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Encoder Hurwitz Integers: Hurwitz Integers that have the  

“Division with Small Remainder” Property 
 

 

Ramazan DURAN*1  

 

 

Abstract 

 

Considering error-correcting codes over Hurwitz integers, prime Hurwitz integers are 

considered. On the other hand, considering transmission over Gaussian channel, Hurwitz 

integers, whose the norm is either a prime integer or not a prime integer, are considered. In this 

study, we consider Hurwitz integers, the greatest common divisor of components of which is 

one, i.e., primitive Hurwitz integers. We show, with the help of a proposition, that some 

primitive Hurwitz integers accompanied by a related modulo function are not suitable for 

constructing Hurwitz signal constellations. To solve this problem, we show, with the help of a 

proposition, the existence of primitive Hurwitz integers that have the "division with small 

remainder" property used to construct the Hurwitz constellations. We also call the set of these 

integers named as "Encoder Hurwitz Integers" set. Moreover, we examine some properties of 

the mentioned set. In addition, we investigate the performances of Hurwitz signal 

constellations, which are constructed accompanied by a related modulo function using Hurwitz 

integers, each component of which is in half-integers, for transmission over the additive white 

Gaussian noise (AWGN) channel by means of the constellation figure of merit (CFM), average 

energy, and signal-to-noise ratio (SNR). 

 

Keywords: Quaternion integers, Hurwitz integers, residual class, signal constellations, code 

constructions 

 

1. NTRODUCTION 

 

A Gaussian integer is a complex number, each 

component of which is in integers. The set of 

Gaussian integers that is denoted by  i  is 

shown by 

   2

1 2 1 2: , , 1i i i          . Let 

1 2i     be a Gaussian integer. The 

conjugate of a Gaussian integer   is equal to

1 2i    . The norm of a Gaussian integer 
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  is equal to 2 2

1 2( )N     . The inverse of 

a Gaussian integer   is equal to 
1

( )N






  , 

where   0N   . A Gaussian integer   is 

called a prime Gaussian integer if its norm is 

a prime integer. A Gaussian integer   is 

called a primitive Gaussian integer if the 

greatest common divisor (gcd) of its 

components is one, i.e. 1 2gcd( , ) 1   . In [1], 

codes over Gaussian integers were first 

presented by Huber. His original idea is to 

Sakarya University Journal of Science 27(4), 792-812, 2023

https://orcid.org/0000-0002-8076-0557


regard a finite field as a residue class of the 

Gaussian integer ring modulo a prime 

Gaussian integer. Moreover, the Euclidean 

division is used to get a unique element of the 

minimal norm in each residue class, which 

represents each element of a finite field. 

Therefore, each element of a finite field can 

be represented by a Gaussian integer with the 

minimal Galois norm in the residue class. The 

visualization of the residue classes of 

Gaussian integers, Eisenstein-Jacobi integers, 

quaternion integers, Lipschitz integers, or 

Hurwitz integers, respectively, is called a 

signal constellation, which is a 

communication term. In coding theory, each 

element of the signal constellation refers to a 

complex-value codeword. Huber is used 

prime Gaussian integers such that 

1 mod 4p , where p   and 

1 2 0   . In this study, we consider 

primitive Gaussian integers, the norm of 

which is either a prime integer or not a prime 

integer, where 1 2 0   . Codes over 

Gaussian integer rings were studied in papers 

[2-5]. 

 

Quaternions are a number system that extends 

complex numbers. Let 

1 2 3 4i j k         be a quaternion. Here 

1  is the real part, and 2 3 4i j k     is the 

imaginary part. Multiplication of two 

quaternions has no commutative property, in 

general. Multiplication of two quaternions has 

commutative property if their imaginary parts 

are parallel or conjugate to each other. A 

quaternion   is called a quaternion integer 

just if 1,  2 , 3  and 4  are in integers. In 

[6], Özen and Güzeltepe studied codes over 

quaternion integers, which have the 

commutative property. Codes over quaternion 

integers were studied in papers [6-10]. A 

quaternion integer   is called a Lipschitz 

integer just if its components are in integers. 

A Lipschitz integer   is called a primitive 

Lipschitz integer if the greatest common 

divisor of its components is one. Codes over 

Lipschitz integers were studied in papers [11-

14, 19, 27].  

 A quaternion integer   is called a Hurwitz 

integer just if its components are either in  

or in 
1

2
 . A Hurwitz integer   is called a 

primitive Hurwitz integer if the greatest 

common divisor of its components is one. In 

[15], Güzeltepe studied the classes of linear 

codes over Hurwitz integers equipped with a 

new metric that refer as the Hurwitz metric. In 

[16], Rohweder et al. presented a new 

algebraic construction technique to construct 

finite sets of Hurwitz integers by a respective 

modulo function. Moreover, they investigated 

the performances of Hurwitz signal 

constellations constructed by Lipschitz 

integers for transmission over the additive 

white Gaussian noise (AWGN) channel. 

Codes over Hurwitz integers were studied in 

papers [15-21]. 

 

This work is organized as follows: In the next 

section, we give some basic information used 

throughout this paper. In Section III, we 

define a new set named "encoder Hurwitz 

integers". This set comprises to the Hurwitz 

integers that have the "division with small 

remainder" property. In Section IV, we 

investigate the performances of Hurwitz 

signal constellations constructed by primitive 

Hurwitz integers, whose components are in 

1

2
 , for transmission over the AWGN 

channel by means of constellation figure of 

merit (CFM), average energy, and signal-

noise-to ratio (SNR). Finally, we conclude the 

paper in Section V. 

 

2. PRELIMINARIES 

 

We begin with some basic definitions. 

 

Definition 2.1 Let 1 2 3 4i j k         be 

a quaternion. A quaternion integer   is called 

a Hurwitz integer just if either 

1 2 3 4, , ,      or 1 2 3 4

1
, , , .

2
       

The set of all Hurwitz integers that is denoted 

by  is shown by 
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1 2 3 4 1 2 3 4

1 2 3 4

: , , ,

1
, , ,

2

i j k

or

       

   

    
 

  
  

   
 

 
1

2

 
  

 
. 

 

For instance, 
1 1 1

1
2 2 2

i j k     and 

1 1

2 2
j   are not Hurwitz integers, but 

3 5 1 7

2 2 2 2
i j k     is a Hurwitz integer and 

so on. The ring of Hurwitz integers forms a 

subring of the ring of all quaternions since it 

is closed under multiplication and addition. 

The conjugate of a Hurwitz integer   is 

1 2 3 4 .i j k         The norm of a 

Hurwitz integer   is 

  2 2 2 2

1 2 3 4N             . The 

inverse of a Hurwitz integer   is 

 
1 ,

N






   where ( ) 0N   .  

 

Definition 2.2 Let   be a Hurwitz integer. 

The Hurwitz integer   is called a prime 

Hurwitz integer if its norm is a prime integer. 

 

For instance, 2 3 3i j k      and 

3 5 3 7

2 2 2 2
i j k      are the prime Hurwitz 

integers since 

  2 2 2 22 ( 3) 1 3 23N         and 

 
2 2 2 2

3 5 3 7
23

2 2 2 2
N 

       
            
       

.  

 

Definition 2.3 Let 1 2 3 4i j k         be 

a Hurwitz integer. If   is a Hurwitz integer, 

whose each component is in integers, then it 

is called a primitive Hurwitz integer just if the 

greatest common divisor of its components is 

one, i.e.  1 2 3 4gcd , , , 1     . If   is a 

Hurwitz integer, whose each component is in 

half-integers, then it is called a primitive 

Hurwitz integer just if the greatest common 

divisor of its numerators is one. 

 

Note that, in this study, unless otherwise 

stated, we consider primitive Hurwitz 

integers, the norm of which is either a prime 

integer or not a prime integer, where 

1 2 3 4 0       .  

 

Definition 2.4  [15] Let   and   be Hurwitz 

integers. If there exists   such that 

1 2q q   , then 1 2,q q   are said to be 

right congruent modulo  . This relation is 

denoted by 1 2.rq q  Here, r  is represented 

as the right congruent. This relation 1 2rq q  

is an equivalence relation. The elements in the 

right ideal  :     define a 

normal subgroup of the additive group of the 

ring . The set of cosets to    in  defines 

the Abelian group denoted by     . 

Analogous results are valid for left congruent 

modulo  . 

 

Note that we consider the left congruent 

modulo an element   in the Hurwitz integers 

rings. Therefore, we consider the elements in 

the left ideal  :    . 

 

Definition 2.5 A notation for the nearest 

integer rounding is denoted by . It is 

rounding a rational number to the integer 

closest to it. Each component is rounded to the 

integer closest to it for a quaternion, 

respectively. 

 

Considering half-integers, the rounding is 

done by the following. We take an example 

1

2


, where 1  is an odd integer. If 1  is an odd 

negative integer, then we round it as 

 

 1 1 1

2 2 2

 
  ,           (1) 

 

 1 1 1 1

2 2 2 2

   
      

 
.          (2) 
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If 1  is a positive integer, then we round it as 

 

 1 1 1

2 2 2

 
  ,           (3) 

 

 1 1 1 1

2 2 2 2

   
      

 
.          (4) 

 

For instance, let 
5 1 1 5

4 2 2 2
i j k      be a 

Hurwitz quaternion. By eq. (1), eq. (2), eq. (3) 

and eq. (4), we get 

 

5 1 1 5

4 2 2 2
i j k      

 

5 1 1 5

4 2 2 2
i j k   

  

 
1 0 0 2 1 2i j k k         . 

 

In the rest of this study, we consider eq. (3) 

and eq. (4) since   is a primitive Hurwitz 

integer. 

 

Definition 2.6 Let   be a primitive Hurwitz 

integer, and let 
( )Nz  . The modulo 

function 
( ): N     is defined by 

 

  1mod
( )

z
z z z z z

N



    



      .     (5) 

 

Here, 
( )N   is the well-known residual class 

set of ordinary integers ring with ( )N   

elements,   is the left residual class set of 

z  with respect to the modulo function in eq. 

(5), and  z  is given the remainder of z  

with respect to the modulo function in eq. (5). 

The quotient ring of the Hurwitz integers 

modulo this equivalence relation, which we 

denote as  ( )mod | Nz z   . This set 

contains  N   elements. If   is a prime 

Hurwitz integer, then the modulo function   

defines a bijective mapping from 
( )N 

 to  . 

Therefore, the modulo function   is a ring 

isomorphism. Because there exists an inverse 

map [22], and we have 

     1 2 1 2z z z z      and 

     1 2 1 2z z z z   , for any 
1 2 ( ), Nz z  . 

If   is a primitive Hurwitz integer, the 

modulo function   is a group isomorphism 

with respect to addition between 
( )N   and 

 . 

 

A signal constellation is a physical diagram 

describing all the possible symbols a 

signaling system uses to transmit data. It is an 

aid in designing better communications 

systems. [23]. These symbols represent the 

codewords. In other words, they represent the 

elements, defined as the complex-value 

codewords, in the set of the residual class of 

Hurwitz integers ring. Thus, in the rest of this 

study, we use the “signal constellation” term 

instead of “the set of residual class” term. We 

can take an example, "Hurwitz signal 

constellation" instead of the “residue classes 

of modulo an element   in the Hurwitz 

integers rings”. You can find more details 

about signal constellation in [23]. 

 

You can find more details about the 

arithmetic properties of quaternions and 

Hurwitz integers in [24-25].  

 

3. ENCODER HURWITZ INTEGERS 

 

The Euclid division algorithm states that 

given positive integers a  and b , there exist 

unique integers q  and r  such that a bq r   

and 0 r b  . Here, a  is the dividend, b  is 

the divisor, q  is the quotient, and r  is the 

remainder. Considering Hurwitz integers, the 

Euclid division algorithm states that given 

Hurwitz integers   and  ,  there exist unique 

Hurwitz integers   and   such that 

     and    0 N N   . In other 

words, Hurwitz integers, each component of 

which is in 
1

2
 , satisfy the Euclid division 
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algorithm but Hurwitz integers, each 

component of which is in integers, do not. We 

call that Hurwitz integers that satisfy the 

Euclid division have the “division with small 

remainder” property. The key point is that the 

Euclid division algorithm is not worked with 

some Hurwitz integers. Note that, in this 

study, we consider the primitive Hurwitz 

integers. Therefore, in this study, we 

investigate which primitive Hurwitz integers 

satisfy the Euclid division or not.  

 

The following proposition shows that the 

remainder and dividend are equal to each 

other for the primitive Hurwitz integers, each 

component of which is an odd integer. 

 

Proposition 3.1 Let   be a primitive 

Hurwitz integer, each component of which is 

an odd integer. Then, 

 

( )
( )

2

N
N N


 
  

  
  

           (6) 

 

with respect to the modulo function in eq. (5). 

 

Proof Let 1 2 3 4i j k         be a 

primitive Hurwitz integer, each component of 

which is an odd integer. By eq. (5), 

 

( )
( ) ( ) 2

2 2 ( )

N
N N

N


 
 

 


 
  

 
 

 
 

( )

2 2

N  
    

 
 

  1 2 3 4
1 2 3 4

( )

2 2

i j kN
i j k

   
   

  
   . 

 

By eq. (3) and eq. (4), 1 1 1

2 2 2

 
  ,

2 2 1

2 2 2

  
    

 
,  3 3 1

2 2 2

  
    

 
,  

and 4 4 1

2 2 2

  
    

 
. Then, we get 

  1
1 2 3 4

( ) ( ) 1

2 2 2 2

N N
i j k

 
    

  
      

 
 

 
 

 
 

32 41 1 1

2 2 2 2 2 2
i j k

      
          
     

 

 
 

2

1 3 11 1 1 2 1( )

2 2 2 2

N
i j

          
      

  










 

 
2

1 4 1 2 1 2 2 2

2 2 2
k i

           
       
  



 






  

 

2 3 2 3 1 32 4 2

2 2 2
k j j

           
      

  

 

    
 

2

3 2 3 3 3 3 4 3

2 2 2
k i

            
      
    


    

 

4 1 4 4 2 4

2 2
k j

        
   

 




 


 

 
2

4 3 4 4 4

2 2
i

        
    
   

           

 
2 2 2 2

1 2 3 4 1 2 3 4( )

2 2

N               
 





 

 

1 2 1 2 1 2 3 4 3 4 3 4

2
i

                  
 
 


 

 

1 3 1 2 4 2 3 1 3 4 2 4+
2

j
                  

 
 


 

 

1 4 1 2 3 2 3 2 3 4 1 4

2
k

                   
  
  


 

 

1 2 3 4( ) ( )
= 

2 2 2

N N     
 

  
 

 

1 2 3 4 1 2 3 4

2 2
i j

            
 

  
  



 




   
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1 2 3 4

2
k

     









 
 

1 2 3 4 1 2 3 4

2 2
i

         
  



  



 
 

 

1 2 3 4 1 2 3 4

2 2
j k

             
    
  

 



 
. 

 

Therefore, we get 

 

1 2 3 4( )

2 2

N
N N

   

   

   
   

  

 
 

1 2 3 4 1 2 3 4

2 2
i j

             
    
  

 



 

 
 

1 2 3 4

2
k

      
  







   
 

 2 2 2 2

1 2 3 4 2 2 2 2

1 2 3 4

4

4

   
   

  
     .

 
 

Consequently, 
( )

( ( )) ( )
2

N
N N


  . This 

completes the proof. 

 

The following proposition implies that the 

primitive Hurwitz integers, each component 

of which is in integers, do not have the 

"division with small remainder" property. 

 

Proposition 3.2 Let   be a primitive 

Hurwitz integer, each component of which is 

in integers, and let   be a Hurwitz integer, 

where   0N   . Then,     N N   . 

 

Proof Let   be a primitive Hurwitz integer, 

each component of which is in integers, and 

let 1 2 3 4i j k         be a Hurwitz 

integer, where   0N   . By eq. (5), we get 

 

 
 N




   


  . 

Then, we get 

 

1 1 1 1( )

 
        

 

        

 

 1

1 2 3 4i j k         

 

1 2 3 4i j k   



  
  

 
1 1 1 1

1 2 3 4i j k               

 
1 1 1 1

1 2 3 4i j k             
 

 
1 1 1 1

1 2 3 4i j k             
 

 
1 1 1 1

1 2 3 4i j k            
 

 

 1 1 1 1

1 1 2 2 i             
 

 

   1 1 1 1

3 3 4 4+ j k             . 

 

Hereby, we get 

 

1 1

1 1

1

2
      ,   

 
 

1 1

2 2

1

2
      ,            

 

1 1

3 3

1

2
      ,  
          

 

1 1

4 4

1

2
      .           

 
 

Then, we get 

 

 
2

1 1

1 1

1

4
      ,                              

 
 

 
2

1 1

2 2

1

4
      ,  
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 
2

1 1

3 3

1

4
      ,   

 

 
2

1 1

4 4

1

4
      .  

 
 

Therefore, we get 

 

    
2

1 1 1

1 1N             
 

 

   
2 2

1 1 1 1

2 2 3 3               
 

 

 
2

1 1

4 4         
 

 
2 2 2 2

1 1 1 1
1

2 2 2 2

       
           
       

.              

 
 

Consequently,  since     N N  

  
 

  1 1
1N N

N
     



   . This 

completes the proof. 

 

Example 1  Let 3 3i j k      be a 

primitive Hurwitz integer. By eq. (5), the 

Hurwitz signal constellation is 

 

     

   

   

   

   

   

   

   

     

0 0,  1 1,  2 2,  

3 3, 4 2 2 ,  

5 1 2 , 6 2 ,

7 1 2 , 8 2 2 ,  

9 3 2 , 10 4 2 ,  

11 3 2 , 12 2 2 ,  

13 1 2 , 14 2 ,

15 1 2 , 16 2 2 ,  

17 3,  18 2, 19 1

j

j j

j j

j j

j j

j j

j j

  

 

 

 

  

 

 

 

  

  

 

 

 

 

 

 

 

  

  

   

    

   

    

     

   

   








     

























 
 

.  (7) 

 

This set must contain twenty elements, but it 

contains nineteen elements since 

 10 0mod    , where 

    10 20N N   . Consequently, the 

Hurwitz integer 3 3i j k       does not 

have the "division with small remainder" 

property (see Proposition 3.2). In other words, 

the Euclidean division algorithm does not 

work for the primitive Hurwitz integer 

3 3i j k     . In addition, to be a 

Euclidean metric, the inequality 

     , , ,d d d        should be 

verified, where , ,     . Because the 

conditions i)  , 0d     if and only if 

  , and ii)    , ,d d     are 

supplied. We consider  10 4 2 ,j     

 19 1     and  18 2     in (7).  

 , 29d     since   29N    , 

 , 1d     since   1N    , and 

 , 40d     since   40.N     

Therefore, 29 1 30 40    since 

     , , ,d d d       . This is a 

contradiction. The Euclidean metric does not 

satisfy the Hurwitz signal constellation   

constructed by the primitive Hurwitz integer 

3 3i j k     . 

 

In the following definition, we define a new 

set named the encoder Hurwitz integer, which 

consists of the primitive Hurwitz integers that 

have the "division with small remainder" 

property. 

 

Definition 3.1 Let 1 2 3 4i j k         be 

a primitive Hurwitz integer. If a primitive 

Hurwitz integer   does not satisfy the 

condition 
( )

( )
2

N
N N


 
  

  
  

 (see 

proposition 3.2) with respect to the related 

modulo function, then it is called an encoder 

Hurwitz integer. Note that a primitive 

Hurwitz integer  , each component of which 

is in 
1

2
 , is an encoder Hurwitz integer. 

 

The above definition is flexible. So, the set of 

encoder Hurwitz integers is expandable or 

collapsible depending on the related modulo 

technique. According to Definition 3.1, the 

set of encoder Hurwitz integers in this study 
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consists of the primitive Hurwitz integers, 

each component of which is not an odd 

integer (or each component of which is not the 

same parity). In other words, the set of 

encoder Hurwitz integers in this study 

consists of the primitive Hurwitz integers, 

each component of which is either in 
1

2
  

or not an odd integer (or components are not 

the same parity). In mathematics, parity is the 

property of an integer of whether it is even or 

odd [26].  

 

Let us now show that the modulo function   

is a ring isomorphism when   is an encoder 

Hurwitz integer. 

 

Theorem 3.1 Let   be an encoder Hurwitz 

integer, and let  1 2,
N

z z


 . The map 

 :
N 

   is a ring homomorphism. 

 

Proof Let   be an encoder Hurwitz integer 

and, let 
1 2 ( ), .Nz z   By eq. (5), we get 

 

 
 

1
1 1 1mod

z
z z z

N



  


 

 
 

and  

 

 
 2

2
22 mod

z
z z z

N



  


  .  

 

We suppose that 
 

1
1

z

N





  and 

 
1

2

z

N





 , where 1  and 2  are Hurwitz 

integers, each component of which is in 

integers.  Therefore, we get  

 

 1 1 1z z  
             

(8) 

 

and  

 

 2 2 2z z   ,                       (9) 

respectively. Since

 
 

 
1 2

1 2 1 2=
z z

z z z z
N




 




    , eq.(8) 

and eq. (9), then we get 

 

     1 2 1 1 2 2z z z z             

 

    
 

1 1 2 2z z

N

     




  
         

 

   1 1 2 2= z z                  

 

   

 
1 1 2 2z z

N

    




  
    

 

   1 1 2 2z z          

 

   

 
1 2

1 2

z z

N

  
   




   .  

 

Since 1  and 2  are the Hurwitz integers, 

each component of which is in integers, then 

1 2 1 2      . Hereby, we get 

 

   1 2 1 1 2z z z         

 

 
    

 
1 2

2 1 2

z z
z

N

 



  
   




     

 

   
    

 
1 2

1 2

z z
z z

N

 

 

  
  




   . 

 

By eq. (5), we get

      1 2 1 2 modz z z z        . 

 

On the other hand, according to the modulo 

function in eq. (5), we get 

 

 
 

 
1 2

1 2 1 2 1 2mod
z z

z z z z z z
N




  


   .  
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By eq. (8) and eq. (9), we get 

 

       1 2 1 1 2 2z z z z           

 

     
 

1 1 2 2z z

N

     




 
        

 

 

   1 2 1 2 1 2z z               

 

   
 

 
1 2 1 2

1 2

z
z z

N



 

  
  




   

 

     

 
1 2 1 2z z z

N

     




 . 

 

Since   ,N    then, we get 

 

     1 2 1 2 1 2 1 2z z z z             

  

     1 2 1 2 1 2z z z                 

 
 

 

 

   

 
1 2 1 2z z z

N N

     

 
   .   

            

Since 1 2 1 2  , 

   1 2 1 2z z      and 

 

 

 1 2 1 2z z

N

    

 
 , then we get 

 

     1 2 1 2 1 2 1 2z z z z           

 

     1 2 1 2 1 2z z z          

 

 
   

 
1 2

1 2

z z
z

N

 



 
 


   

 

   
   

 
1 2

1 2

z z
z z

N

 

 

 
 


  . 

 

By eq. (5), we get

     1 2 1 2 modz z z z      . 

 

Consequently,   function is a ring 

homomorphism. This completes this proof.
 

 

Theorem 3.2 Let   be an encoder Hurwitz 

integer. Then, 
( )N   . 

 

Proof Let   be an encoder Hurwitz integer 

and, let 
1 2 ( ), .Nz z   According to Theorem 

3.1,   function is a ring homomorphism. The 

modulo function in Definition 2.6 is a 

surjective ring homomorphism since 

 ( )( ) | ImNz z      . If  0z  , 

then  0 0  . On the other hand, If 1z  , 

then ( ) 1z  . Hereby, the modulo function 

  is a bijective ring homomorphism since 

   ( ) | ( ) 0 0NKer z z      .  

 

Consequently, the modulo function   is a 

ring isomorphism since it is both a surjective 

ring homomorphism and a bijective ring 

homomorphism, i.e. 
( ) .N    This 

completes the proof. 

 

The following proposition demonstrates that 

the encoder Hurwitz integers have the 

"division with small remainder" property. 

 

Proposition 3.3 Let   be an encoder 

Hurwitz integer. Then,     .N z N   

 

Proof Let 1 2 3 4i j k         be an 

encoder Hurwitz integer. If encoder Hurwitz 

integer  , each component of which is in 

1

2
 , then     N z N   holds on. For 

encoder Hurwitz  , each component of 

which is in integers, let us analyze step by 

step. 

 

Case 1 Let   be an encoder Hurwitz integer, 

each component of which is in integers. 

Suppose that let 1  be an even integer, and let 
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2 , 3  and 4  be odd integers. Therefore, 

 N   is an odd integer. By eq (5), we get 

 

  1z z z     .            

 

Therefore, we get 

 

 1 1 1 1 1 1z z z z z               
 

  

   
z z

N N

 

 
  .   

                                 

Since 1 2 3 4i j k        , then we get 

 

 
     

1 31 2
zz z

z i j
N N N



 
 

  


   

        
   

     

 

     
4 1 2z z z

k i
N N N

  

  

 
    
 

          

 

 

   
3 4
z z

j k
N N

 

 
 

 
 

       
1 1 2 2z z z z

i
N N N N

   

   

 
    

 
   

 

       
3 3 4 4
z z z z

j k
N N N N

   

   

   
      
   
   

. 

 

Since 1  is an even integer, 2 , 3  and 4  

are odd integers,  N   is an odd integer, and 

 
2

N 
 is not an integer, then we get 

 

   
1 1 1

0 ,
2

z z

N N

 

 
                           

 

   
2 2 1

0 ,
2

z z

N N

 

 
                           

   
3 3 1

0 ,
2

z z

N N

 

 
                           

 

   
4 4 1

0
2

z z

N N

 

 
   .                         

 

Therefore, we get 

 

       
1 1 2 2z z z z

N N
N N N N

   

   

   
     

   
   

 

 

       
3 3 4 4
z z z z

N N
N N N N

   

   

   
      

   
   

 

 
2 2 2 2

1 1 1 1
1.

2 2 2 2

       
           
       

            

 
 

Hereby, we get 

 

       1 1N z N N z                

  

 
  

1
1N z

N



  .                             

Consequently, ( ( )) ( )N z N  .  

 

Case 2 Let   be an encoder Hurwitz integer 

each component of which is in integers. 

Suppose that let
 1  and 2  be even integers, 

and let 3  and 4  be odd integers. We should 

check whether to verify or not eq. (6) in 

Proposition 3.1 since  N   is an even 

integer. Let 
 

.
2

N
z


  Then, we get 

 

   1( )
.

2 2 2

N NN


 
    

  
 

    

 
 

Therefore, we get 

 

1 1 1 1( ) ( ) ( )
( )

2 2 2

N N N


  
            
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2 2

 
  .            

 

Since 1 2 3 4i j k        , then we get  

 

 1 31 2 4

2 2 2 2 2

N
i j k

   
 

      
         

     
 

 

31 2 4

2 2 2 2
i j k

  
   

 
 

1 1 2 2

2 2 2 2
i

    
    

   
 

3 3 4 4

2 2 2 2
j k

      
      

  
.

 
 

1 1

2 2

 
  and 2 2

2 2

 
  since 1  and 2  

are even integers. By eq. (3), then 

3 3 1

2 2

 



 and 4 4 1

2 2

 



 since 3  

and 4  are odd integers. Therefore, we get 

 

 1 1 1 2 2

2 2 2 2 2

N
i

    
 

   
      

  
    

 
 

3 3 4 4
1 1 1 1

2 2 2 2 2 2
j k j k

      
   

 
    

  
.     

 

Hereby, we get 

 

 1 1 1
=

2 2 2

N
N N j k


 
    

            
 

 
  2 2

1 1 1

2 2 2

N
N N 


 

      
                  

 

 

 1 1 1 1

2 4 4 2

N
N

N







  
     

    
 

( ) ( )
( ( ))

2 2

N N
N 

 
  . 

 

Consequently, 
( )

( ( )) ( ).
2

N
N N


   On the 

other hand, let 
( )

.
2

N
z


  Then we get 

 

  1 .z z z                                  
 

 

Hereby, we get 

 
1 1 1 1( )z z z                          

 

 

   
1 1 z z
z z

N N

 
 

 

     .

 

 

Since 1 2 3 4i j k        , then we get 

 

  
     

1 31 2
zz z

z i j
N N N



 
 

  


   

        
   

      

 

 

     
4 1 2z z z

k i
N N N

  

  

 
    
 

         

 

   
3 4
z z

j k
N N

 

 
    

                        

       
1 1 2 2z z z z

i
N N N N

   

   

 
    

 
 

  

 

       
3 3 4 4
z z z z

j k
N N N N

   

   

   
      
   
   

.      

 

Since 
( )

,
2

N
z


  then we get

 
 

   
1 1 1

0 ,
2

z z

N N

 

 
      
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   
2 2 1

0 ,
2

z z

N N

 

 
                         

 

   
3 3 1

0 ,
2

z z

N N

 

 
                         

 

   
4 4 1

0 .
2

z z

N N

 

 
                         

 

 

Therefore, we get 

 

       
1 1 2 2z z z z

N N
N N N N

   

   

   
     

   
     

 

       
3 3 4 4
z z z z

N N
N N N N

   

   

   
      

   
     

 
2 2 2 2

1 1 1 1
1

2 2 2 2

       
           
       

.

 
 

Therefore, we get 

 

       1 1N z N N z                
 

 

 
 

1
( ) 1N z

N



  .          

 

Consequently,     .N z N   

 

Case 3 Let   be an encoder Hurwitz integer, 

each component of which is in integers. 

Suppose that 1 , 2  and 3  are even integers, 

and 4  is an odd integer. Therefore,  N   is 

an odd integer. Then we get 

 

  1z z z     .          

 

Hereby, we get 

 

 1 1 1 1z z z             

               

1 1

( ) ( )

z z
z z

N N

 
 

 

     .        

 

Since 1 2 3 4i j k        , then we get 

 

 
     

1 31 2
zz z

z i j
N N N



 
 

  


   

        
   

  

 

 

     
4 1 2z z z

k i
N N N

  

  

 
    
 

         

 

   
3 4
z z

j k
N N

 

 
            

 

       
1 1 2 2z z z z

i
N N N N

   

   

 
    

 
 

   

 

       
3 3 4 4
z z z z

j k
N N N N

   

   

   
      
   
   

.

 
 

Since 4  is an odd integer, 1 , 2  and 3  are 

even integers, and  N   is an odd integer, 

then we get 

 

   
1 1 1

0 ,
2

z z

N N

 

 
       

                   

   
2 2 1

0 ,
2

z z

N N

 

 
                         

 

   
3 3 1

0 ,
2

z z

N N

 

 
                         

 

   
4 4 1

0 .
2

z z

N N

 

 
                        

 

 

Hereby, we get 
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       
1 1 2 2z z z z

N N
N N N N

   

   

   
     

   
   

 

 

       
3 3 4 4
z z z z

N N
N N N N

   

   

   
      

   
     

 
2 2 2 2

1 1 1 1
1

2 2 2 2

       
           
       

.

 
 

Therefore, we get 

 

       1 1N z N N z                

 
 

  
1

1
( )

N z
N




  .   

                            

Then, we get     N z N  . 

Consequently,     N z N  . This 

completes the proof. 

 

The following examples give an example for 

each case in the proof of Proposition 3.3. 

 

Example 2 (Case 1) 1 3 2i j k      is an 

encoder Hurwitz integer. By eq. (5), the 

Hurwitz signal constellation   is 

 

     

   

   

   

   

   

   

0 0,  1 1,  2 2,

3 2 ,  4 1 2 ,

5 2 ,  6 1 2 ,

7 2 2 ,  8 2 2 ,

9 1 2 ,  10 2 ,

11 1 2 ,  12 2 ,

13 2,  14 1,

i j k j k

j k j k

j k j k

j k j k

j k i j k

  

 

 







 



 



  

 

 

 

 

 

 

   
 

       
 

     
 

        
 

       
       
 
     

. 

 

The set contains fifteen elements since 

( ) 15.N    The norm of each element in the 

set is less than the norm of the primitive 

Hurwitz integer (encoder Hurwitz integer) .  
 

Example 3 (Case 2) 2 3 2i j k      is 

an encoder Hurwitz integer. By eq. (5), the 

Hurwitz signal constellation   is 

       

   

   

   

   

   

   

   

0 0,  1 1,  2 2, 3 3,

 4 1 2 2 , 5 2 2 ,  

6 1 2 , 7 2 ,  

8 1 2 , 9 2 2 ,  

10 1 2 , 11 2 ,

 12 1 2 , 13 2 2 ,  

14 1 2 2 , 15 2 2 ,  

16 2, 17 1

i j k j k

j k j k

j k j k

j k j k

j k j k

i j k i j k

   

 

 

 

 

 

 



 

   

 

 

 

 

 

 

 

   

       

      

     
 

     

     

        

   


 
 
 
 
 
 


 
 
 
 
 
  

. 

 

The set contains eighteen elements since 

( ) 18.N    The norm of each element in the 

set is less than the norm of a primitive 

Hurwitz integer (encoder Hurwitz integer) .  
 

Example 4 (Case 3) 2 3 2 2i j k      is 

an encoder Hurwitz integer. By eq. (5), the 

Hurwitz signal constellation   is

  

 

       

   

   

   

   

   

   

 

0 0,  1 1,  2 2, 3 3,

4 1 2 2 2 , 5 2 2 2 2 ,

6 3 , 7 2 ,

8 1 , 9 ,

10 1 , 11 1 ,

12 , 13 1 ,

14 2 , 15 3 ,

16 2 2 2 2

i j k i j k

i j k i j k

i j k i j k

i j k i j k

i j k i j k

i j k i j k

i j

   

 

 

 

 

 

 





   

 

 

 

 

 

 



   

       

        

        

        


      

       

    

   

   

,

17 1 2 2 2 ,  18 3,

19 2,  17 1

k

i j k 

 

 

 

 
 
 
 
 
 
 
  
 
 
 
 
 
 
       
 

     

. 

 

The set contains twenty-one elements since 

( ) 21.N    The norm of each element in the 

set is less than the norm of a primitive 

Hurwitz integer (encoder Hurwitz integer) .  

 

Example 2 (case 1), example 3 (case 2), and 

example 4 (case 3) verify all the conditions to 

be a Euclidean metric. Also, the Euclidean 

division algorithm works for these primitive 

Hurwitz integers (encoder Hurwitz integers). 

 

In the following example, according to the 

presented algebraic construction technique in 

[16] by Rohweder et al., we show that a 

Hurwitz integer  , each component of which 
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is in integers, does not have the "division with 

small remainder" property. 

 

Example 5 In [16], Rohweder et al. 

presented the new construction method for 

Hurwitz integers by 

 

 
 
z

z z
N




 


  ,         (10)  

 

where   is a primitive Hurwitz integer and 

 N
z


 . They proposed four-dimensional 

Hurwitz signal constellations are obtained 

from the following mapping 

 

   ,          (11) 

 

where   is the subset of Lipschitz integers. 

It can be evaluated by 

 

    | ,
N

a bj a b  
   ,             

 

where  N 
 denotes the ring of integers 

modulo  N  . Also,   in eq. (11) is the 

corresponding coset of half-integers. It can be 

calculated by 

 

 ( ) | ,h w h                   

 

where 
1 1 1 1

.
2 2 2 2

w i j k     With respect to 

the related modulo technique in [16], the size 

of the set in eq. (11) is  22N  . We take an 

example 3 i  in [16, Table I]. We have 
 

 5 5 j   since 
 3

5
2

N i
a


   and 

 3
5.

2

N i
b


   By eq. (10), we get 

 

  
  

 
5 5 3

5 5 5 5 3
10

j i
j j i

 
        

 

 
15 5 15 5

5 5 3
10

i j k
j i

  
            

 

  5 5 1 3 5 5 3 3j j i j i j k                                                      

 

2 2i j k    .                                      

 

Since     5 35N j N i    , then we get 

 5 5 0mod 3j i   . Also, (0) 0   since 

0a   and 0b  . So, we conclude that the set 

in eq. (11) has elements less than two hundred 

elements since 

     0 5 5 0mod 3j i      . This 

contradicts the size of the Hurwitz signal 

constellation with two hundred elements. By 

Proposition 3.1, we say that the Hurwitz 

(Lipschitz) integer 3 i  is not a suitable 

Hurwitz (Lipschitz) integer for constructing 

the Hurwitz signal constellation. Similarly, 

we can show that the primitive Hurwitz 

(Lipschitz) integer 2 2i j k    is not a 

suitable Hurwitz (Lipschitz) integer for 

constructing the Hurwitz signal constellation 

with respect to the algebraic construction 

technique in [16].  

 

4. PERFORMANCES OF HURWITZ 

SIGNAL CONSTELLATIONS FOR 

TRANSMISSION OVER AWGN 

CHANNEL 

 

In this section, we present some distance and 

performance measures. In addition, we 

investigate the performances of Hurwitz 

signal constellations constructed by primitive 

Hurwitz integers (encoder Hurwitz integers), 

each component of which is in halves-

integers, for transmission over the additive 

white Gaussian noise (AWGN) channel by 

the agency of the constellation figure of merit 

(CFM), average energy, and signal-to-noise 

ratio (SNR) gain. 

 

We follow the procedures in [27] for distance, 

performance measures, and set partitioning 

property. The average energy of a signal 

constellation denoted by   is computed by 
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 
  

  1

0

1
N

z

N z
N



 






  .          

 

The squared Euclidean distance of two 

Hurwitz integers in the Hurwitz signal 

constellation is defined as 

 

   ,Ed N     ,          

 

and the minimum squared Euclidean distance 

of the signal constellation is 

 

 2 min ,Ed





  


 ,           

 

where ,    . In [28], Forney and Wei 

proposed the constellation figure of merit 

(CFM) to compare signal constellations of 

different dimensions. The CFM is the ratio of 

the minimum squared Euclidean distance and 

the average energy per two-dimension. The 

CFM of a M  dimensional signal 

constellation is computed by 

 
2

2

M
CFM 




 .           

 

A higher CFM leads to better performance for 

transmission over an AWGN channel [27]. 

Signal-to-noise ratio (SNR or S/N) is a 

measure used in science and engineering that 

compares the level of a desired signal to the 

level of background noise [29]. SNR is 

defined by the ratio of signal power to the 

noise power, often expressed in decibels. A 

ratio higher than 1:1 (greater than 0 dB) 

indicates more signal than noise [29]. 

Asymptotic coding gain means a higher 

signal-to-noise ratio (SNR) [1]. The SNR of 

signal and noise power is computed by 

 

 1010 log   signalSNR CFM of signal          (12)      

 

and 

 

 1010 log   noiseSNR CFM of noise  ,        (13)    
 

 

respectively. As the noise, we consider the 

Gaussian signal constellation  , where   is 

a primitive Gaussian integer. Therefore, the 

SNR code gain of a Hurwitz signal 

constellation over the AWGN channel is 

 

dBSNR SNR SNR


  , 

 

where Hurwitz signal constellation  , and 

Gaussian signal constellation  . By eq. (12) 

and eq. (13), 

 

 1010 log   dBSNR CFM of    

 

 1010 log   CFM of    

  

10

  
10 log

  

CFM of

CFM of





 
   

 
.            

 

Note that the number of elements in the 

Hurwitz signal constellation and the Gaussian 

signal constellation should be the same to 

compare performances over the AWGN 

channel. According to the modulo function in 

Definition 2.6, the Hurwitz signal 

constellations that have the same size as 

Gaussian signal constellations almost show 

the same performances for transmission over 

the AWGN channel. Moreover, the squared 

Euclidean distance of the Hurwitz signal 

constellations and the Gaussian signal 

constellations, the size of which is the same, 

is one. The set partitioning aims to find a 

subset with a large squared Euclidean 

distance. Therefore, we obtain the Hurwitz 

signal constellations, which have the larger 

CFM, showing better performance for 

transmission over the AWGN channel. 

 

A residue class ring of Hurwitz integers   

arises from the residue class ring of integers 

    0,1, , 1
N

N


    for an integer 

( )N  , where   is a proposed primitive 

Hurwitz integer. If  N   is not a prime 

integer, then we can partition the set   into 
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subsets of equal size. Let  N c d   . In 

other words, we can partition the set   into 

c  subsets 
   0 1

, ,
c

 


  each with d  

elements. The subsets correspond to the 

Hurwitz signal constellations 
   0 1

, , ,
c

 


  

where 
           0

0 , , 2 , , 1c c d c          , 

and 
   1 1

, ,
c

 


  are the cosets of 

 0

 , i.e. 

        0
:

l
z z l       , where 

 
     

  

, 2 , 3

, , 1

l
l l c l c

l d c

  





  



   
  

    

.  

 

The subset 
 0

  is an additive subgroup of 

  since the modulo function   is an 

isomorphism with respect to addition. 

 

The SNR gain of the subset of a proposed 

Hurwitz signal constellation over the AWGN 

channel is computed by 

 

(0)

10

 
10 logdB

CFM
SNR

CFM



 

   
 
 

,        

 
 

where the subset of a proposed Hurwitz signal 

constellation (0)


, and Gaussian signal 

constellation  . 

 

In the rest of this paper, we consider primitive 

Hurwitz integers (encoder Hurwitz integers) 

such that 1 2 3 4 0       . We 

investigate the performance of Hurwitz signal 

constellations constructed by primitive 

Hurwitz integers (encoder Hurwitz integers), 

each component of which is in 
1

2
 , over 

the AWGN channel.  

 

In Table 1, we present the performance of 

Hurwitz signal constellations constructed by 

primitive Hurwitz integers (encoder Hurwitz 

integers), each component of which is in 

1

2
 , over the AWGN channel by means of 

average energy, CFM, and SNR coding gain. 

In Table 1, the Hurwitz signal constellations 

obtained by the modulo function in Definition 

2.6 have almost similar properties as 

Lipschitz signal constellations in the paper of 

Freudenberger et al. [27]. The performance of 

Hurwitz signal constellations in Table 1 is not 

so good but better than nothing according to 

the performance of the Lipschitz signal 

constellations in [27, Table I] over the 

AWGN channel. Moreover, the performances 

of proposed Hurwitz signal constellations 

constructed by primitive Hurwitz integers 

(encoder Hurwitz integers), each component 

of which is in integers, are the same as the 

performances of proposed Lipschitz signal 

constellations in [27, Table I]. 

 

In Table 2, we present the performance of the 

proposed Hurwitz signal constellation 

constructed by proposed primitive Hurwitz 

integers (encoder Hurwitz integers), each 

component of which is in 
1

2
 , over the 

AWGN channel by means of average energy, 

CFM, and SNR coding gain. The proposed 

Hurwitz signal constellations in Table 2 have 

advantage performances for transmission 

over the AWGN channel by set partitioning 

property. There also exist different proposed 

primitive Hurwitz integers (encoder Hurwitz 

integers) used to construct proposed Hurwitz 

signal constellations that have higher CFM 

and lower average energy in equal size. You 

can see the following examples. Moreover, 

the below examples are given clues about the 

construction of tables. 

 

Example 6 We consider the proposed 

Hurwitz signal constellation with 

3 13 39N     elements. There exist four 

different proposed primitive Hurwitz integers 

(encoder Hurwitz integers) used to construct 

the proposed Hurwitz signal constellation 

with 39.N   These proposed primitive 

Hurwitz integers (encoder Hurwitz integer) 
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are 
7 7 7 3

,
2 2 2 2

i j k  
 

9 5 5 5
,

2 2 2 2
i j k    

9 7 5 1
,

2 2 2 2
i j k    and 

11 5 3 1
.

2 2 2 2
i j k     

 

There is no Gaussian signal constellation with 

39N   elements. Note that proposed 

primitive Hurwitz integers (encoder Hurwitz 

integers) are not to be the same size as 

primitive Gaussian integers. Therefore, we 

could use set partitioning property on 

proposed primitive Hurwitz integers (encoder 

Hurwitz integers). Firstly, we consider 

proposed primitive Hurwitz integers (encoder 

Hurwitz integer) 
9 7 5 1

2 2 2 2
i j k  

 
and 

11 5 3 1

2 2 2 2
i j k   . For the proposed Hurwitz 

signal constellation 9 7 5 1

2 2 2 2
i j k  

, the minimum 

squared Euclidean distance, average energy 

and CFM are 1, 12.5128  and 0.1598 , 

respectively. The proposed Hurwitz signal 

constellation 9 7 5 1

2 2 2 2
i j k  

 is partition the 3c   

different subsets with each set 13d   

elements. The minimum squared Euclidean 

distance, average energy, and CFM of 

Hurwitz signal constellation (0)

9 7 5 1

2 2 2 2
i j k  

 are 

9 , 11.5385 , and 1.5600 , respectively. The 

minimum squared Euclidean distance, 

average energy, and CFM of the Gaussian 

signal constellation 3 2i  with 13  elements 

are 1, 2.1539 , and 0.4643 , respectively. 

Therefore, the SNR coding gain of the 

proposed Hurwitz signal constellation 
(0)

9 7 5 1

2 2 2 2
i j k  

 is 

 
(0)

9 7 5 1

2 2 2 2
9 7 5 1

3 22 2 2 2

  

10log
  

i j k

i j k
i

CFM of

SNR
CFM of

  

  


 
 

  
 
 

 

 

1.5600
10log 5.26 

0.4643
dB

 
  

 
.                   

 

The minimum squared Euclidean distance, 

average energy, and CFM of the proposed 

Hurwitz signal constellation 
11 5 3 1

2 2 2 2
i j k  

 are 

1 , 12.5128 , and 0.1598 , respectively. The 

proposed Hurwitz signal constellation 

11 5 3 1

2 2 2 2
i j k  

 is partition the 3c   different 

subsets with each set of 13d   elements. The 

minimum squared Euclidean distance, 

average energy, and CFM of Hurwitz signal 

constellation (0)

11 5 3 1

2 2 2 2
i j k  

 are 9 , 11.5385 , and 

1.5600 , respectively. The average energy, 

minimum squared Euclidean distance and 

CFM of Hurwitz signal constellations 
(0)

9 7 5 1

2 2 2 2
i j k  

 and (0)

11 5 3 1

2 2 2 2
i j k  

 are the same. So, 

Hurwitz signal constellations (0)

9 7 5 1

2 2 2 2
i j k  

 and 

(0)

11 5 3 1

2 2 2 2
i j k  

 have the same performances for 

transmission over the AWGN channel. 

Lastly, we consider proposed primitive 

Hurwitz integers (encoder Hurwitz integers) 

7 7 7 3
,

2 2 2 2
i j k    and 

9 5 5 5

2 2 2 2
i j k   . 

For both proposed Hurwitz signal 

constellations, the minimum squared 

Euclidean distance, average energy, and CFM 

are 1 , 12.5128 , and 0.1598 , respectively. The 

average energy, minimum squared Euclidean 

distance and CFM of (0)

7 7 7 3
,

2 2 2 2
i j k  

 and 

(0)

9 5 5 5

2 2 2 2
i j k  

 are 3 , 11.5385  and 0.5200 , 

respectively. Therefore, the SNR coding gain 

of these proposed Hurwitz signal 

constellations is

0.5200
10log 0.49 .

0.4643
dBSNR dB

 
  

 
  

 

Consequently, the proposed Hurwitz signal 

constellations 9 7 5 1

2 2 2 2
i j k  

 and 11 5 3 1

2 2 2 2
i j k  

 

have higher CFM, better SNR coding gain, 

and larger minimum square Euclidean 

distance. We choose the proposed primitive 
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Hurwitz integer (encoder Hurwitz integer) 

11 5 3 1

2 2 2 2
i j k    to represent in Table 2. 

 

Example 7 We consider the proposed 

Hurwitz signal constellation with 

3 29 87N     elements. There exist eight 

different proposed primitive Hurwitz integers 

(encoder Hurwitz integers) used to construct 

proposed Hurwitz signal constellations with 

87.N   These proposed primitive Hurwitz 

integers (encoder Hurwitz integers)  are 

11 11 9 5
,

2 2 2 2
i j k    

13 9 7 7
,

2 2 2 2
i j k    

13 11 7 3
,

2 2 2 2
i j k    

13 13 3 1
,

2 2 2 2
i j k  

15 7 7 5
,

2 2 2 2
i j k    

1115
,

2 2

1

2

1

2
i j k  

 
17 5 5 3

,
2 2 2 2

i j k    and 
17 7 3 1

.
2 2 2 2

i j k     

 

There is no Gaussian signal constellation with 

87N   elements. The minimum squared 

Euclidean distance,  average energy, and 

CFM of proposed Hurwitz signal 

constellations constructed by these proposed 

primitive Hurwitz integers (encoder Hurwitz 

integers)  are 1 , 28.5057 , and 0.0702 , 

respectively. These proposed Hurwitz signal 

constellations are partition the 3c   different 

subsets with each set 29d   elements. We 

consider the Hurwitz signal constellations 
(0)

13 11 7 3

2 2 2 2
i j k  

, and (0)

17 7 3 1

2 2 2 2
i j k  

 with 29

elements. The minimum square Euclidean 

distance of these signal constellations is larger 

than others. The minimum square Euclidean 

distance of these signal constellations is 9 , 

but the others are 6 . Also, the average energy 

and CFM of these signal constellations are 

27.5172  and 0.6541 , respectively, but the 

others are 27.5172  and 0.4361 , respectively. 

The minimum squared Euclidean distance, 

average energy, and CFM of the Gaussian 

signal constellation 5 2i  with 29  elements 

are 1, 4.8276 , and 0.2071 , respectively. 

Therefore, the SNR coding gain of Hurwitz 

signal constellations (0)

13 11 7 3

2 2 2 2
i j k  

 and 

(0)

17 7 3 1

2 2 2 2
i j k  

 is

0.6541
10log 4.99 

0.2071
dBSNR dB

 
  

 
.
 

 
Table 1 Table of CFM, energy and SNR coding 

gain of Hurwitz signal constellations constructed 

by primitive Hurwitz integers (encoder Hurwitz 

integer), each component of which is in 
1

2
 ,        

( d  : The number of elements in the Hurwitz 

signal constellation,  : Gaussian signal 

constellation,  : Hurwitz signal constellation ) 

d 

Primitive 

Hurwitz 

Integers    

Signal 

Constellations 
SNR 

[dB] 
CFM 

ENERGY 

    

5  
3 3 1 1

2 2 2 2
i j k    

1.2500  1.6667  
1.25  

0.8000  1.2000  

13  
5 3 3 3

2 2 2 2
i j k    

0.4643  0.5200  0.49
 2.1538  3.8462  

17  
5 5 3 3

2 2 2 2
i j k    

0.3542  0.3864  
0.38  

2.8235  5.1765  

23  
9 3 3 1

2 2 2 2
i j k    

0.2404  0.2551  0.26
 4.1600  7.8400  

29  
9 5 3 1

2 2 2 2
i j k    

0.2071  0.2180  0.22
 4.8276  9.1724  

37  
11 5 1 1

2 2 2 2
i j k    

0.1623  0.1690  
0.18  

6.1622  11.8378  

41  
11 5 3 3

2 2 2 2
i j k    

0.1464  0.1519  0.16
 6.8293  13.1707  

53  
13 5 3 3

2 2 2 2
i j k    

0.1132  0.1165  0.12
 8.8302  17.1698  

61  
15 3 3 1

2 2 2 2
i j k    

0.0984  0.1008  0.10
 10.1639  19.8361  

65  
11 11 3 3

2 2 2 2
i j k    

0.0923  0.0945  0.10
 10.8308  21.1692  

 

73  

17 1 1 1

2 2 2 2
i j k    

0.0822  0.0839  0.09
 12.1644  23.8356  

85  
13 13 1 1

2 2 2 2
i j k    

0.0706  0.0719  
0.08  

14.1467  27.8353  

89  
17 7 3 3

2 2 2 2
i j k    

0.0674  0.0686  
0.08  

14.8315  29.1685  

97  
19 5 1 1

2 2 2 2
i j k    

0.0619  0.0628  0.06
 16.1649  31.8351  

  

Consequently, the Hurwitz signal 

constellations that have higher CFM and 

larger minimum square Euclidean distance 
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are (0)

13 11 7 3

2 2 2 2
i j k  

 and (0)

17 7 3 1

2 2 2 2
i j k  

. We choose 

the proposed primitive Hurwitz integer 

13 11 7 3

2 2 2 2
i j k    to represent in Table 2. 

 
Table 2 Table of CFM, energy and SNR coding 

gain of Hurwitz signal constellations constructed 

by proposed primitive Hurwitz integers (encoder 

Hurwitz integers), each component of which is in 

1

2
 ,  ( N : The size of Hurwitz signal 

constellation, c : the number of subsets of the 

proposed Hurwitz signal constellation, d : the 

size of subsets of the proposed Hurwitz signal 

constellation,  : Gauss signal constellation, 

 0

 : the subset of  , where   is the 

proposed Hurwitz constellation ) 

N c d   

Proposed Primitive 
Hurwitz Integers 

   

Signal 
Constellations 

 

SNR

dB

 

CFM 

ENERGY 

   0

  

15 3 5   
7 3 1 1

2 2 2 2
i j k    

1.2500  1.6667  
1.25  

0.8000  3.600  

39 3 13 

 

11 5 3 1

2 2 2 2
i j k    

0.4643  1.5600  
5.26  

2.1538  11.5385  

51 3 17 

 

11 7 5 3

2 2 2 2
i j k    

0.3542  1.1591  
5.15  

2.8235  15.5294  

75 3 25 

 

13 9 7 1

2 2 2 2
i j k    

0.2404  0.7653  
5.03  

4.1600  23.5200  

87 3 29 

 

13 11 7 3

2 2 2 2
i j k    

0.2071  0.6541  
4.99  

4.8276  27.5170  

185 5 37 

 

21 13 9 7

2 2 2 2
i j k    

0.1623  0.8447  
7.16  

6.1622  59.1892  

205 5 41 

 

27 9 3 1

2 2 2 2
i j k    

0.1464  0.7593  
7.15  

6.8293  65.8537  

265 5 53 

 

27 15 9 5

2 2 2 2
i j k    

0.1132  0.5824  
7.11  

8.8302  85.8491  

427 7 61 

 

33 21 13 3

2 2 2 2
i j k    

0.0984  0.7058  
8.56  

10.1639  138.8520  

455 7 65 

 

33 11 9 3

2 2 2 2
i j k    

0.0923  0.4724  
7.09  

10.8308  105.8460  

511 7 73 

 

33 21 17 15

2 2 2 2
i j k    

0.0822  0.5874  
8.54  

12.1644  166.8490  

595 7 85 

 

33 29 21 3

2 2 2 2
i j k    

0.0706  0.5030  
8.53  

14.1467  194.847  

623 7 89 

 

35 33 13 3

2 2 2 2
i j k    

0.0674  0.4800  
8.53  

14.8315  204.1800  

873 9 97 

 

41 31 29 3

2 2 2 2
i j k    

0.0619  0.5654  
9.61  

16.1649  286.5150  

 

 

5. CONCLUSION 

 

We showed, with the help of a proposition 

(Proposition 3.1), some Hurwitz integers are 

inappropriate for constructing Hurwitz signal 

constellations with ( )N   elements, where   

is a primitive Hurwitz integer. To solve this 

problem, we presented a proposition to help 

find out the primitive Hurwitz integers that 

have the division with small remainder (see 

Proposition 3.1).  We also called the set of 

these integers the "Encoder Hurwitz Integers" 

set. We showed, with the help of a proposition 

(see Proposition 3.3), the Euclid division is 

satisfied by encoder Hurwitz integers. 

Moreover, we presented new Hurwitz signal 

constellations constructed by Hurwitz 

integers, each component of which is in half-

integers. We investigated the performances of 

these signal constellations for transmission 

over the AWGN channel. 
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