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Abstract

On the Riemann sphere, we consider the ptolemaic characteristic of a four of non-empty pairwise non-
intersecting compact subsets (generalized tetrad, or generalized angle). We obtain an estimate for distortion
of this characteristic under the inverse to a K-quasimeromorphic mapping of the Riemann sphere which takes
each of its values at no more then N di�erent points. The distortion function in this estimate depends only
on K and N. In the case K=1, it is an essentially new property of complex rational functions.

1. Introduction

For a mapping f : D → C of a domain D ⊂ C the following concepts are equivalent: K-quasiregular
mapping [6, 2.20, De�nition], K-quasiconformal function [4, 5.2], and the mapping with bounded distortion
≤ K [8, Ch.1, 4.2]. Moreover, each of these mappings has a representation f = g ◦ h where h : D → C is a
K-quasiconformal mapping, and g : h(D) → C is a holomorphic function.

The more general concept ofK-quasimeromorphic mapping f : D → C of a domainD ⊂ C was introduced
in [7, Section 2] (see also the de�nition for mappings with bounded distortion in Riemann manifolds [8,
Ch. I, 5.2]), and it is as well equivalent to a notion of K-quasiconformal function in C. In this case the
representation f = g ◦ h is also true, where h : D → C is a K-quasiconformal mapping, and g : h(D) → C is
a meromorphic function (see [5, Ch. VI, De�nition, Satz 1.1, Satz 2.2]).

The ptolemaic characteristic β(Ψ) of a tetrad Ψ = (z1, z2; z3, z4) in C had been employed in [9] and was

modi�ed in [1] for the case of generalized tetrads Ψ = (A1, A− 2;A3, A4) in 2C (the de�nitions see below in
section 2). The main result is the following Theorem
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Theorem 1.1. Given a positive integer N and K ≥ 1, let F(N,K) denote the family of all non-constant

K-quasimeromorhpic mappings f : C → C which take each value at no more then N di�erent points. Then

there exists a homeomorphism ωN,K : [0,+∞) → [0,+∞) such that for each generalized tetrad Ψ in C and

for each mapping f ∈ F(N,K) the following inequality holds

β(f−1(Ψ)) ≤ ωN,K(β(Ψ)). (1.1.1)

The proof of this theorem will be given in Section 3.
It is worth to be noticed that this proof is based on the estimate (1.1.1) with K = 1 which will be

established in the Lemma 2.2 and seems to present an essentially new global property of complex rational
functions in C.

The inverse theorem is also true. It has been established in [2, Corollary] as follows.

Theorem 1.2. Let N be a positive integer, ω : [0,+∞) → [0,+∞) be a homeomorphism, and G(N,ω)

denote the family of all multivalued mappings F : C → 2C such that #F (w) ≤ N for every w ∈ C and

F (w1) ∩ F (w2) = ∅ provided w1 ̸= w2. If F ∈ G(N,ω) and the inequality

β(F (Ψ)) ≤ ω(β(Ψ)). (1.2.1)

holds for each tetrad Ψ in C then F (C) = C and the left inverse mapping f = F−1 : C → C belongs to

F(N,K) where K depends only on N and ω.

2. De�nitions and the Main Lemma

The chordal (spherical) metric q(·, ·) on the Riemann sphere C = C ∪ {∞} is de�ned by

q(z1, z2) =
|z1 − z2|√

(1 + |z1|2)(1 + |z2|2)
for z1, z2 ∈ C; q(z,∞) =

1√
1 + |z|2

.

By a tetrad Ψ = (z1, z2; z3, z4) we mean a four of distinct points in C divided into two pairs. Its ptolemaic

characteristic is de�ned by

β(Ψ) =
q(z1, z3) · q(z2, z4) + q(z1, z4) · q(z2, z3)

q(z1, z2) · q(z3, z4)
.

We also consider a generalized tetrad as a four of non-empty pairwise non-intersecting compact subsets in
C divided into two pairs. Then the ptolemaic characteristic of a generalized tetrad Ψ = (A1, A2;A3, A4) is
de�ned by

β(Ψ) = max
a1∈A1; a2∈A2

{
min

a3∈A3; a4∈A4

β(a1, a2; a3, a4)

}
.

Given a positive integer N , let R(N) denote the family of all rational functions f : C → C such that
#f−1(w) ≤ N for each w ∈ C.

Generalized tetrads are a special kind of so called generalized angles. This notion was introduced in [1,
Section 3] as a four of arbitrary subsets Ψ = (A1, A2;A3, A4) in a ptolemaic metric space (X, ρ) under the
conditions A3 ̸= ∅ ≠ A4 and #(A3∪A4) ≥ 2. The angular characteristic (or the value) α(Ψ) of a generalized
angle Ψ was de�ned as

α(Ψ) = inf
a1∈A1; a2∈A2

{
sup

a3∈A3; a4∈A4

ρ(a1, a2) · ρ(a3, a4)
ρ(a1, a3) · ρ(a2, a4) + ρ(a1, a4) · ρ(a2, a3)

}

under the agreement α(Ψ) = 1 if A1 = ∅ or A2 = ∅. It is clear that β(Ψ) = 1/α(Ψ) for general tetrads in C.
So the result [1, Lemma 4.2] may be reformulated as follows
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Proposition 2.1. Let X and Y be ptolemaic metric spaces, F : X → 2Y be a multivalued mapping such

that F (x1) ∩ F (x2) = ∅ for all x1 ̸= x2, and ω : [0,+∞) → [0,+∞) be a homeomorphism. If the inequality

β(F (Ψ)) ≤ ω(β(Ψ)) holds for any tetrad Ψ in X then it is also true for any generalized tetrad Ψ in X.

Now we can prove the main lemma.

Lemma 2.2. Given a positive integer N , there exists a homeomorphism ωN : [0,+∞) → [0,+∞) such that

for each generalized tetrad Ψ = (A1, A2;A3, A4) in C and for all rational functions f ∈ R(N) the following

inequality holds

β(f−1(A1), f
−1(A2); f

−1(A3), f
−1(A4)) ≤ ωN (β(A1, A2;A3, A4)),

that is

β(f−1(Ψ)) ≤ ωN (β(Ψ)) . (2.2.1)

Proof. Regarding the Proposition 2.1 we reduce the proof of the estimate (2.2.1) to the case where Ψ is an
arbitrary tetrad in C. Let us prove that in this case it su�ces to show that for all t ≥ 1

ηN (t) := supβ(f−1(Ψ)) <∞ (2.2.2)

where the supremum is taken over all tetrads Ψ in C with β(Ψ) ≤ t and all �nctions f ∈ R(N).
Indeed, the function ηN (t) is non-decreasing in [1,+∞). Letting η∗N (t) ≡ sup{ηN (t) : n ≤ t < n + 1}

as t ∈ [n, n + 1), n ≥ 1, and η∗N ≡ 0 as t ∈ [0, 1) we obtain a non-decreasing majorant for ηn. Letting
ω∗
N = η∗N (n) + (η∗N (n+ 1)− η∗N (n)) · (t− n) for t ∈ [n, n+ 1], n = 0, 1, ..., we obtain a continuous majorant

for ηn. Finally, the function ωN (t) = ω∗
N (t) + t is a homeomorphism which is desired in (2.2.1).

Now we shall prove (2.2.2). Suppose, on contrary, that (2.2.2) fails for some �xed t ≥ 1. It means that
there exist a sequence of tetrads {Ψn = (an, bn; cn, dn)} with β(Ψn) ≤ t, and a sequence of rational functions
{fn ∈ R(N)} such that

β(f−1(Ψn)) → ∞ as n→ ∞ . (2.2.3)

For each given n we consider the Möbius transformation µn : C → C such that µn(an) = 0, µn(bn) = 1,
µn(dn) = ∞, and mark the point Zn = µn(cn). Since the ptolemaic characteristic β of generalized tetrads
is invariant under Möbius transformations, we obtain the estimate β(µn(Ψn)) = β(Ψn) ≤ t. Therefore,
replacing in (2.2.3) functions fn by µn ◦ fn ∈ R(N) and tetrads Ψn by µn(Ψn) we pass to the following
situation: there exist a sequence of points Zn ∈ C \ {0, 1} such that

β(Ψn) = β(0, 1;Zn,∞) = |Zn|+ |1− Zn| ≤ t (2.2.4)

and a sequence of functions fn ∈ R(N) such that

β(f−1
n (Ψn)) = β(f−1

n (0), f−1
n (1); f−1

n (Zn), f
−1
n (∞)) → ∞ as n→ ∞ . (2.2.5)

Since

β(f−1
n (Ψn)) = max

xn∈f−1
n (0); yn∈f−1

n (1)

{
min

zn∈f−1
n (Zn); wn∈f−1

n (∞)
β(xn, yn; zn, wn)

}
there exist points xon ∈ f−1

n (0) and yon ∈ f−1
n (1) such that

β(f−1
n (Ψ)) = min

zn∈f−1
n (Zn); wn∈f−1

n (∞)
β(xon, y

o
n; zn, wn) .

Chose some point wo
n ∈ f−1

n (∞) and consider the Möbius transformation ηn : C → C such that

ηn(0) = xon, ηn(1) = yon, ηn(∞) = wo
n .

Because of möbius-invariance of ptolemaic characteristic β we have the equality

β(f−1
n (Ψn)) = β(η−1

n (f−1
n (Ψn))) .
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Now we can replace functions fn in (2.2.5) by functions fn ◦ ηn ∈ R(N) and pass to the following situation.
Situation. Given a positive integer N , there exist a number t ≥ 1, a sequence of points {Zn} in C\{0, 1},

and a sequence of functions {fn} in R(N) such that

|Zn|+ |1− Zn| ≤ t , (2.2.6)

fn(0) = 0, fn(1) = 1, fn(∞) = ∞ , (2.2.7)

and

β(0, 1; zn, wn) =
q(0, zn) · q(1, wn) + q(0, wn) · q(1, zn)

q(0, 1) · q(zn, wn)
→ ∞ as n→ ∞ (2.2.8)

under an arbitrary choice of points zn ∈ f−1
n (Zn), wn ∈ f−1

n (∞).
In particular, letting wn ≡ ∞ we obtain from (2.2.8) the convergence

|zn|+ |1− zn| → ∞ as n→ ∞ (2.2.9)

under an arbitrary coice of points zn ∈ f−1
n (Zn).

Suppose there exists a bounded subsequence {wn ∈ f−1
n (∞)}. Then we would have for this subsequence

the convergences
q(0, zn)

q(wn, zn)
=

|zn| ·
√

1 + |wn|2
|wn − zn|

→ 1 ,

q(1, zn)

q(wn, zn)
=

|1− zn| ·
√

1 + |wn|2√
2 · |wn − zn|

→ 1 .

Then we obtain boundedness of subsequences

q(0, zn) · q(1, wn)

q(0, 1) · q(wn, zn)
∼ |1− wn|

2
√
1 + |wn|2

,

q(0, wn) · q(1, zn)
q(0, 1) · q(wn, zn)

∼ |wn|√
2 ·

√
1 + |wn|2

which contradicts (2.2.8). Therefore, the assumption above is impossible, so |wn| → ∞ as n→ ∞ under an
arbitrary choice of wn ∈ f−1

n (∞).
Thus we have the convergence of the sets

f−1
n (∞)} → {∞ , fn(1)(Zn) → {∞} . (2.2.10)

Moreover, passing to a suitable subsequences we may assume without loss of generality that

Zn → Z0 ̸= ∞ as n→ ∞ . (2.2.11)

For more convenience of notation let us denote f−1
n by Fn. Consider an increasing sequence of open disks

Bj = {z : |z| < R(j)} where 1 < R(1) < ... < R(j) < ... and R(j) → +∞ as j → ∞.

Let {f (j)n } be a given subsequence in {fn}, and {Z(j)
n } be the corresponding subsequence of points.

Because of (2.2.10) there exists a number n(j) such that

F (j)
n (∞) ∩Bj+1 = ∅ ; F (j)

n (Z(j)
n ) ∩Bj+1 = ∅

for all n ≥ n(j).
It means that for all n ≥ n(j) the functions f

(j)
n (z) do not take the values ∞ and Z

(j)
n in the disk Bj+1.

Thus we have two sequences

{φ(j)
n (z) = f (j)n (z)− Z(j)

n } ;

{
ψ(j)
n (z) =

1

f
(j)
n (z)− Z

(j)
n

}
, n ≥ n(j) (2.2.12)
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of holomorphic fnctions in the disk Bj+1 which do not take the value 0.
Since each of these functions takes any its value at no more then N distinct points, the conditions of

generalized Montel's Theorem ([3, Ch. II, Section 7, Theorem 2]) are ful�lled. According to this theorem
both families (2.2.12) of holomorphic functions in Bj+1 are normal families. It means that there exist a

subsequence {f (j+1)
n } ⊂ {f (j)n } and the corresponding subsequence of points {Z(j+1)

n } ⊂ {Z(j)
n } such that

each of two sequences

{φ(j+1)
n (z) = f (j+1)

n (z)− Z(j+1)
n } ,

{
ψ(j+1)
n (z) =

1

f
(j+1)
n (z)− Z

(j+1)
n

}
converges uniformly on compact subsets of Bj+1 either to ∞ or to a holomorphic function in Bj+1.

It follows from (2.2.11) that f
(j+1)
n (0) − Z

(j+1)
n = −Z(j+1)

n → −Z0 ̸= ∞, and therefore the sequence

{φ(j+1)
n } converges to a holomotphic function φ(j+1) uniformly on compacts in Bj+1.

In the case where the initial sequences {φ(j)
n } and {ψ(j)

n } were converging to holomorphic functions φ(j)

and ψ(j) in Bj , we have φ
(j+1)(z) = φ(j)(z) and ψ(j+1)(z) = ψ(j)(z) for all z ∈ Bj .

Thus the chains {φ(1)
n } ⊃ {φ(2)

n } ⊃ ...{φ(j)
n } ⊃ ... and {ψ(1)

n } ⊃ {ψ(2)
n } ⊃ ... ⊃ {ψ(j)

n } ⊃ ... of subsequences

are obtained. Then the diagonal sequences {φ(j)
j } and {ψ(j)

j } converge uniformly on compacts in C to
holomorphic functions φ(z) and ψ(z). Since φ(0) = −Z0 ̸= φ(1) = 1 − Z0 and ψ(0) = −1/Z0 ̸= ψ(1) =
1/(1− Z0), each of the fuctions φ(z) and ψ(z) is non-constant.

Each function in a sequence {φ(j)
j } takes any its value at no more then N points. So according to [3,

Ch. I, Section 1, Theorem 2] the entire function φ(z) is a polynomial of degree ≤ N . But the equality

φ
(j)
j (z) · ψ(j)

j (z) ≡ 1 for all j and z ∈ Bj implies the equality φ(z) · ψ(z) ≡ 1 at every point z ∈ C. It is
impossible because the polynomial φ(z) has a point z0 where φ(z) = 0.

This contradiction being obtained completes the proof of the lemma.

3. Proof of the Main Theorem

The absolute ratio (or cross-ratio) |x1, x2, x3, x4| of distinct points in Rd is de�ned by

|x1, x2, x3, x4| =
q(x1, x3) · q(x2, x4)
q(x1, x2) · q(x3, x4)

where q(·, ·) denotes the chordal distance between points in Rd. The distortion of absolute ratio under K-

quasiconformal mappings f : Rd → Rd had been thoroughly studied by M. Vuorinen in his paper [10]. He
had obtained the estimate [10, Theorem 3.5]

|f(x1), f(x2), f(x3), f(x4)| ≤ ηK,d(|x1, x2, x3, x4|)

where the distortion function ηK,d depends only on K and d. The distortion function ηK,2 has the explicit
expression [10, (1.9), (1.10)].

Since
β(x1, x2;x3, x4) = |x1, x2, x3, x4|+ |x1, x2, x4, x3|

we can just obtain the estimate for the distortion of ptolemaic characteristic of a tetrad Ψ = (x1, x2;x3, x4)

under a K-quasiconfornal automorphism of Rd

β(f(Ψ)) = |f(x1), f(x2), f(x3), f(x4)|+ |f(x1), f(x2), f(x4), f(x3)| ≤

2ηK,d(|x1, x2, x3, x4|+ |x1, x2, x4, x3|) = 2ηK,d(β(Ψ)) .

Moreover, it follows from the Proposition 2.1 that the estimate

β(f(Ψ)) ≤ 2ηK,d(β(Ψ)) (3.1.1)
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is also valid for every general tetrad in Rd.
Now let us consider f ∈ F(N,K) and a tetrad Ψ in C. It has been mentioned in section 1 that f = g ◦ h

where h : C → C is a K-quasiconformal mapping and g : C → C is a rational function g ∈ R(N). Applying
the Lemma 2.2 to the rational function g ∈ R(N) we get the estimate

β(g−1(Ψ)) ≤ ωN (β(Ψ)) .

Applying the estimate (3.1.1) to the K-quasiconformal mapping h−1 and the generalized tetrad g−1(Ψ) we
get the estimate

β(h−1(g−1(Ψ))) ≤ 2ηK,2(β(g
−1(Ψ))) ≤ 2ηK,2(ωN (β(Ψ))) .

Thus we obtain the desired estimate
β(f−1(Ψ)) ≤ ωN,K(β(Ψ))

with the distortion function ωN,K = 2ηK,2◦ωN depending only on K and N . Now the Theorem 1.1 is proved.
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