

− τ2
` (x~τ` − y~τ` )2

(
∂σ

∂xr
· σ
)

(x0
1, . . . , x

0
m, y

~τ
m+1, . . . , y

~τ
n)

for all r ≤ m. Since σ, ∂σ/∂xr depend only upon the first m coordinates of points p, (4.24)
implies

lim
τm→∞

· · · lim
τ1→∞

I2 = 0

and hence

(4.25) lim
τn→∞

· · · lim
τm+1→∞

lim
τm→∞

· · · lim
τ1→∞

I2 = 0.

Equation (4.16) then follows from (4.23) and (4.25). �

4.2. A Comparison Principle & Uniqueness. With the completion of Lemma 4.4, we prove a
comparison principle for viscosity solutions to the Dirichlet problems

(4.26)

{
Fε
(
p,∇G w(p),

(
D2w

)?
(p)
)

= min
{
‖∇G w(p)‖2 − ε2,∆∞w(p)

}
= 0, p ∈ Ω

w(p) = g(p), p ∈ ∂Ω

and

(4.27)

{
Gε
(
p,∇G w(p),

(
D2w

)?
(p)
)

= max
{
ε2 − ‖∇G w(p)‖2,∆∞w(p)

}
= 0, p ∈ Ω

w(p) = g(p), p ∈ ∂Ω

in order to prove the uniqueness of solutions to

(4.28)

{
∆∞ w(p) =

〈
D2w(p) · ∇G w(p),∇G w(p)

〉
= 0, p ∈ Ω

w(p) = g(p), p ∈ ∂Ω

As before, Ω is a bounded domain; we also assume g ∈ C(∂Ω). In the interest of maintaining
clear notation, we establish the following convention.

Definition 4.4. A viscosity supersolution to Problems (4.26), (4.27), or (4.28) is a viscosity supersolu-
tion v to the equations Fε = 0, Gε = 0, or ∆∞ = 0 (respectively) such that v ≥ g on ∂Ω; a viscosity
supersolution u to Problems (4.26), (4.27), or (4.28) is defined similarly. A viscosity solution to any of
the above three Dirichlet problems is both a viscosity sub- and supersolution to the problem in the above
sense.
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Theorem 4.1. Suppose that u, v are sub- and supersolutions to Problem (4.26) or Problem (4.27) such
that at least one of the functions is locally G-Lipschitz in Ω. Then u ≤ v in Ω.

Proof. We will complete the proof for Problem (4.26) and note that the proof for Problem (4.27)
is similar. Suppose, to the contrary of the theorem, that there exists some p0 ∈ Ω such that

u(p0)− v(p0) = max
Ω

(u− v) > 0.

Appealing to Lemma 5.1 and Theorem 5.3 in [2], we may assume that v is a strict viscosity
supersolution to Fε = 0 – that is, there exists µ(p) > 0 so that

Fε
(
∇G v(p),

(
D2v

)?
(p)
)

= µ(p) > 0

holds in the viscosity sense for each p ∈ Ω. Applying Lemma 4.4 to produce the sequence of
ordered pairs (p~τ , q~τ ) ∈ Ω× Ω, we have

(4.29)

0 < µ(q~τ ) ≤ Fε
(
η−~τ ,Y

~τ
)
−Fε

(
η+
~τ ,X

~τ
)

= min
{∥∥η−~τ ∥∥2 − ε2,−

〈
Y~τη−~τ , η

−
~τ

〉}
−min

{∥∥η+
~τ

∥∥2 − ε2,−
〈
X ~τη+

~τ , η
+
~τ

〉}
≤ max

{∥∥η−~τ ∥∥2 −
∥∥η+
~τ

∥∥2
,
〈
X ~τη+

~τ , η
+
~τ

〉
−
〈
Y~τη−~τ , η

−
~τ

〉}
.

[2, Lemma 5.1], [2, Theorem 5.3], Lemma 4.4, and Lemma 4.2 imply

(4.30) µ(q~τ )→ µ(p0) > 0

and that

(4.31) max
{∥∥η−~τ ∥∥2 −

∥∥η+
~τ

∥∥2
,
〈
X ~τη+

~τ , η
+
~τ

〉
−
〈
Y~τη−~τ , η

−
~τ

〉}
→ 0

as τ1, . . . , τn → ∞; in other words, for τ1, . . . , τn sufficiently large, we may combine (4.29),
(4.30), and (4.31) and produce a contradiction. �

Because viscosity solutions are both viscosity sub- and supersolutions, Theorem 4.1 implies
that solutions to (4.26) and (4.27) are unique. Observing that viscosity solutions to (4.26) are
viscosity supersolutions to (4.28) and that viscosity solutions to (4.27) are viscosity subsolutions
to (4.28), we may therefore conclude that solutions to (4.28) are unique by an application of the
lemma below.

Lemma 4.5 (cf. [2, Lemma 5.6]). Let uε and uε be solutions to the Dirichlet Problems (4.26) and
(4.27) respectively. Given δ > 0, there exists ε > 0 such that

uε ≤ uε ≤ uε + δ.
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