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1. Introduction
In the present work, we consider the matrix equation of the form
AXB=F (1.1)

Where A € R™™ and B € R*® are nonsingular matrices.

Recently there has been an increased interest in solving matrix equations; for details see
[4.6] and references therein. For matrix equation AXB = F. many iterative methods
have been presented in the last few years [2.3.4.5.6]. Among them are the extended
block Krylov subspace methods such as the extended global generalized minimal
residual (EGI-GMRES) method [9]. The aim of this paper is to present some

convergence results for extended block Krylov subspace methods that include the
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extended global full orthogonalization method (EGI-FOM) and the extended global
generalized minimal residual method (EGI-GMRES). Here, we exploit the structure of
the block Krylov matrix only and we ignore the algorithm that implements the method.
Using some properties of the Schur complement and applying the matrix product, we
provide expressions for the approximate and corresponding residual. These results will
be used to derive convergence properties for the extended global full orthogonalization
method (EGI-FOM) and the extended global generalized minimal residual method (EGI-
GMRES).

2. Definitions and Preliminaries

The innerproduct(.,.)r for the matrices X and Y in R™is defined as(X,Y)p =
tr(XTY) and the corresponding matrix norm is the well-known Frobenius norm. A

system of vectors (matrices) of R™ is said to be F-orthonormal if it is orthonormal
with respect to(.,.)r. The vector vec(X) denotes the vector of R™ (the set of

ns— dimensional real vectors) obtained by stacking the columns of the n x s matrix X.
For two matrices, A and B, of dimensions n X p and g X [ respectively, the Kronecker
product AQB is the nq X pl matrix defined by A®B = [a;;B]. The following are the

properties for this product [7]:

(1) vec(ABC) = (C"®A)vec(B).

(2) (A®B)(C®D) = (ACRBD).

(3) If A and B are nonsingular matrices of dimensionn X nand p X p, respectively,
then(A®B)™* = A"'®@B~1.

(4) If A and B are n X n andp X p matrices, then
det(A®B) = det(A)Pdet(B)"and tr(AQ®B) = tr(A)tr(B).

(5) vec(A) " vec(B) = tr(ATB).

Definition 1 ([1]). Letd = [A},4,,...,A,| and B = [By,B,, ..., B;] be matrices of
dimensionn X ps and n X [s, respectively, where A; and B;(i= 1,..,pj=1..0
are n X s matrices. Then the p X [ matrix AT ¢ B is defined by AT 0 B = [CU-] where
Cij = (A, Bj)p.
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Remarks ([1]).
(1) If s = 1then AT 0 B = ATB.

2)Ifs=1.p=1andl = 1,thensetting A=u€R"and B=v € R", we
have AT 0 B=u"veER

(3) The matrix A = [AI,AZ, ...,Ap] is F-orthonormal if and only if AT 0 A = L,.
(4) If X € R™, then XT 0 X = || X]|2.

Proposition 1 (The relations (1), (2), (3), (4), (5), (6) and (7) are taken from reference
[1]). Let A,B,C € R™P5 ,D € R™", L € RP*S,E € RSP and @ € R. Then we have

(M A+B)T0C=AT0C+BT¢C.

Q)ATO(B+C)=AT 0B+ AT 0 C.

(3) (@A)T 0 C = a(AT 0 C).

4) (AT 0B)" =BT A.

(5) (DA)T 0 B = A" ¢ (DTB).

(6) AT 0 (B(L®I,)) = (AT 0 B)L.

(1) ICAT ¢ Bl < All£ 1Bl

(8) A™ 0 (B(L®E)) = (AT 0 (B (1p®5))) L.

Proof. We can, for simplicity, show that the properties (1), (2). (3). (4), (5). (6) and (7)

are satisfied by the product 0. In the following, we show relation (8) as follows
p P
(Apz Bili1E)e - (Apz Bili E)r
i=1 =1
AT 0 (B(L®E)) = = :

p p
(AP,ZBiii_lE)F (A,,,Zgizmg)p
i=1 i=1

p p
Z(ApBiimE)F Z(ApBif:’,sE)F
=1 . =

- p . . p -

E(A-p, B!-Ei,lE)F e Z(Ap! Bili,SE)F

i=1 i=1
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P p
Z lir(Ay, BiE)p - z li (A1, BiE)p
i=1 i=1

p ’ . p :
D lalAp BiEYe ) lildy BiEe
i=1 i=1

(Ap 315):7 (ApoE)F 11,1 ll,s
<ApJBlE)F (Ap.- BpE)F ip,l lp.s
= (A" 0 [B,E, ..., BE|)L = (AT 0 (B(f,,@E))) L. o

Definition 2 ([1]). Let M be a matrix partitioned into four blocks

A B)!

M:(c D

Where the submatrix D is assumed be square and nonsingular. The Schur complement
of D in M, denoted by (M /D), is defined by

(M/D) = A— BD'C.

Proposition 2 ([8]). Assuming that the matrix D is nonsingular, then

(@ )=z DP)=( IP)=(( 5)/o)

Proposition 3 ([1]). Let A € R™PS, B € R, C € R¥P,D € R** and E € RV, If
the matrix D is nonsingular, then

ET 0 ((Cgls Dgls)/ D@S) = ((ET(,? A ETDO %)/p).
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3. Extended Global FOM and Extended Global GMRES
Methods

3.1. An Extended Global FOM Method

Let GK,, = GK,(A,V,B) = span{V,AVB,A*VB?, ..., A"~V B™ 1} denote the exten-
ded block Krylov subspace of R™*, where V € R™*. This subspace is defined in [9].

Note that Z € GK,,,(A,V, B) means that

m
Z = Z a; A1 VBYY, a; € R, i=1,..,m
i=1

Now consider the matrix equation (1.1) and let X, be an initial n X s matrix with the
corresponding residual Ry = B — AX,. At stepm an EGL-FOM constructs the new
approximation X, such that

X..,,E._,;'Gl_FoM = Xﬂ. + Zm » Z-m_ S gKm(Al RD! B) (31)
and
REGI-FOM — R, — AZ..B L GK,,(A, Ry, B), (3.2)

where the notation L means the orthogonality with respect to(.,. )g.
The relation (3.1) implies
XEGI-FOM = X + [Ry, ARyB, A>R(B?, ..., A" 1R,B™ ] (y®I),
where y = [y1, V2, .., ¥l . Then the residual R,, can be expressed as
REGI-FOM — R, — [AR,B, A>RyB?, ..., A™R,B™](y®I) (3.3)

We can obtain the parameters y;, i = 1,...,m, from the orthogonality condition (3.2),

which is equivalent to
(REGI-FOM AiR BY. =0, i=0,...m—1 (3.4)

Let X,, = [Ro, ARyB, A’RoB?, ..., A" *R,B™ ] and W,, = AK,,,(I,,®B). Then from
(3.3) and (3.4) we have

(KF ow,)y=%XI 0R, (3.5)
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Theorem 1. Suppose that the matrix ()], ¢ W,,) is nonsingular. Then the approximate
solution X,,, and the corresponding residual R,, can be expressed as the following Schur
complements

X —%
EGl-FOM _ 0 m -
Xm = (((sr'{,?:1 0R)®I, (KT 0 Wm)&’s)/ (om0 Wm)®’5) (3.6)

and

R W,
EGI-FOM _ 0 m T
Ran a (((3{,2 0 R)®L; (KL 0 Wm)®fs)/ (Fm 0 Wm)®!s). (3.7)

Proof. The proof is similar to that given in [1].

Theorem 2. Suppose that at step m, the matrix (%, ¢ W,,,) is nonsingular, then
det(Ky, 0 Kop)det(Kpiq 0 Konir)
(det (3T, 0 W)

IRESI=rFOM |2 =

Where det(X) denotes the determinant of the square matrix X.

Proof. We know that ||[REGLFOM||Z = (REGI-FOMYT ¢ REGI-FOM

From (3.3), we obtain
(REGI-FOMYT ¢ REGL-FOM

= (Ry — AKXy ([n®B) (y®I)) ¢ REGI-FOM,

Using the orthogonality condition (3.4), we have

(R%GI—FOM)T 0 REIGI_FOM == _ym(AmR{)Bm, Rm)F
= ~Ym((A"RyB™)" 0 Rp,). (3.8)
First, we compute (A™RyB™)" 0 R,,,. By (3.7) and Proposition (3) and (2). we obtain

T T
(Amf?i%’iﬁoo R, (Amfi’f]né*(:‘ﬁ)? Wm)/(}g{‘ 0 Wm)) (339)
We know that K,,, .1 = [Rg, Wypland K01 = [Kn, AT RoB™]. Then (3.9) can be
expressed as
(A™RyB™) ¥ Rin =1(3Cnsa” 0Fhan/To” OWii):
As (A™RyB™)T 0 R,, is a scalar, it follows that
det(Kmir" 0 Konsr)
det(¥" 0 W)

(A™RoB™)T 0 Ry, = ((

(A™RyB™T 0 Ry, = (—1)™ (3.10)
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On the other hand, Ym can be computed from (3.5) by the Cramer rule, as
det(%,," 0 Kn)
det(%,," 0 W)

Ym = (=)™ (3.11)

Therefore, with substitution (3.10) and (3.11) in (3.8). the result follows.

3.2. An Extended Global GMRES Method

An extended global GMRES (EGI-GMRES) method builds the approximate

solution XEGI-GMRES

XEGI-GMRE _ ¥ € GK,,(A, Ry, B)

satisfying the following two relations:

and

REGI-GMRES — g _ AXEGI-GMRER | . AGK,,(A, Ry, B)(1,,®B).

From the above two relations, we have

XEGI-GMRE — ¥ 4 3. (a®I;) (3.12)
and

REGI-GMRE — p W, (a®I,) (3.13)
Where a is

(Wn" 0 W)a =W, 0 Ry (3.14)
We have the minimization property

EGI-GMRE||  — min .
IREFCHREl = iR oy IR0 = AZBI;

The next results show that XZGI-GMRE and REGI-GMRE may be expressed as Schur

complements.

Theorem 3 ([1]). Assume that det(WmT 0 Wm) # 0. Then the approximate solution
XEGL-GMRE

and the corresponding residual REG!-GMRE are expressed as the following
Schur complements:

X EGL-GMRES — Xo —Kom
m

B (((W,Z; 0 R)®I, (WT 0 W,)® ;5)/ (Wr, 0 Wm)®fs) (3.15)

and
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R W
EGL-GMRES — 0 m &
Rm a (((w;-; O R)®L, (W 0W,)® ;S)/ (W 0 Wm)®fs) (3.16)

In the following result, we provide an expression of the residual norm of the EGI-
GMRES method.

Theorem 4. If det(WmT 0 Wm) # 0. then we have
det(Kmi1 0 Koni1)
det(WL 0 W,,,)

”RTEnGtﬂGMRES”% — (3_17)

Proof.We have
"R?’Er‘tGlHGMRES"!Z? = (RELGI—GMRES)T 0 R}E}"IGI—GMRES

= (Ry = W (a®1y))" 0 (Ry = W (a®Iy))

T
=Ro" 0 Ry — Ro" 0 (W (@®1,)) — (Ro" 0 (Wn(a®1y))) +
(W (a®1))" (Whn(a®1,))
Using the relation (6) of Proposition 1, we obtain
T
IRESI=GMRES||2 = Ry 0 Ry — (Ro" 0 Whn)a = ((Ro” 0 Win)a)
T
-\ (W, 0 W, )a) « :
(W 0 Wyn)a) (3.18)

As det(W,,” 0 W,,) # 0, from (3.14) we have @ = (W,,” 0 W,,) ™ (W, 0 Ry)-

Now, by substituting a = (er 0 Wm)_l(WmT 0 RG) in (3.18), we get
IRESI-GMRES||2 = R.T § Ry — (Ro™ 0 Wiy)(W” 0 W)™ (Wi 0 Ry)

Then, using the definition of the Schur complement, it follows that

| RES-GHRES |2 = ((;gm o ;,; %’;)/wri 0 wm) (319)

We know that K, 11 = [Ro, W], then (3.19) can be expressed as

IREZEMRES|IE = (Hhar O Koman)/ Wip 0 W)

|REGI-GMRES||Z {5 g scalar. it follows that

det(?fri“ 0 K1)
det(WL 0 W,,,)

and as |

EGL-GMRES||2 —
| Rm IF =
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4. Analysis of Convergence Of The Extended Global FOM And
The Extended Global GMRES Methods

In this section, we present some convergence results for the extended global FOM and
the extended global GMRES methods. Applying the global QR decomposition
Km+1 and X, yields

Kons1 = Ome1(Rp41®L) and Ky, = Qm(Rm®[s) (4.1)
with Qm+1 € Rnx(m—!—l)sq Rm+1 € R(m+1}x(m+1)g Qm € ]RTIXmSand Rm € Rmxm.

Qm+1 and 9m are F-orthonormal (i.e., orthonormal with respect to the 0 product); R, 4
and R,, are two upper triangular matrices. Note that

Hons = | 57| = 436 1 0B) (4.2)
‘Fms
By substituting (4.1) in (4.2), we have
0
O s Rr815) 57 = AQm(Rn®15) (1n®B) (+3)
Hence by using the®product (with Q,,,,,) for (4.3) and the relation (8) of Proposition 1,
we obtain
0
(nss" 0 AQm(In®B)) Ry = Ruvea | 1] (44)

By multiplying (4.4) from the right by R;;! - it follows that
0 _
Onis” 0 AQ (I ®B) = R [ 17| R +5)
m

We define the (m + 1) X M matrix A, as A,, = @m+1’ 0 AQm (1 ®B).

Since R,,+1 and R, are both upper triangular matrices, it follows that H,,, is an upper
Hessenberg matrix. Using the fact that Q,, 11 = [Q1n, Qm+1], We obtain

Hp = Qms1’ 0 AQp(1,,®B)
Q T
= = T] 0 AQ, (1, ®B) =

Qm+1

[ Om' 0 AQ
Qmsr" 0 AQpm(1,,®B)]

The matrix H,,is obtained from H,, by deleting its last row. H,,is also an upper

(4.6)

Hessenberg matrix given by

Hp=0Qn' 0AQp (4.7)
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By substituting (4.7) in (4.6). we get
o= i
™ Qmat” 0 AQm(In®B))
Since H,, is an upper Hessenberg matrix, then

Qi ¢ AQTi@B) = Rinaamels

It follows that

el
T Wi meml -
By applying the Kronecker product (with I;) for (4.8), we find that
i H,®I
@1, = (Qmen” 0 A0m(In®B)) @1 = [, ™ o, | (49)
m+lm-~m

By multiplying (4.9) from the left by 9,41, we obtain
H,®I; ]

T
m+1,mEm

Qm+1(ﬁm®fs) = Om+1 [h

Since @m+1 = [Qms Qm+1], we have

Qm+1(gm®fs) = Qm(Hm®[s) 4 Qm+1hm+1,mErT;1- (4-10)

We know that AKX, B € K41, then there exists a matrix L of size (m + 1) X m such
that

AQm(Im®B) = Qm41(LBI) . (4.11)
By applying the 0 product (with O+ 1) for (4.11) from the left, we find that

Om+1' 0 AQp(1n®B) = L. (4.12)
From (4.6), (4.11) and (4.12). implies that

AQm([n®B) = Q1 (Hy®I) . (4.13)
By substituting (4.13) in (4.10), it follows that

AQum (I ®B) = O (Hn®I) + Qmithimi1mErn - (4.14)

Where E}, = [0, ..., 05, Ic] and Ry m = Qs 0 AQp([,n®B) =

(rm+1,m+1)/ (rm.m)'
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Theorem 5. At step m, let REGI-GMRES qnq REGI=FOM he the residual produced by the
EGI-GMRES and the EGI-FOM methods, respectively. Then

IR7~CMRES|IE  det(Hm—1Hm-1) ,

o -1 hZ., (4.15)
iy, ey T
and
”REG£—FOM“2 det(HT_ H _)
T;GI—FOM §= detELTle)l hrzn-!-l,m (4.16)
[REETFOM mim
Proof. We have
wrow,, = (Aj‘{m(lm®8))T 0 (A (1, ®B)) (4.17)

Using the global QR decomposition to the matrix K,,, the relation (4.17) can be
expressed as

W 0 Wy = (AQm Rn®15) Un®B)) 0 (AQ (R ®1) (11 ®B)) (4.18)
Since

(R ®Is) I ®B) = (1,,®B) (R ®I;)

(4.18) can be expressed as

Wi 0 Wi = (AQm (1n®B) (R®15))" 0 (A0 (In®@B) (R ®1L))

Using the relation (6) of Proposition 1, we have

Wi 0 Wy, = [(AQmn®B) (Ri®1))" 0 Ay 1n®B)| R

We know that AQ,,,([,,®B) = Q41 (Hn®I). then

Wi 0 Wi = [ (st (An®1) (Rm®I)) 0 AQyn 1 ®B)| Ry

So using the relations (4) and (6) of Proposition 1, we get

W OW. =RLHLH R (4.19)
Similarly, we also have

KL 03 =RER. (4.20)
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Now. applying Theorem 4. we get

"REG!_GMRESHZ det(Hms1 0 Konr)det(Wy_y 0 Wi, _y)

4.21
”REG‘! GMRES‘" det(Wr ¢ "Vl?,,J.ciet(fIfC,?;l 0 K,) ( )
Hence, by substituting (4.19) and (4.20) in (4.21), we obtain
IRES-CMRES|2 _ det(Hp_ A—s) det(Ryyy)*det(Rin—1)? —

|IR§16i1—GMRES ”2 ~ det(HLH,,) det(R,,)*
- F

Now, as Rpy1 = ([Oi“m] ,T‘m+1). we get

|| REGI~GMRES |2 det( callges YV sy

”REGI —GMRES ” det(HLH,,) Tam

Therefore, as Ry 41m = Tms1.m+1/Tm,m. We obtain
IRESCMRES|I2 _ det (Fh— i)
”REGt GMRES” "~ det(HLH,) ™M

The proof of (4.16) can be carried out similarly.

Theorem 6. At the stepm, let RECI-CMRES and REGI-FOM he produced by the EGI-
GMRES and the EGI-FOM methods, respectively. Therefore, we have
1

REGI —GMRES||2 — 4.23
I e = T T 0 Ko (629)
and
EGI-FOM |2 91111+1(5{r?z+1 0 Home1)  ema1
IR Il = > (4.24)
( ( +1 0 Km+1) em+1)
Proof. The proof is similar to that of [1].
Theorem 7.
||Rr€1m_GMRES”F \/K(IK;H 0 Kons1) (4.25)

= ”Rgm-cmssnp = (1 + k(KT OJCmH))

where X, is the Extended global Krylov matrix and k(Z) denotes the condition

number of the matrix Z -
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Proof. We have
”Rsst GMRES”F (REGI GMRES)T REGI GMRES

Using (3.13), relation (6) of Proposition 1 and (3.14). we obtain
IIREGI-GMRES||2 = R (T § Ry —(W," 0 Rg)' (Wy" 0 W) (W7 OR,)  (4.26)

We know that ||R§G"GMRESI|T: — Ro" 0 Ry, then (4.26) can be expressed as

”REE&'—GMRES ”% = I]Rgﬂf—GMRES"Z
(Wi 0 Ro) (Wm0 W) ™ (Wi 0 Ro) (4.27)

-1
As each matrix (er 0 Wm) is symmetric positive definite, then
(W™ 0 Ry) (W™ 0 W)™ (WyT 0 Ro) = 0 (4.28)

Therefore, from (4.27) and (4.28), we get
”RiGI—GMRES”F

=<1
[|[REGI-GMRES||

Since each matrix K ,, 0 ey is symmetric positive definite, then using the

Kantorovich inequality, we reveal the second inequality.

By substituting e, in the Kantorovich inequality and using the fact that
Amax (K1 0 K1) = 1K i1 0 Kopaallz

and

1
’lmm( +1 0 xm+1)

”( +1 0:}‘(:1'1'1+1)_ "2

we have
(ell 81)2

(( ma1 9 :}'{m+1)elrel)(( mei 0 Kon1)leg,e)
4”3{;“ 0 K ll2 ”(3(724,1 LSS i | P

>
13y 0 maa 2l (HT 1 0 Fopa) 22+ 1)2
Therefore, using the fact that

K(H a1 0 Komsr) = 1K1 0 Komaall2 1 Fohsr € Hona) L2, ((Fohas 0

Hom+1)e1, el) = ||Rgm_GMRES||f: and ((Kgl+l 0 }Cm+1)_191» e;) =

1
o —
”RE‘LGE GMRES"F

get
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IRREEMRE N K (Hopas 0 Homs)
IRECT-CMRES|| *= (1 + k(KT 1, 0 Kimer))

The result of the preceding theorem shows that there is no convergence as long as the

extended block Krylov matrix is well-conditioned.

Example. We consider the matrix equation A,XB = F, where

B e W B 4 0 0
1 =~ = i 0 11
A, =10 = = i B B = (2 é) and F=10 0
i w0 0 P
0 .. 0 1 0 0 0

For this example, k(A4,,) = k(B) = 1. Now, if Xy = 0,,x; thenform =1,..,n—1, we

have

2
K1 0 Honsr = 2Lppr, K(Khsq 0 Honyg) = 1 and [|[RGETEMRES|| =2
Using (4.23), we also obtain [[REG!-GMRES||Z = 2,

Hence applying Theorem 7, it follows that there is no convergence.

5. Conclusion

In this work, we present some convergence results of two extended block Krylov
subspace methods when applied to matrix equation AXB = F without referring to any
algorithm. We also derive new expressions of the approximations and the corresponding

residual norms.

References

[11 R.Bouyouli, K. Jbilou, R. Sadaka, H. Sadok, Convergence properties of some block Krylov subspace
methods for multiple linear systems, Journal of Computational and Applied Mathematics 196
(2006), 498-511.

[2] F. Ding, T.Chen, Iterative least-squares solutions of coupled Sylvester matrix equations, Systems &
Control Letters 54 (2005), 95-107.

[3] F. Ding, T. Chen, On iterative solutions of general coupled matrix equations, SIAM Journal on
Control and Optimization 44 (2006), 2269-2284.

[4] F.Ding, P. X. Liu, J. Ding, Iterative solutions of the generalized Sylvester matrix equations by using
the hierarchical identification principle, Applied Mathematics and Computation 197 (2008), 41-50.

[51 J.Ding, Y. Liu, F. Ting, Iterative solutions to matrix equations of the form A;XB,=F;, Computers and
Mathematics with Applications 59 (2010), 3500-3507.



CUJSE 10 (2013), No. 2 167

[6] G. X. Haung, F. Yin, K. Guo, An iterative method for the skew-symmetric solution and the optimal
approximate solution of the matrix equation AXB=C, Journal of Computational and Applied
Mathematics 212 (2008), 231-244.

[7] R. Lancaster, Theory of Matrix, Academic Press, New York, (1969).

[8] A. Messaoudi, Recursive interpolation algorithm: a formalism for solving systems of linear equa-
tions—I. Direct methods, Journal of Computational and Applied Mathematics 76 (1996), 13-30.

[9] F. Panjeh Ali Beik, Note to the global GMRES for solving the matrix equation AXB=F, International
Journal of Engineering and Natural Sciences 5 (2011), 101-105.






