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results are independent of the delays, and the delays are also both time-variable
and unbounded. Additionally, the results were described as a convex optimization
problem, and an example was used to examine the results' feasibility and efficacy.
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Anahtar Kelimeler
Asimptotik kararlilik,

Kesir mertebeli notr sistemler,
Konveks optimizasyon
problemi,

Riemann-Liouville tiirevi

Oz: Bu galismada, otonom olmayan ve lineer olmayan kesirli nétr sistemlerin
asimptotik kararliligi tizerine sonuglar elde edilmistir. Elde edilen kararlilik
sonuglart gecikmeden bagimsizdir ve gecikmeler ayni zamanda hem zaman-
degisken olup hem de sinirli degildir. Ayrica bu g¢aligmadaki sonuglar birer
konveks optimizasyon problemi olarak ifade edilmistir ve sonuglarn
uygulanabilirligi ve etkinligini arastirmak igin bir 6rnek kullanilmistir.

1. Introduction

Fractional calculus which has a past of over 300 years, is said to have begun with a question
asked by L'hospital to Leibniz in 1695 (Podlubny, 1999). Fractional calculus, which has been the subject
of many scientific studies until today, continues to exist as a popular field of study in recent years,
especially since it has found a concrete response in fields such as biology, physics, the various fields of
engineering (Hale, 1977; Kilbas et al., 2006). In general, Caputo fractional derivative has been used in
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studies on fractional differential equations, few of these studies are fractional derivatives of Riemann
Liouville (see references and their references). Lyapunov's second approach, which is employed by
researchers, is one of the most effective ways for analyzing the behavior of fractional differential
equation solutions (Duarte-Mermoud et al., 2015; Liu et al., 2016a and 2016b; Liu et al., 2017; Korkmaz
& Ozdemir, 2019; Altun & Tung, 2020). Heymans & Podlunny (2006) demonstrated that Riemann-
Liouville fractional derivatives with initial conditions can have physical meaning in a variety of
viscoelasticity situations. Yang et al. (2017) worked on the Lyapunov stability analysis of nonlinear
fractional systems with impulses. Deng et al. (2007) established a characteristic equation for multiple
delayed fractional-order systems using the Laplace transform. Chen et al. (2016) discovered two novel
delay-dependent sufficient conditions that ensure the stability of some fractional-order neural networks
on a bounded-time interval by using the inequality approach. Chen et al. (2014) discovered a novel
sufficient condition for guaranteeing local asymptotic stability of a variety of nonlinear fractional
systems with fractional-order a: 1 < a < 2 by utilizing the Laplace transform, the generalized
Gronwall inequality, and the Mittag-Leffler function. Li et al. (2015) obtained certain sufficient stability
criteria by employing the relationship between the characteristic equations of integer order systems and
fractional order systems. Qian et al. (2010) developed stability conditions for fractional-order systems
with the Riemann-Liouville derivative, which includes linear systems, time-delayed systems, and
perturbed systems.

What motivates us in this paper is that while most of the research done on Caputo fractional
derivative has been used, the Riemann-Liouville fractional derivative has not been studied sufficiently,
and on the other hand, delayed neutral nonlinear differential equation systems are still an open problem.
The Caputo derivative is more useful to real-world issues since its initial conditions are physically well-
understood. The major benefit of the Riemann-Liouville derivative, on the other hand, is the features of
composition of the Riemann-Liouville derivative and the Riemann-Liouville integral. In fact, the
Riemann-Liouville derivative is a continuous operator of order a.

2. Material and Methods

This section introduces several essential definitions of fractional calculus, as well as certain
sufficient lemmas.

Notation. R™ indicates n -dimensional Euclidean space. R™ ™ represents the set of all n X n real
matrices. ||x|| denotes the Euclidean norm of a real vector x. ||A]| denotes the spectral norm of matrix

A. A > 0 (or A < 0) indicates that the symmetric matrix 4 is positive definite (or negative definite).

Definition 1. The fractional-order integral and derivative of Riemann-Liouville are denoted by

toDr “x(t) = rla)J;:(t —5)*1x(s)ds, (a>0) €))
1 dr t x(s)
tODgx(t):F(n——oc)Wftomds' n—1<a<n), 2)
respectively (Podlubny, 1999).
Lemma 1. Let a > 3 > 0, then
wDE ((eDF%x(0)) =, DEx(2) 3)

holds for “sufficiently good” functions x(t). This relationship holds especially if x(t) is integrable
(Kilbas et al., 20006).

Lemma 2. If x(t) € R™ is a real vector of a differentiable function, then
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%tOD;"(xT(t)Px(t)) < x"(OP, DEx(t), Va € (0,1),Vt > t,, 4)

inequality holds, where P € R™™ is a square, symmetric, positive semi-definite, and constant matrix
(Liu et al., 2017).

3. Results

In this section, we obtain some stability criteria of nonlinear neutral fractional-order systems
with time-dependent lags. For this, we employed the linear matrix inequality.
Consider the nonlinear neutral fractional-order system shown below:

DEx(6) = Ax(t) + Byfy (6, x(0)) + Bofy (6,x(t = 72(8))) + Cey DEX(t — 75(1)), (5)

where x = [x1,x5,-*,x,]T € R™ is a real vector, 0 < a <1 is a real number, for all t > t,,
T,(t), 1,(t) > 0 are time-varying delays, A,B;,B,,C € R™™ are known constant matrices.
fj(t, x(t)) (j = 1,2) are vector-valued time-varying nonlinear functions with f;(t,0) = 0 and satisfies
the following Lipschitz condition for all (¢, x), (t,X) € R X R"

Ifit.©) = f;&D| < qj||Mjx—2)|, j=12 (6)

where a; are positive scalars, and M; are constant matrices of the proper dimension. Consequently, due
to f;(¢,0) = 0, we have

Ifit. Ol < ajf|Mx]], j=12. 7)

Thus, by satisfying the condition (7) of equation (5), we guarantee the uniqueness of the zero
solution of (5).

Theorem 1. If ||C|| < 1, for all t > ty, T;(t) < d; < 1, (i = 1,2) and there exist P, R and S symmetric
positive matrices that satisfy

”11 ”12 n13 H14-
”{2 n22 H23 n24
My M5 Iy Il
My Iy I35 I

LMI condition, then the zero solution of nonlinear fractional-order neutral system (5) is asymptotically
stable, where

My, = ATP + PA+ AT(R + mS)A + a?MT M, + a5MIM,,
My, = PB; + AT(R + mS)B;,

;3 = PB, + AT(R + mS)B,,

M, = PC + AT(R + mS)C,

M,, = BT(R+mS)B; — 1,

M3 = B{ (R +mS)B,,

M,, = BT (R + mS)C,

M35 = B3 (R +mS)B, — (1 —dy)I,

M5, = BI(R + mS)C,

My, =CT(R+mS)C —(1—d,)R,
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I unit matrix and m is a positive constant.

Proof. Consider the Lyapunov-Krasovskii functional, which is described as:

Vo= W OP©)+ [ (0r) R (D) ds

t et o
+a3 f xT(s)MIM,x(s)ds + f f ( tOD;"x(s)) S ( tOD;"x(s)) dsde.
t—t4(t) t-m -0

Because the matrices P, R and S are all positive definite, the functional V(t) is also positive
definite. Therefore, from Lemma 1 and Lemma 2, the derivative of V(t) is derived by utilizing the
trajectories of system (5) as stated below:

V() = ton‘(xT(t)Px(t)) + a?xT ()M M x(t) — a?xT (t)MT M, x(t)

T T
+(1uDEx()) R ((euDEx(®)) = (1= 5(®)) (¢ DEx(t = 1(8))) R( ¢, DEx(t — T,(0)))
+a2xT(OMIMyx(t) — (1 — t(8))a3x" (¢t — t () )MIMyx(t — 1,(1))

T t T
+m ( ton‘x(t)) S ( ton‘x(t)) - f (tODs"‘x(s)) S ( toDs‘"x(s)) ds
t—-m

2xT(E)PDEx(t) + a?xT ()MT My x(t) + a3xT () MIM,x(t)

T
+( 1y DEx()) (R +mS) (¢, DEx()) = (1 = d)FF (&x(t = 7, (0)) Ifs (£ x(t = (1))

T

—F (62O (6, 2(0) — (1 = d3) (¢, DEx(t = 1,(8))) R ( ¢, DEx(t = T2(0)))

= 2xT(0)P [Ax(®) + Bofi (£, x(0)) + Bofy (& x(t = T:(8)) ) + Cey DEX(t — T2(0)))]
+aZxT (O)MFMx(t) + asxT (£)MI M,x(t)

+ [Ax(t) + B fi(t,x(1)) + B, f> (t,x(t - Tl(t))) + Ce Dix(t — ‘rz(t))]T
x (R +mS) [Ax(t) + B, f,(6,x(6)) + By f, (t,x(t - ‘rl(t))) + Cp, Dfx(t — Tz(t))]
—fT (& x@)IA(6x(©) = A = dDF (6x(t =1 @) ) 1 (6x(t -1 (©))
T

—(1 = dy) ((,DEx(t = 1:(®))) R (¢, DEx(t - T,(1)))

= xT(O)(ATP + PA+ aZM{ M, + aZMIM, + AT(R + mS)A)x(t) + 2xT()PB, £, (¢, x(1))
+2xT()PB,f, (t, x(t—1 (t))) + 2xT()PC, DEx(t — T,(£)) + xT(D)AT (R + mS)By £ (¢, x(¢))
+xT(O)AT (R +mS)By f, (£, x(t = 14(1))) + xT(O)AT (R + mS)Ce, DEx(t — T,())
+(A(6x®)) BIR +mS)Ax®) + (f(6x®)) Bl (R +mS)B, f,(tx(1))
+(A(x®)) IR +mS)B,f, (6x(t - 7.(0)))
+(A(6x®)) BI R +mS)C, Dix(t - 1,(0))

+ (fz (6 (e - Tl(t))))T BI(R + mS)Ax(¢) + (fz (6x(e - rl(t)))>T BI(R + mS)Byf (£, x())

f (t,x(t -7 (t))) B} (R + mS)B, f, (t, x(t - Tl(t)))

(
(fz (t,x(t - 1,(0)
(
(

o DEx(t — 1, (t))) CT(R + mS)Ax(t) + ( o DEx(t — 1, (t)))T CT(R +mS)B.f(t, x(t))
D )

IA

+
).
) BI (R + mS)C, Dix(t — 1,(1))
WDEx(t — 1)) CT® +mS)B,f, (Lx(t - 1,(©)))
+(oDEx(t =) TR +mS)C (,DEx(t ~ T, ()
~AT (6 xO)AE*©®) = A = dDSF (62(t =1 ®)) 1f (62(t - 1))
T
—(1 = dy) ((¢,DEx(t = 1,(®))) R (¢, DEx(t = T,(1))).
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V() <n"Mn,

where

and

)

My, =ATP + PA+ AT(R + mS)A + a?MT M, + a5MIM,,
le = PB]_ + AT(R + mS)B]_,
;3 = PB, + AT(R + mS)B,,

M,, = PC + AT(R + mS)C,

M,, = BT (R + mS)B, — |,
M,3 = BT (R + mS)B,,

M,, = BT (R + mS)C,

M35 = B (R + mS)B, — (1 —dy)],

M3, = BY(R + mS)C,

n44 = CT(R + mS)C - (1 - dz)R,

n=(x" @A (6 x0) A7 (6=x"(t = 1 ®)), (o, DEx( — (t>))T)T-

It is clear that V(t) is negative definite, due to the axiom of the Theorem 1. Then the zero
solution of nonlinear fractional-order neutral system (5) is asymptotically stable, which completes the

proof.

Theorem 2. If ||C|| < 1, for all t > t,, Tj(t) < d; < 1, (i = 1,2) and there exist P, Q and R symmetric

positive matrices that satisfy

( Q4
QT
Q — 12

Q13
\a.

Q4
O,
033
034

‘013
‘QZ3
933
03,

914\
Q
> | <o, (10)

QS4-
‘044/

LMI condition, then the zero solution of nonlinear fractional-order neutral system (5) is asymptotically

stable, where
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O, =PA+ATP + aZMTM; + aZMIM, + Q + mATRA,
0y, = —ATPC,

Q3 = PB; + mATRB,,

Q44 = PB, + mATRB,,

Oy = -(1- dz)Q,

Q,3 = —CTPB;,

Q,, = —CTPB,,

Q33 = mBTRB; — 1,

Q3. = mBIRB,,

Q4 = mBIRB, — (1 —d;)I,

I unit matrix and m is a positive constant.

Proof. Consider the Lyapunov-Krasovskii functional, which is described as:

V()= Df! ((x(t) —Cx(t - rz(t)))T P (x(t) — Cx(t - Tz(t)))>

+a§f xT(s)MIM,x(s)ds +J- xT(s)Qx(s)ds
t—11(t) t

—T2(t)

+ f:m fet ( toD§' (x(s) —Cx(s - Tz(s))))T R ( to D (x(s) —Cx(s - Tz(s)))) dsdo.

Because the matrices P, Q and R are all positive definite, the functional V(t) is also positive
definite. Therefore, from Lemma 1 and Lemma 2, the derivative of V(t) is derived by utilizing the
trajectories of system (5) as stated below:

V()= Df ((x(t) — Cx(t - Tz(t)))T P (x(t) - cx(t - rz(t)))> + a2xT ()M Myx(t)
—aZxT (O)MI M x(t) + a3xT (£)MI M,x(t) — (1 — T’l(t))ang(t — Tl(t))MzTsz(t - Tl(t))
+xT()Qx() — (1 — t5(®)x"(t — t2(0)) Qx(t — 1, (1))
T
+1m (e, D (x(8) = Cx(t = 15(1))) R(e,DE (x(t) — Cx(t = 15()))

_ J-t (CODS‘" (x(s) - Cx(s - TZ(S))>)T R ( to DS (x(s) - Cx(s - TZ(S)))> ds

t—-m T
2 (x(t) — Cx(t — Tz(t))) P, D¢ (x(t) — Cx(t — Tz(t)))
+aZxT ()M Myx(t) + asx" ()M Myx(t) + xT (&) Qx(t)
+m ( toDs' (x(s) - Cx(s — TZ(S)))) R ( to D (x(t) - Cx(t - Tz(t))))
—A (L x®O)IA(Lx®) — A = a)ff (Lx(t - 1®)) 1f (£.x(¢ — . (©))
—(1 = d)x"(t — (1) Qx(t — T2 (1))
= 2 (x(t) — Cx(t - ‘rz(t))) P [Ax(t) + B, f,(t6,x(©) + By f, (t,x(t — Tl(t)))]
FalxT(OMIMyx(®) + m [Ax(0) + By £i(6.2(©) + Buofy (£.2(e -1 (®))] R
x [ax(t) + Bufy (6, 2(0)) + Baf, (£, x(t = 12(0)) )] + 2" (OMIM2(t) + a3x™ (£)Qx(£)
~A (6 xO)A(Ex@®) = (A = dDFF (6,x(t =1 (®)) 1fz (£,2(t — (D))
—(1 = dy)xT(t — 12 (1)) Qx(t — t2(1))
= xT(t)(PA+ATP + a?MTM, + a3MIM, + mATRA + Q)x(t)
—2xT(t = 1,(£))CTPAx(t) + 2xT (O)PB, f1(t, x(t)) — 2xT(t — T, () )CTPB, £, (£, x(t))
+2xT()PB,f, (t,x(t - rl(t))) —2x"(t = 1,())CTPB, f, (t,x(t -7 (t)))
+ma” ()ATRBy £, (£, x(8)) + maT (DATRB, f, (£, x(t - 1,()))

AN
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+mfi (¢, x(£))BTRAx(t) + mf{ (t,x(t))B RB, f, (¢, x(t))

+mf{ (t,x(t))BT RB,f, (t, x(t—1 (t))) +mf) (t,x(t -7 (t))) BIRAx(t)

+mfy (t, x(t— Tl(t))) BIRB; f(t,x(t)) + mfy (t,x(t -7 (t))) BIRB,f, (t,x(t -7 (t)))
~fT (6 xO)A(Ex®) = A = dDFF (6x(t =1 (®)) Ifz (6.2(t = 1))

—(1 = dy)xT(t = 1,(1))Qx(t — 1, (V).

So, we can estimate
V(t) <n'an, (11)

where

(911 Qo Qs Qy
0, Q2 Qa3 Oy
Q=1or o, q.. a., %
13 23 33 34
\QL 0L, 0%, Qu /

O, =PA+ATP + aZMTM; + aZMIM, + Q + mATRA,
0, = -ATPC,

Q3 = PB; + mATRB;,

Q44 = PB, + mATRB,,

Qyy = —(1-4d3)0Q,

Q,3 = —CTPB;,

Q,, = —CTPB,,

Q33 = mBTRB; — 1,

Q3. = mBIRB,,

Q44 = mBIRB, — (1 —d;)I,

T
1= (57O, (e =% O) A (LX) A (627 (-1 ®)))

It is clear that V(t) is negative definite, due to the axiom of the Theorem 2. Then the zero
solution of the nonlinear fractional-order neutral system (5) is asymptotically stable, which completes
proof.

Now, asymptotic stability conditions for nonlinear fractional-order neutral systems (5) are
presented as a convex optimization problem. The efficacy of the obtained results is demonstrated
through a practical example.

Corollary 1. If ||C|| < 1, forall t > ty, T;(t) < d; < 1, (i = 1,2) and there exist P, R and S symmetric
matrices and a? and a3 scalars such that the following convex optimization problem in the variables
P,R and S matrices and a? scalar:

: 2
min  —aj
s.t. P>0, R >0, §$>0, I1<0. (12)

is feasible, then the zero solution of nonlinear fractional-order neutral system (5) is asymptotically
stable, where II is a matrix defined by (8).

Corollary 2. If ||C|| < 1, forall t > ty, T;(t) < d; < 1, (i = 1,2) and there exist P, R and S symmetric
matrices and a? and a3 scalars such that the following convex optimization problem in the variables
P, Q and R matrices and af scalar:
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: 2
min —af
s.t. P>0, Q>0 R>0, Q<0 (13)

is feasible, then the zero solution of nonlinear fractional-order neutral system (5) is asymptotically
stable, where (1 is a matrix defined by (10).

Let £, (t, x(t—1 (t))) = x(t — t,(t)), then the nonlinear fractional-order neutral system (5)
can write as stated below:

1o DEx(0) = Ax(t) + B, f(t, x(©)) + Byx(t — (1)) + CoDfx(t — 2 (), (14)

where x = [xq,%,,*,x,]T € R™ is the real vector, 0 < a <1 is a real number, for all t > t,,
T1(t), T2(t) > 0 are time-varying delays, 4, B;, B,, C € R™™ are known constant matrices. f; (¢, x) is
a vector-valued time-varying nonlinear function with f; (t,0) = 0 and satisfies the following Lipschitz
condition for all (t,x) € R X R™

I/t 20N < aqlIMyx]l,
where a; is a positive scalar, M, is a constant matrix of the proper dimension.

Corollary 3. If ||C]|| < 1, for all t > ty, Tj(t) <d; <1, (i =1,2) and there exist P,Q,R and S
symmetric matrices and a? scalar such that the following convex optimization problem in the variables
P, Q, R and S matrices and af scalar:

min  —a?
s.t. P>0, Q >0, R >0, §>0,

le E12 E13 E14

g |Zh T T T (1)
2{3 253 z:33 z:34 '
\e. o ok 5)

is feasible, then the zero solution of the nonlinear fractional-order neutral system (14) is asymptotically
stable, where

311 =ATP+PA+AT(R + mS)A+ Q + a?MT M,
312 = PB; + AT(R + mS)B;,

%13 = PB, + AT(R + mS)B,,

%14 =PC+ AT(R + mS)C,

Yy, =BT (R+mS)B; — 1,

223 = B{ (R + mS)B,,

¥4 = BT (R + mS)C,

33 = B (R + mS)B, — (1 —d,)Q,

%34 = BI(R + mS)C,

Y40 =CT(R+mS)C — (1—d,)R,

[ unit matrix and m is a positive constant.

Corollary 4. If ||C|| < 1, for all t > ty, T;(t) < d; <1, (i =1,2) and there exist P,Q4,Q, and R
symmetric matrices and a? scalar such that the following convex optimization problem in the variables
P,Q4,Q, and R matrices and a? scalar:

min —a? (16)
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s.t. P>0, Q, >0, Q,>0, R>0,

(mlAu Az Ay
AIZ AZZ A23 A24
A=lar, AL, Ay g |50
13 23 33 34
\M4A& £4AM/

is feasible, then the zero solution of the nonlinear fractional-order neutral system (14) is asymptotically
stable, where

Ay =PA+ATP + aiMIM, + Q; + Q, + mATRA,
A, = —ATPC,

A3 = PB, + mATRB,,

Ay, = PB; + mATRB;,

Ay = —(1—dy)Qy,
A23 = _CTPBz,
A24 - _CTPB]_,

Azz = mBzTRBz - (1-d)0y,
A34 - mBgRBl,
Ayy = mBTRB, — 1,

I unit matrix and m is a positive constant.

Example 1. Consider the fractional neutral system given as:
(DEx() = Ax(t) + By fy(6,x(8)) + Bof, (£ x(t = 14(0))) + CooDEx(t — 5(0)), (17)

where a € (1,0), t,(t) = 0.5t + 0.3sin(t), 1,(t) = 0.3t + 0.1cos(t),

e 05tsin (xz (t—-tu (t)))
e %3tcos (x1 (t—-vu (t)))

A=[_1700 —15?0]’ Bl:[loo 100]’ 322[100 100]' C=[061 0(.)1]'

sin(xz (t))

h (t,x(t)) -4 <cos(x1(t))

), fa (t,x(t - ‘tl(t))) =0.5

For f; (t, x(t)), we have

a? (sin2 (x2(®) + cos?(x, (t)))

aZ(x2(t) + x3 (1))
aixT ()M M;x(t),

fi(tx@®)°

IhIA

where M; = I,. For f, (t, x(t—1 (t))), we have

0.25 (e—tsin2 (xz (t- rl(t))) + e 06t cos? (xl (t-1 (t))))
0.25(x2(t) + x2 (1))
0.25x7 (t — T,.(£) )M3 Myx(t — ©,(2)),

I (62 - m@))|

IIA

where M, = [,.
Let us choose d; = 0.8, d, = 0.4, m = 0.001. Hence, we have a solution for the convex
optimization problem (12) as a4, . = 1.7796, where
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0.0746 0 0.0011 0 0.0865 0
P=| 0 0.0746]’ R=| 0 0.0011]' s=| 0 0.0865]’
and
—1.0448 00557 —0.0919 01198 —0.0919 01198 —0.0009 0.0012
0.0557 —09334 01198 0.1476 0.1198 01476 00012  0.0015
—0.0919 01198 —08802 0 0.1198 0 0.0012 0
q_| 01198  0.1476 0  —08802 0 0.1198 0 0.0012
—0.0919 01198  0.1198 0  —00802 0 0.0012 0
01198  0.1476 0 0.1198 0 —00802 0 0.0012
\—0.0009 0.0012  0.0012 0 0.0012 0 —00007 0 /
0.0012  0.0015 0 0.0012 0 0.0012 0 —0.0007

On the other hand, when all conditions are equal, we have that a solution for convex optimization
problem (13) as a,,, .. = 1.7802, where

00763 0 0.0940 0 0.0825 0
P=| 0 0.0763]’ R=| 0 0.0940]' o= 0 0.0825]'

and
—6.7873 14124 05338 —00763 06968 00094 0.6968  0.0094
14124 —39626 —00763 03813 00094 07156  0.0094 07156
05338 —0.0763 —0.0495 0  —0.0763 0  —00763 0

q_|—00763 03813 0  —00495 0  —00763 0  —0.0763
06968  0.0094 —00763 0  —09906 0 0.0094 o |
0.0094  0.7156 0  —00763 0  —09906 0 0.0094
0.6968  0.0094 —0.0763 0 0.0094 0  —01906 0
0.0094  0.7156 0 —00763 0 0.0094 0 —0.1906

When comparing Corollary 1 and 2, it can be observed that the tolerable bound a4, = 1.7802 in
Corollary 2 is greater than a;,,, ... = 1.7796 in Corollary 1.

4. Discussion and Conclusion

In conclusion, two different theorems are provided to establish the asymptotic stability of
solutions for some type of nonlinear fractional-order neutral systems having time delays. We've
converted each of these theorems into a convex optimization problem to see which is more efficient.
The effectiveness of the theorems is demonstrated using an example, and it is found that the efficiency
of the two theorems differs only slightly. The solutions to the convex optimization problems were
calculated using the LMI toolbox.
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