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ABSTRACT: This paper addresses some open issues in optimization of generic certainty 

equivalents. Such equivalents have been modelled using increasing functionals of the discounted 

sums of the per-stage unbounded-above cost or reward functions defined on the paths of the 

underlying controlled Markov chain on general state spaces which models the random dynamics of 

the system. Examples of such functionals include logarithmic and power utilities as well as the robust 

Risk-Sensitive preferences among others. The critical results that were obtained were the solutions 

of this problem for generic unbounded-above per-stage cost minimization and for per stage reward 

maximization, both satisfying a 𝑤-growth (hence unbounded) condition in the nite horizon setup. In 

the process, we establish certain nontrivial closure properties of the dynamic programming operators. 

In addition, we provide a real-life example from Portfolio Consumption. 

Keywords: Certainty Equivalents, Full-Path Accumulated Setup, Unbounded Rewards and Costs, 

Discounted Path Sums, Robust or Risk-Sensitive Preferences. 
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1. INTRODUCTION  

The main motivation of this paper is to address some open issues in optimization of generic 

(without assuming any specific structure) certainty equivalents which are economic quantities 

defining the continuation utilities (or costs) in any random dynamic optimization problem from a 

given time (or stage/period) onwards. Such certainty equivalents have been modelled using increasing 

functionals of the discounted sums of the generic (only measurability but no continuity assumption) 

per-stage unbounded above cost or reward functions defined on the paths of the underlying controlled 

Markov chain on general (Polish) state and action spaces which models the random dynamics of the 

system. Hence, it includes all usual types of such functions, in particular, the robust risk-sensitive 

(see, e.g., Hansen and Sargent, 1995; Howard and Matheson, 1972) as well as the usual logarithmic, 

power etc. functions. 

The notion of risk-sensitive preferences in Markov Decision Processes (MDPs) was formally 

introduced in the seminal paper (Howard and Matheson, 1972) using a stochastic control formulation 

approach (see also, e.g., (Di Masi and Stettner, 1999), (Jacobson, 1973), (Whittle, 1990) and 

references therein) though it was first studied by Bellman (Bellman, 1957) (see p. 329 therein). In 

this criterion, one investigates ‘exponential of integral’ cost or reward which takes into account the 

attitude of the controller with respect to risk. In an uncertain situation when the total payoff 𝑍 is 

random, one wishes to select a concave (increasing) utility function 𝑈 (·) for reward maximization 

(convex for cost minimization), depending on a parameter 𝜃 > 0 representing the degree of risk 

attraction or aversion, which attains the “certainty equivalence", i.e., 𝐸𝑈𝜃 (𝑍) = 𝑈𝜃 (𝐸𝑍). This forces 

𝑈𝜃 (𝓏) = 
1

𝜃
 𝑒𝜃𝓏 (see, e.g., Nowak (Nowak, 2005)), wherein the criterion under study becomes of the 

form = 
1

𝜃
 ln 𝐸[𝑒𝜃𝑍]. This quantity 𝜃 > 0 is called the ‘absolute risk-aversion parameter’. 

In the recent times, several alternatives of risk measurement have come up based on generic 

certainty equivalents 𝑈−1𝐸[𝑈(𝑍)] given general (increasing) forms of the path functional 𝑈(·). We 

note that the use of certainty equivalents goes back about a hundred years to the 1930s (see, e.g., 

(Muliere and Parmigiani, 1993)). A study of the generalization of risk-sensitive preferences in MDP 

setup to generic certainty equivalents in the above sense was recently undertaken in (Bäuerle and 

Rieder, 2014) by implementing the corresponding utility as a ‘full-path accumulated’ functional of 

the underlying random dynamical system, namely, as a certainty equivalent of the time-separable 

additive von Neumann-Morgenstern discounted utility on the entire (finite or infinite) time horizon. 

Therein, the authors considered a discrete-time MDP on a Borel state space with bounded one-stage 

costs over the finite time horizon with general increasing 𝑈(·) and on the innite horizon with 𝑈(·) 

increasing and either concave or convex. 

On the other hand, the economics literature followed a ‘per-stage recursive’ robustness 

approach using the notion of risk-sensitivity as formulated by (Hansen and Sargent, 1995) (see also 

(Hansen et al., 2006), (Hansen and Sargent, 2007) and (Hansen and Sargent, 2008)), namely, as a 

sum of the current (per-stage) reward and the one-step discounted certainty equivalent of the future 

(next-stage) continuation utility wherein this certainty equivalent is computed using a similar concave 

transformation. The generic form of such a recursive approach was first introduced by (Kreps and 

Porteus, 1978) and (Kreps and Porteus, 1979) for the infinite horizon and later extended by (Epstein 

and Zin, 1989) to the infinite horizon. Using the terminology introduced in the recent paper (Basu et 

al., 2022), we call the robustness framework of (Hansen and Sargent, 1995) as the “per-stage 

recursive" approach whereas, again as therein, the corresponding original framework of (Howard and 

Matheson, 1972) is referred to as the “full-path accumulated" approach. These per-stage recursive 
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preferences have been studied extensively in recent years primarily in the context of their connection 

to robustness analysis for economic model misspecifications (see, e.g., (Anderson et al., 2012; Hansen 

and Sargent, 2007)), precautionary savings for life-cycle preferences under monotone risk aversion 

(see, e.g., (Bommier, 2013; Bommier et al., 2017; Bommier and Le Grand, 2019)), climate risk 

modelling for optimal carbon control (see, e.g., (Bommier et al., 2015; Cai and Lontzek, 2019)) and 

risk measures in asset pricing/portfolio optimization (see, e.g., (Bäuerle and Jaskiewicz, 2018; 

Bielecki and Pliska, 2003; Epstein and Zin, 1991; Tallarini, 2000)) among other areas. 

Whereas the applications of the per-stage recursive framework have been so diverse and many, 

the solutions obtained in a vast majority of the above cases (which mainly involved nonlinear 

certainty equivalents) have been somewhat heuristic and sometimes without formal mathematical 

justification as to their existence and uniqueness. Whatever formal methods had been deployed were 

majorly for the linear case which lead to the standard additive von Neumann-Morgenstern preference 

and the generic nonlinear cases were left open, e.g., preference maximization problems for 

multiplicative or exponential functionals. Only recently, some formal results in this direction were 

obtained for a specific problem of stochastic optimal growth (see (Bäuerle and Jaskiewicz, 2018)) 

under certain growth and stability assumptions on the system. However, to the best of our knowledge, 

the generic nonlinear case is still largely open. 

The only work that endeavoured to address this nonlinear setup albeit in the full-path 

accumulated setup for cost minimization is the paper by (Bäuerle and Rieder, 2014). This present 

paper is in some sense the technical successor to (Bäuerle and Rieder, 2014) and aims to address the 

some of the open issues mentioned therein. Notably, (Bäuerle and Rieder, 2014) made certain strong 

assumptions on the boundedness of per-stage cost or reward function which usually fail to hold in the 

real-life scenarios described in the above references. Our paper attempts to address these issues and 

create an extended optimization theory for certainty equivalents modelled using generic increasing 

functionals of the discounted path-sums of the unbounded-above per-stage functions defined on 

general state spaces.  

Our main technical contribution is to solve this optimization problem in the finite horizon case 

for per-stage unbounded costs/rewards satisfying a 𝑤-growth condition (see Theorem 3.2 and 

Corollary 3.3 in Section 3).In the process, a result of much broader (beyond our setup here) potential 

applicability have been proved, namely, certain important closure properties of the dynamic 

programming (Bellman) operators, the compactness of optimal action (sub)sets and the corresponding 

existence of optimizing selectors in Theorem 3.1 in Section 3. We also provide a real-life example 

from Portfolio Consumption Model to illustrate our ideas (see Proposition 4.3 in Section 4). We 

choose such a portfolio model as an example because such models are extremely important in 

business and finance and have regularly been used as canonical examples in certainty equivalent 

formulations. Hence, we believe that such an example would best serve our purpose of illustration. 

We now describe the structure of the paper. Section 2 describes the problem setup as well as 

clarifies the main technical formulations, notations and assumptions. Section 3 proves a very crucial 

result, namely Theorem 3.1 involving the closure properties of the underlying dynamic programming 

operator and then proceeds to the proves the finite horizon results in Theorem 3.2 and Corollary 3.3 

for unbounded per-stage functions satisfying a w-growth condition. Section 4 provides a nontrivial 

application of the obtained results to a real-life Portfolio Consumption problem (see Proposition 4.3). 

We end with Section 5 which provides some pointers to future directions of work as technical 

continuation of this work and, in the process, discuss some limitations of this paper. 
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2. PROBLEM DESCRIPTION 

For a metric space 𝑆, let B (S) denote the Borel 𝜎-algebra on 𝑆, 𝐶𝑏(𝑆) the set of bounded 

continuous real functions on 𝑆 endowed with the uniform/sup norm ‖ ⋅ ‖, P (S) denote the set of 

probability measures on (𝑆, B (𝑆)) endowed with the Prohorov topology (see, e.g., (Borkar, 1995)), 

i.e., the topology of weak convergence implying, a sequence P (𝑆) ⊃ {µ𝑛}𝑛≥1

𝑤
→ 𝜇 ∈ P (S), 

 

 
 

 
 

We call 𝑓 lower-semicontinuous (l.s.c) on 𝑌 if all such level-sets 𝐷 are closed and inf-compact 

on 𝑌 if they are compact. Similarly, 𝑓 is upper-semicontinuous (u.s.c) if all such 𝐷 are closed and 

sup-compact if they are compact. Note that if 𝑓 is l.s.c (resp. inf-compact) then −𝑓 is u.s.c (resp. sup-

compact). Consider a discrete-time Markov Decision Process (MDP) with state space X (Borel subset 

of a Polish space), action space A (Borel subset of a Polish space) with Ø ≠ A(x) ⊆ A being the Borel 

set of actions available at 𝑥 ∈ X, one-step measurable bounded-below cost function: 

, one-step measurable bounded below 

reward/utility function r: , and, weakly-continuous transition 

kernels (laws) 𝑞 (⋅ |𝑥;  𝑎)  ∈  𝑃(X) i.e. 

 

 
 

Such that 𝑞(𝐵| ⋅,⋅) is Borel on Gr (A) for all B ∈ B(X). We assume, as usual, that Gr(A) is a 

measurable subset of X x A i.e. Gr (A) ∈ B(X x A). We say that a sequence of real-valued functions 

{𝑓𝑛}𝑛=1,2,⋅⋅⋅ defined on X is lower semiequicontinuous at a point x ∈ X if for each 𝜖 > 0 there exists a 

𝛿𝜖 > 0 such that for all points 𝑥′ ∈ 𝐵𝛿𝜖
(𝑥) (𝛿𝜖−neighborhood of the point 𝑥) we have that 𝑓𝑛(𝑥′) >

𝑓𝑛(𝑥) − 𝜖 for all 𝑛 = 1, 2, … (Feinberg et al., 2020, Definition 3.3). This sequence {𝑓𝑛}𝑛=1,2,⋅⋅⋅ is said 

to be lower semiequicontinuous on X if it is so at all 𝑥 ∈ X. Analogously, a sequence of real-valued 

functions {𝑓𝑛}𝑛=1,2,⋅⋅⋅defined on X is called upper semiequicontinuous at a point 𝑥 ∈ X if the sequence 

{−𝑓𝑛}𝑛=1,2,⋅⋅⋅ is lower semiequicontinuous at that point 𝑥 ∈ 𝑋. Also, we say that a sequence of 

measurable function {fn: X ℝ}
𝑛=1,2,…

 lower semiconverges (see (Feinberg et al., 2020), Definition 

3.2) to a measurable function fn:X→ ℝ in some measure µ on B(X) if, for each 𝜖 >  0, we have, 
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Accordingly, upper semiconvergence is defined as the situation when {−𝑓𝑛}𝑛=1,2,⋅⋅⋅ lower 

semiconverges to −𝑓 or equivalently when, 

 

 
 

The decision system moves as follows: 

1. at each time 𝑡 ∈ ℕ0 ≝ {0,1, … , } the current state 𝑥 ∈ X is observed, 

2. the decision maker chooses an action 𝑎 ∈ A(x), 

3. the cost 𝑐(𝑥, 𝑎) or reward 𝑟(𝑥, 𝑎) is incurred, and, 

4. the system moves to the next state according to probability 𝑞 (· |𝑥, 𝑎) at the next time 𝑡 + 1 

and repeats itself till finite or infinite time 0 < 𝑇 ≤ ∞. 

We denote the set of histories up to and including time 𝑡 as ℋ𝑡 ≝(X+A)t x X with B(ℋ𝑡) = 

(B(X)  B (A)t  B (X). A history-dependent (behavioural) policy 𝜋 ≝ {𝜋𝑡}𝑡∈ℕ0
 is a sequence of 

(measurable) maps 𝜋𝑡: ℋ𝑡 →A such that 𝜋𝑡(ℎ𝑡) ∈A(xt) where ℋ𝑡 ∋ ℎ𝑡 ≝

{𝑥0, 𝑎0, 𝑥1, 𝑎1, … 𝑥𝑡−1, 𝑎𝑡−1, 𝑥𝑡} is a history up to and including time, 𝑡. Let Π denote the set of all 

such policies. A policy 𝜙 ≝ {𝜙𝑡}𝑡∈ℕ0
∈ ∏ is called Markov if all decisions depend on the current 

state only i.e. each ∅t: X A and is measurable such that 𝜙t(𝑥) ∈ A(x) for all 𝑥 ∈ X. Denote by 𝛱𝑀 

the set of Markov policies. A Markov policy 𝜙 is called stationary (Markov) if ϕt ≡ 𝜙 (repeating 

notation) for some measurable map ϕ : X  A such that 𝜙(𝑥) ∈ A (x) for all 𝑥 ∈ X. Denote by 𝛱𝑆 the 

set of stationary policies. The Ionescu-Tulcea theorem (see, e.g., (Bertsekas and Shreve, 1996), 

Proposition 7.28) implies that, for each initial state 𝑥 ∈ X and policy π ∈ Π, there exists an unique 

probability measure 𝑃𝑥
𝜋 and a stochastic process (𝑋𝑡, 𝐴𝑡) on the set of all histories (trajectories) ℋ∞ ≝

(𝑋 × 𝐴)∞ endowed with the product 𝜎-algebra such that 𝑋𝑡(ℎ∞) = 𝑥𝑡 is the (random) state and 

𝐴𝑡(ℎ∞) = 𝑎𝑡 is the (random) action at time 𝑡 for ℎ∞ ∈ ℋ∞. Denote by  𝐸𝑥
𝜋 the corresponding 

expectation. 

Let 𝑈: ℝ+ → ℝ̅ be continuous, unbounded and strictly increasing function such that 𝑈−1 exists. 

This function 𝑈 shall be used to define overall costs or utilities in our setup as described below. For 

a finite-horizon 𝑇 ∈ ℕ0 and under a policy 𝜋 ∈ Π define the general certainty equivalent cost/utility 

criterion as 

 

 
 

where 𝛽 ∈  (0, 1] is the discount factor, 𝐹𝛽
𝑡 ≡ 𝐶𝛽

𝑡 ≝ ∑ 𝛽𝑠𝑐(𝑋𝑠, 𝐴𝑠)𝑡−1
𝑠=0  for cost and 𝐹𝛽

𝑡 ≡ 𝑅𝛽
𝑡 ≝

∑ 𝛽𝑠𝑟(𝑋𝑠, 𝐴𝑠)𝑡−1
𝑠=0  for reward for 𝑡 ≥ 1. In particular, for our finite horizon case 𝑡 = 𝑇. For the 

undiscounted case, i.e. 𝛽 = 1, we write 𝑉𝑇,𝛽=1
𝜋 ≡ 𝑉𝑇

𝜋. Similarly, for the infinite horizon (𝑇 = ∞), 

define the corresponding cost/utility criteria as, 
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where 𝐹𝛽
∞ ≝ 𝐶𝛽

𝑇=∞ = ∑ 𝛽𝑡𝑐(𝑋𝑡, 𝐴𝑡)∞
𝑡=0  for cost, 𝐹𝛽

∞ ≝ 𝑅𝛽
𝑇=∞ = ∑ 𝛽𝑡𝑟(𝑋𝑡, 𝐴𝑡)∞

𝑡=0  for reward. For 

any of the above costs 𝑔𝜋(𝑥) = 𝑉𝑇,𝛽
𝜋 (𝑥) (without 𝛽 for 𝛽 = 1) or 𝑉𝛽

𝜋(𝑥) define the optimal cost as 

 

 
 

Similarly, for any of the above utilities 𝑔
𝜋

(𝑥) =  𝑉𝑇,𝛽
𝜋 (𝑥)(without 𝛽 for 𝛽 = 1) or 𝑉𝛽

𝜋(𝑥) define the 

optimal utility as 

 

 
 

A policy π∗ ∈ Π is said to be optimal for the corresponding cost (resp. utility) criterion if 𝑔𝜋∗
(𝑥) =

𝑔𝜋(𝑥). (resp. 𝑔
𝜋∗

(𝑥) = 𝑔(𝑥)) for all 𝑥 ∈ X. The following Remark 1 is of relevance here. 

Remark 1. Given a strategy π ∈ Π with an initial state 𝑥 ∈ X and a real-valued random variable 

𝑌 defined on the probability space (ℋ∞, 𝐵(ℋ∞), 𝑃𝑥
𝜋) ) and assuming sufficient regularity for 𝑈 as 

given above, we see, by Taylor Expansion, that 

 

 
 

where AP(𝑦) ≝ −
𝑈′′(𝑦)

𝑈′(𝑦)
 is the ‘Arrow-Pratt’ function of absolute risk-aversion assuming that U is 

sufficiently regular. Note that AP term above defines the variability (see, e.g., (Bielecki and Pliska, 

2003)). If 𝑈 is concave then the variance is subtracted and the decision-maker becomes risk-seeking 

for cost minimization instead becoming risk-averse if 𝑈 is convex as, in this case, the variance is 

added. These interpretations are reversed for reward maximization problems. 

The point-to-set map X ∋ 𝑥 →A(x) is called upper-semicontinuous in the sense of Kuratowski 

(u.s.c-K) if X ∋ 𝑥𝑛 → 𝑥 ∈ X and an ∈ A(xn) for 𝑛 ∈ ℕ  then {𝑎𝑛}𝑛∈ℕ has a limit point 𝑎 ∈ A(x). Before 

proceeding further, we make an assumption on the one-step cost / reward function 𝑐(·,·), 𝑟(·,·) below. 

Assumption (A): 

1. There exists a measurable function w : X [ℓ, ∞), a measurable subset 𝐶 ⊂ X , constants 

0 < 𝜌 < 1, 0 < ℓ ≤ 1, 𝑐′ ≥ ℓ, 𝑐′(1 − 𝜌) ≥ 𝑏 > 0 and 𝑑 ≥
𝑐′2

ℓ
  such that, 

 

 
 

2. For each 𝑥 ∈ X there exists some 𝑎 ∈ A(x) such that 𝑐(𝑥, 𝑎)  <  ∞ i.e. the situation 𝑐(𝑥, 𝑎) =

∞ for all (𝑥, 𝑎)  ∈  𝐺𝑟(A) is excluded as it is trivial in that all actions are bad. 
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3. The map X ∋  𝑥  A(x) ⊂ A is u.s.c and compact-valued. 

4. This part has two alternatives: 

(a) For the cost minimization problem (2.8) : 𝑐 is l.s.c and for all (𝑥, 𝑎) ∈ Gr(A), c(x, a)  0 

and 𝑐(𝑥, 𝑎) ≤ 𝑑𝑤(𝑥) for 𝑑 as in Assumption A(1) below. 

(b) For the utility maximization problem (2.9): 𝑟 is u.s.c and for all (𝑥, 𝑎) ∈ 𝐺𝑟(A), 𝑟(𝑥, 𝑎) ≥

0 and 𝑟(𝑥, 𝑎) ≤ 𝑑𝑤(𝑥) where, without loss of generality, 𝑑 is same as above. 

We state the following Remark in regard to the above Assumption (A). 

Remark 2. This Assumption (A) is fairly standard in the literature for general state and action 

spaces (see, e.g, (Bäuerle and Rieder, 2014; (Bäuerle and Jaskiewicz, 2018)) and can usually be 

shown to be satised in all real-life applications. Assumption A(1) above, referred to as the “drift 

inequality” (stochastic Lyapunov-type stability condition), and A(4) above, referred to as the “𝑤-

growth condition” on the cost or reward function, have been widely used in the MDP and economic 

literature, e.g., (Altman et al., 1997; Bäuerle and Jasckiewicz, 2018; Meyn and Tweedie, 2009; 

Nowak and Altman, 2002). Note it is easy to see that, without loss of generality, we can choose the 

same set of parameters (namely, 𝜌, 𝑏, 𝑐′, 𝑑), the same set C and the same growth function 𝑤(·) for 

both 𝑐 and 𝑟 in Assumption (A) above. Finally, it should be noted that the following always holds 

true for any 𝑑 > 0: 

 

 
 

For a measurable function f: X x A→ ℝ+ we define the 𝑤-norm as follows: 

 

 
 

Note that, in this notation above, by Assumption A(4), we have ‖𝑐‖𝑤, ‖𝑟‖𝑤 ≤ 𝑑. As explained 

in the text following the proof of Lemma 2 in (Feinberg, et al., 2012), it follows that there exists a 

measurable map 𝜙 ∶ X 𝐴 such that 𝜙(𝑥) ∈ A(x) for all 𝑥 ∈ X i.e. there exists a (measurable) selector. 

Since, as explained above, we identify stationary policies with a selector they are the same objects 

and thus the existence of a selector is a necessary and sufficient condition for the existence of a policy. 

Again, as explained therein, it is possible that 𝑐(𝑥, 𝑎) = ∞ for some (𝑥, 𝑎) ∈ 𝐺𝑟(A) and then, from a 

modelling perspective, this state-action pair should be excluded as there is no further reason to 

optimize once such a pair is reached/selected. So, we can exclude such a situation when 𝑐 is 

identically ∞ as we did in Assumption A(2).  

We now proceed to the solutions of (2.8) and (2.9) for the various cost or reward functions (as 

described above) in the next section. 

 

3. FINITE HORIZON PROBLEM 

In this section we consider the optimization problems (2.8) and (2.9) for the cost/utility function 

(2.6) with 𝛽 ∈ (0, 1). Since 𝑈 is strictly increasing so is 𝑈−1 and we can consider the problems (2.8) 
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and (2.9) (resp.) by removing 𝑈−1 from (2.6) and considering the following equivalent problems 

(resp.). 

 

 
 

for 𝑥 ∈ X. To proceed, we define (as in (Bäuerle and Rieder, 2014)) a MDP on the enhanced state 

space �̂� ≝ X 𝑥 ℝ+ × (0, 1], corresponding per-stage cost zero and action space A with the selectors 

now being measurable maps 𝜙: �̂�  A such that  �̂� ∋  (𝑥, 𝑦, 𝑧)  𝜙(𝑥, 𝑦, 𝑧) ∈ A(x). We denote by Φ 

the set of selectors. Policies are then defined as in the previous section. For 𝑡 ∈ ℕ we define, for 

(𝑥, 𝑦, 𝑧) ∈ �̂� 

 

 
 

with terminal cost / utility 𝑣0(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦, 𝑧) = 𝑣0(𝑥, 𝑦, 𝑧) ≡ 𝑈(𝑦)   where, as in (Kreps, 

1977a) and (Kreps, 1977b), 𝑦 summarizes the cost or reward that has been accumulated so far and 𝑧 

is a new state variable introduced to keep track of discounting. The corresponding transition kernel 

�̃�(𝑑(𝑥′, 𝑦′, 𝑧′)|𝑥, 𝑦, 𝑥, 𝑎) ≡ 𝑞(𝑑𝑥′|𝑥, 𝑎) ⊗ 1(𝑧𝑓(𝑥,𝑎)+𝑦)(𝑑𝑦′) ⊗ 1𝑧𝛽(𝑑𝑧′) is defined as: 

 

 
 

where 𝑓 = 𝑐, 𝑟 as the case may be.  

We wish to obtain 𝑣𝑇(𝑥, 0, 1) = 𝑣𝑇,𝛽(𝑥), �̅�𝑇,𝛽(𝑥) with the cost/utility interpretation as required. 

To this end, we define, 

 

 

 

 

 

 is continuous, non-decreasing for x ∈ X 
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Note that, without loss of generality, we can choose the same 𝑤, 𝑑 as in Assumption (A) above. 

For 𝑣 ∈ ℒ′( ) or U′( ) , 𝜙 ∈ Φ, (𝑥, 𝑦, 𝑧) ∈  and 𝑎 ∈ A define 

 

 
 

and 

 

 
 

Remark 3. For 𝐓 = 𝐓, 𝐓 or 𝐓 ∈ {𝐓𝑓
𝜙, 𝜙 ∈ Φ}are monotone operators in the sense that for 

𝑣1, 𝑣2 ∈ ℒ′ ( ) or  𝑈′( ) with 𝑣1 ≤ 𝑣2 it is true that 𝐓[𝑣1] ≤ 𝐓[𝑣2]. 

We now state and prove a very important result which shall form one of the key foundations of 

this paper. 

Theorem 3.1. Under the Assumption (A) in Section 2 above, we have, 

1. Given 𝑣 ∈ 𝑈( ), 𝐓𝑣 ∈ 𝑈( ) the supremum in (3.6) can be replaced by a maximum, i.e. 

 

 
 

the set of maximizers A*(x, y, z) ≝ {a ∈ A(x) : 𝜂𝑟 [𝑣](𝑥, 𝑦, 𝑧, 𝑎) =  �̅� [𝑣](𝑥, 𝑦, 𝑧)} is 

nonempty compact and there exists a corresponding maximizing selector i.e. 𝜙∗ ∈ Φ such 

that, 

 

 
 

2. Given 𝑣 ∈ ℒ(�̂�), 𝐓[𝑣] ∈ ℒ(�̂�), the infimum in (3.6) can be replaced by a minimum i.e. 

 

 
 

the set of minimizers A*(x, y, z) ≝{a ∈ A(x) : c [v] (x,y,z,a) = 𝐓[𝑣](𝑥, 𝑦, 𝑧) is nonempty 

compact and there exists a corresponding minimizing selector i.e. 𝜙∗ ∈ Φ such that 
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Proof: We prove Part 1 of the above Theorem 3.1. The proof of Part 2 is exactly analogous. 

Let us prove that the function 𝜂𝑟[𝑣](𝑥, 𝑦, 𝑧, 𝑎) is u.s.c. Consider a converging sequence 

(𝑥𝑛, 𝑦𝑛, 𝑧𝑛, 𝑎𝑛) (𝑥, 𝑦, 𝑧, 𝑎) as 𝑛∞. Let 𝑣 ∈ 𝑈( ). We define the functions 𝑓(⋅) ≝ 𝑣(⋅, 𝑧𝑟(𝑥, 𝑎) +

𝑦, 𝑧𝛽) and 𝑓𝑛(⋅) ≝ 𝑣(⋅, 𝑧𝑛𝑟(𝑥𝑛, 𝑎𝑛) + 𝑦𝑛, 𝑧𝑛𝛽), where 𝑛 = 1, 2, …. Since the functions 𝑣, 𝑟 are u.s.c 

and 𝑣(𝑥,·,·) is monotonic (nondecreasing actually) the sequence of functions {𝑓𝑛}𝑛=1,2,…
 is upper 

semiequicontinuous by (Feinberg et al., 2020, Theorem 3.1(ii)). Again, by upper semicontinuity, 

 

 
 

implying that {𝑓𝑛}𝑛=1,2,…
 upper semiconverges to f by (Feinberg et al., 2020, Remark 3.4). Also, it is 

easy to see that, since (𝑑 + 𝑏𝟏𝐶(·))𝑤(⋅) is the common majorant of {𝑓𝑛}𝑛=1,2,…
 by Definition (3.4) 

above, ((Feinberg et al., 2020), Condition (ii) of Theorem 2.2) holds. Hence, by ((Feinberg et al., 

2020), Theorem 4.1), 

 

 
which is equivalent to 

 
 

Thus, the function 𝜂𝑟[𝑣] is u.s.c and, by ((Aliprantis and Border, 2006), Theorem 2.43), the 

supremum in (3.6) can be replaced by a maximum and this set of maximizers is nonempty compact 

since A(x) is compact given x ∈ X by Assumption A(3) above. Thus, by (3.6) and Berge's theorem 

(Aliprantis and Border, 2006; Lemma 17.30), it follows that 𝑻[𝑣] is u.s.c. Moreover, by Monotone 

Convergence Theorem, (𝑦, 𝑧)  𝜂𝑟[𝑣](𝑥, 𝑦, 𝑧, 𝑎) is non-decreasing and continuous (in particular 

l.s.c). Since the supremum of an arbitrary number of l.s.c functions is also l.s.c, it follows that 

(𝑦, 𝑧)  𝐓[𝑣](𝑥, 𝑦, 𝑧) is continuous and non-decreasing. The inequality 𝐓[𝑣](𝑥, 𝑦, 𝑧) ≥ 𝑈(𝑦) 

follows directly. By (3.4) since 𝑣(·) ≤ (𝑑 + 𝑏𝟏𝐶(·))𝑤(·), we have 𝐓[𝑣](𝑥, 𝑦, 𝑧) 𝑏𝑦 (3.7)
=
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Thus 𝐓[𝑣] ∈ 𝑈 The existence of a maximizing selector follows from the Generalized Selection 

Theorem of Dubins and Savage (Hinderer, 1970, Theorem 17.9). 

We now prove the main Theorem of this section which nontrivially extends Theorem 2 of 

(Bäuerle and Rieder, 2014) to unbounded per-stage cost or reward satisfying the w-growth condition 

(see Assumption A) above. 

Theorem 3.2. Under Assumption (A), the following results hold: 

1. For a policy ϕ ≡ {ϕ0, ϕ1, ...} ∈ ΠM it holds that vtπ = , t = 1, ... T where  

when f = c and  when f = r. 

2. For (x, y, z) ∈ ,  we have  

i.e., 

 
 

with  for all t. In particular,  for all t. Similarly, we have 

 i.e., 

 

 
 

with  for all t. In particular,  for all t. 

3. For each t = 1, 2, ..., T there exists a minimizer  (resp. maximizer 

 and  with, 

 

 
 

is an optimal policy for (3.1) with f = c (resp. f = r) in (3.14) above. 

4. (resp.  ) is the optimal l.s.c cost (resp. u.s.c utility) for (2.6) under the optimal 

policy (3.14) above for any x ∈ X. 

Proof: The proofs are provided below. 

1. The proof of this part is similar to the proof of Theorem 2(a) of (Bäuerle and Rieder, 2014) 

and hence is omitted. 

2. We prove parts (2) and (3) together. Due to part (1) it follows that for π ∈ ΠM, the value 

function in problem (3.1) is the same as the value functions of the original MDP. Moreover, 

by Theorems 18.1 and 18.4 of (Hinderer, 1970), it suffices to consider Markov policies ΠM 

i.e.  or . Now, since by Theorem 3.1(2) 

(resp. Theorem 3.1(1)) above 𝐓 [𝑣] ∈ L ( ) (resp. �̅� [𝑣] ∈ U( )  whenever v is and there 

exists a minimizing (resp. maximizing) selector for v by Theorem 3.1(2) (resp. Theorem 

3.1(1)), parts (2) and (3) follow from Theorem 14.4 of (Hinderer, 1970). 

3. This part easily follows from the above parts and the fact that = = 

 (resp.  =  =  since U-1 is continuous 

and increasing. 
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Now the following corollary to Theorem 3.2 follows obviously by defining ≡ × ℝ+, 

selectors 𝛷 ∋ 𝜙: (𝑥, 𝑦) ∈  𝜙(𝑥, 𝑦) ∈ A(x), corresponding Definition (3.2) putting z = 1, 

Definitions (3.4), (3.5) and (3.6) with the corresponding transition kernel 

 defined as, 

 

 

 
 

and the corresponding (simpler) interpretation (putting z = 1) of Theorem 3.1. The Corollary 3.3 is a 

nontrivial extension of Theorem 1 of (Bäuerle and Rieder, 2014).  

Corollary 3.3. For the undiscounted case, i.e. β = 1, exactly same results as in Theorem 3.2 hold 

for and . 

We end this section with an important Remark. 

Remark 4. It is to be noted here that, under these assumptions of upper semicontinuity of the 

map  ∋ 𝑥 A(x)in addition to the compactness of A(x) for each x ∈ , (Bäuerle and Rieder, 2014) 

has proved the analogue of the above Theorem 3.2 (see Theorem 2 and Remark 2 therein) and 

Corollary 3.3 (see Theorem 1 therein) for bounded costs/rewards. We refer also to our Remark 2 

above. Our Theorem 3.2 and Corollary 3.3 above automatically generalizes these corresponding 

results of (Bäuerle and Rieder, 2014) to any unbounded above cost or rewards satisfying standard w-

growth conditions of Assumption (A) above. 

 

4. AN APPLICATION 

In this section, we provide a real-life example from Portfolio Consumption using the robust 

risk-sensitive preferences of (Basu et al., 2022) originally from (Howard and Matheson, 1972). For a 

given fixed but arbitrary risk sensitivity parameter 𝜃 > 0, let U(y) ≡  be the concave 

reward/utility functional. We consider a portfolio of one asset with values x ∈  ≡ (0, ∞). The state 

space is defined as . The action of a consumer (agent) is to consume an amount a ∈ 

A(x) ≡ [0, δx] ⊂ A ≡  when the value of the asset is x given a fixed but arbitrary 0 ≤ δ ≤ 1. Thus 

Assumption A (3) is satisfied. For some given fixed but arbitrary γ > 0, let ϵ   and C  

(0, θ] x (0, ϵ]  . We choose a fixed but arbitrary  in Assumption A(1). We define the 

corresponding w (·,·) as,  

 
 

We choose, as per Assumption A(4), some u.s.c reward 0 < r (η, x, a) ≡ r (x, a) ≤ dw (η, x) at 

state (η, x) for action a where d ≥ . Given (η, x, a) ∈ Gr(A) ≡ {(η, x, a) : η ∈ (0, θ], x ∈ ; a ∈ [0, 

δx]} we define the transition kernel ≡ as follows, 
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where 

 

 
 

which models the (controlled) evolution of the asset value under consumptions. Let,  

  
Now we state and prove the following important Lemma. 

Lemma 4.1. The function w (·, ·) as defined in (4.1) satisfies the conditions of Assumption A 

(1) above. 

Proof: 𝜔(·,·) ≥ = 2 (  )  as required by Assumption A(1). Also, we see 

that, 

 

 

 
 

as required by Assumption A (1). Now, using standard integration results, it can be checked 

that, 

 

 

 

 

 

 

 
 

for all (η, x, a) ∈ Gr(A). It immediately follows from (4.5) above that, 

 

 
 

Also, from (4.4) and (4.5) it follows that, 
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Combining the above inequalities (4.6) and (4.7) we get, 

 

 
 

as required by Assumption A (1). 

We now formulate the risk-sensitive or robust preference problem along the lines of (Basu et 

al., 2022) and (Howard and Matheson, 1972). We denote by  the set of extended non negative 

measurable functions f :  → ℝ +∪ {+∞} Given π ∈ Π the corresponding finite-horizon (i.e. from 

0 to T ) risk-sensitive discounted utility starting at (θ, x0)  is given as: 

 

 
 

under the dynamics generated by π, where 0 < β < 1 is a given discount factor as in Section 2 and 

g(·) ∈  is a given terminal cost function. The corresponding optimization problem is given as: 

 

 
 

As we shall show below in Proposition 4.3, by Theorems 18.1 and 18.4 of (Hinderer, 1970), it 

suffices to consider Markov policies π ∈ ΠM i.e. 

 

 
 

We now provide below a heuristic recursive formulation for the preference function (4.9) which 

shall allow us to better understand the Dynamic Programming formulation for this maximization 

problem (4.11) above, 

 

Lemma 4.2. For 1 ≤ t ≤ T , η ∈ (0, θ] and any π ∈ Π, 

 

with the terminal condition             (4.12) 

 

Proof: Note that, using (4.9), we can get, 
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The terminal condition is obvious.  

As shown by Lemma 4.2 above, there is an explicit time-dependence of the risk aversion 

parameter through exponentiation of the discounting factor β. Hence we have defined our Markov 

control process {(ηt; Xt)}0≤t≤T on the enhanced state space  , with the selectors now being measurable 

maps ∅ : A such that  ∋ (η, x) ϕ(η, x) ∈ A(x) (see notations above). We again denote by Φ 

the set of such selectors. The definitions for histories and all types of policies can be defined 

analogously as above and we keep the notations similar to Section 2 above for ease of understanding. 

The corresponding transition kernel  has been defined in (4.2) above. Again, the Ionescu-Tulcea 

theorem (see, e.g., (Bertsekas and Shreve, 1996, Proposition 7.28) implies that, for each initial state 

(η, x) ∈  and policy π ∈ Π, there exists an unique probability measure  and a stochastic process 

{((ηt, Xt); At)}0≤t≤T on the space (HT, B(HT)) of all histories (trajectories) such that (ηt, Xt)(hT) = (ηt, xt) 

is the (random) state and At(hT) = at is the (random) action at time t for hT ∈ HT. We denote by  

the corresponding expectation. Now, we can simply consider the preference function (4.9) to be 

defined on the above state space  with the corresponding optimization problem (4.10) or (4.11) as 

being defined on the associated state process {(ηt, Xt)}0≤t≤T as explained above. Having understood 

this, we now proceed to define the corresponding Bellman operators. Motivated by Lemma 4.2, the 

kernel (4.2) and the discussions around it, we                  define                          ∋ (η, x, a, f)   LR: 

(η, x, a, f) ∈  as follows:  

 

 

 

For ϕ ∈ Φ and (η, x, f) ∈  x , let, 

 

 
 

We now state the following main result (Bellman Dynamic Programming Recursion) of this 

Section for the cost function (4.9) as follows directly from Theorem 3.2 above. Hence we have proved 

the following Proposition. 

Proposition 4.3. For the Portfolio Consumption Model above, it holds that 

1. For any given policy (ϕ0,....ϕT -1) ≡ π ∈ ΠM with ϕt ∈ Φ, ...  

2.  i.e. for t = 1, ..., T 

 

 

So, g for all t and in particular  

3. There exists a maximizing sequence  and  ΠM such 

that, for all t = 0, ..., T – 1. 
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is an optimal policy for (4.9). In fact  for some fixed ϕ∗ ∈ Φ where, as 

in (4.9), η0 = θ is the given risk-sensitivity parameter. 

 

5. CONCLUSION AND FUTURE DIRECTIONS 

Our main technical contribution is to solve a certainty equivalent optimization problem in the 

finite horizon case for per-stage unbounded costs and rewards satisfying a w-growth condition (see 

Theorem 3.2 and Corollary 3.3 in Section 3). In the process, a result of much broader potential 

applicability have been proved, namely, certain important closure properties of the dynamic 

programming (Bellman) operators, the compactness of optimal action (sub)sets and the corresponding 

existence of optimizing selectors in Theorem 3.1 in Section 3. We also provide a real-life example 

from Portfolio Consumption Model to illustrate our ideas (see Proposition 4.3 in Section 4) because 

such models have regularly been used as canonical examples in certainty equivalent formulations. 

Several more nontrivial applications and examples can be created as separate papers from these 

theoretical foundations along the lines of the references mentioned in the Introduction. This work can 

further be extended to noncompact action spaces as well as to generic unbounded-above per-stage 

costs/rewards without assuming any growth conditions. A further direction of technical interest would 

be to address these issues for the infinite horizon cost or reward setup as well as the corresponding 

average cost or reward setups given appropriate geometric ergodicity conditions on the underlying 

controlled state process. Another direction would be to study the preferences of general Epstein-Zin-

Weil structure-types in this framework as a decision problem of significant interest. An interesting 

research direction would be to study computational algorithms to evaluate such value functions as 

studied herein for large-scale optimization problems. 
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