Advances in the Theory of Nonlinear Analysis and its Applications 7 (2023) No. 1, 189
https://doi.org/10.31197/atnaa.1249278
Available online at www.atnaa.org

Research Article

v Advances in the Theory of Nonlinear Analysis

and its Applications -

ISSN: 2587-2648 Peer-Reviewed Scientific Journal

The distortion of tetrads under quasimeromorphic
mappings of Riemann sphere

V. V. Aseev

Sobolev Institute of Mathematics,
Novosibirsk, 630090, Russia.

Abstract

On the Riemann sphere, we consider the ptolemaic characteristic of a four of non-empty pairwise non-
intersecting compact subsets (generalized tetrad, or generalized angle). We obtain an estimate for distortion
of this characteristic under the inverse to a K-quasimeromorphic mapping of the Riemann sphere which takes
each of its values at no more then N different points. The distortion function in this estimate depends only
on K and N. In the case K=1, it is an essentially new property of complex rational functions.

1. Introduction

For a mapping f : D — C of a domain D C C the following concepts are equivalent: K-quasiregular
mapping [0, 2.20, Definition|, K-quasiconformal function [4) 5.2|, and the mapping with bounded distortion
< K [8, Ch.1, 4.2]. Moreover, each of these mappings has a representation f = goh where h: D — Cis a
K-quasiconformal mapping, and ¢ : h(D) — C is a holomorphic function.

The more general concept of K-quasimeromorphic mapping f : D — C of a domain D C C was introduced
in [7, Section 2| (see also the definition for mappings with bounded distortion in Riemann manifolds |8,
Ch. I, 5.2]), and it is as well equivalent to a notion of K-quasiconformal function in C. In this case the
representation f = go h is also true, where h : D — C is a K-quasiconformal mapping, and g : h(D) — C is
a meromorphic function (see [5, Ch. VI, Definition, Satz 1.1, Satz 2.2]).

The ptolemaic characteristic 3(¥) of a tetrad ¥ = (21, 22; 23, 24) in C had been employed in [9] and was
modified in [I] for the case of generalized tetrads ¥ = (A;, A — 2; A3, A4) in 2C (the definitions see below in
section 2). The main result is the following Theorem
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Theorem 1.1. Given a positive integer N and K > 1, let F(N, K) denote the family of all non-constant
K -quasimeromorhpic mappings f : C — C which take each value at no more then N different points. Then
there exists a homeomorphism wy i : [0, +00) — [0,+00) such that for each generalized tetrad V in C and
for each mapping f € F(N, K) the following inequality holds

BUTH®)) < wn i (B(T)). (1.1.1)

The proof of this theorem will be given in Section 3.

It is worth to be noticed that this proof is based on the estimate (1.1.1) with K = 1 which will be
established in the Lemma 2.2 and seems to present an essentially new global property of complex rational
functions in C.

The inverse theorem is also true. It has been established in |2, Corollary]| as follows.

Theorem 1.2. Let N be a positive integer, w : [0,+00) — [0,4+00) be a homeomorphism, and G(N,w)

denote the family of all multivalued mappings F : C — 2C such that #F(w) < N for every w € C and
F(w1) N F(wg) = 0 provided wy # we. If F € G(N,w) and the inequality

B(F(T)) < w(B(T)). (1.2.1)
holds for each tetrad W in C then F(C) = C and the left inverse mapping f = F~1 : C — C belongs to
F(N, K) where K depends only on N and w.

2. Definitions and the Main Lemma
The chordal (spherical) metric g(-,-) on the Riemann sphere C = C U {oo} is defined by

21—z 1
) for 21,20 € C; q(z,00) =

G2) = e m AT D VItRE

By a tetrad U = (z1, 20; 23, 24) we mean a four of distinct points in C divided into two pairs. Its ptolemaic
characteristic is defined by

_q(z1,23) - q(22, 20) + q(21, 24) - q(22, 23)
5(\1/) B Q(ZLZQ) : Q(Z3724) '

We also consider a generalized tetrad as a four of non-empty pairwise non-intersecting compact subsets in
C divided into two pairs. Then the ptolemaic characteristic of a generalized tetrad ¥ = (A7, Ag; A3, Ay) is
defined by

BlY) = aleAI?;ac)fgeAg {agEAI£124€A4 Blar, az; as, a4)} '
Given a positive integer N, let R(N) denote the family of all rational functions f : C — C such that
#f~Y(w) < N for each w € C.

Generalized tetrads are a special kind of so called generalized angles. This notion was introduced in [,
Section 3| as a four of arbitrary subsets ¥ = (Aj, Ag; Az, A4) in a ptolemaic metric space (X, p) under the
conditions Az # () # Ay and #(AsUAy) > 2. The angular characteristic (or the value) a(¥) of a generalized
angle ¥ was defined as

o) =  int { up plar, ) - plas, as) }

a1€A1; az€A2 a3€A3; as€A, p(alv a’3) : p(a25 (I4) + p(ala CL4) : p(a27 CLS)

under the agreement a(W) = 1if Ay = () or Ay = 0. It is clear that 3(¥) = 1/a(¥) for general tetrads in C.
So the result [I, Lemma 4.2] may be reformulated as follows
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Proposition 2.1. Let X and Y be ptolemaic metric spaces, F : X — 2¥ be a multivalued mapping such
that F(z1) N F(z2) = 0 for all 1 # 2, and w : [0,+00) — [0,+00) be a homeomorphism. If the inequality
B(F(V)) <w(B(W)) holds for any tetrad W in X then it is also true for any generalized tetrad W in X .

Now we can prove the main lemma.

Lemma 2.2. Given a positive integer N, there exists a homeomorphism wy : [0, +00) — [0, +00) such that
for each generalized tetrad W = (A1, Ag; A3, Ag) in C and for all rational functions f € R(N) the following
wmequality holds
BN A, f7H(A2); 71 (A3), f71(As)) < wn(B(Ar, Az; A3, Ag)),
that is
BUHD)) < wn (B(Y)) (2.2.1)

Proof. Regarding the Proposition 2.1 we reduce the proof of the estimate (2.2.1) to the case where ¥ is an
arbitrary tetrad in C. Let us prove that in this case it suffices to show that for all ¢ > 1

() = sup B(fH(¥)) < oo (2.2.2)

where the supremum is taken over all tetrads ¥ in C with 3(¥) <t and all finctions f € R(N).

Indeed, the function 7y (t) is non-decreasing in [1,+00). Letting n} (t) = sup{nn(t) : n <t < n+ 1}
ast € [n,n+1),n>1, and ny, = 0 as t € [0,1) we obtain a non-decreasing majorant for 7,. Letting
wy =nnn) + (y(n+1) —ny(n)) - (t—n) fort € [n,n+1], n =0,1,..., we obtain a continuous majorant
for n,. Finally, the function wy(t) = wj (t) +t is a homeomorphism which is desired in (2.2.1).

Now we shall prove (2.2.2). Suppose, on contrary, that (2.2.2) fails for some fixed ¢t > 1. It means that
there exist a sequence of tetrads {U,, = (ay, by; cn, dyn)} with B(¥,,) < ¢, and a sequence of rational functions
{fn € R(IN)} such that

B(f 1 (T,)) = 00 as n — oo . (2.2.3)

For each given n we consider the M&bius transformation p, : C — C such that p,(a,) = 0, pn(by) = 1,
tin(d,) = 0o, and mark the point Z, = py,(cy,). Since the ptolemaic characteristic 5 of generalized tetrads
is invariant under Mobius transformations, we obtain the estimate 5(un(¥y)) = B(¥,) < t. Therefore,
replacing in (2.2.3) functions f, by pn o f, € R(V) and tetrads ¥,, by un(V,) we pass to the following
situation: there exist a sequence of points Z,, € C\ {0, 1} such that

B(¥n) = (0,15 Zn,00) = |Zn| + |1 — Zn| < 2 (2.2.4)

and a sequence of functions f, € R(N) such that

B (W) = B(f 10), f (15 £ (Zn), £, (00)) = 00 as m— oo . (2.2.5)
Since
B(fr?l(\lln)) = max { min /B(xmym Znawn)}
Tn€fn ' (0); yn€fn ' (1) | 2n€fn ' (Zn); wn€fn ' (c0)

there exist points 2% € f,1(0) and y € f, (1) such that

BULNE) = min o B(aD,y0; 2, wn) -
ZnEfn (Zn), wnefn (OO)

Chose some point w? € f!(c0) and consider the Mobius transformation 7, : C — C such that
M (0) = x5, M(1) = yp, 1n(00) = wy -

Because of mébius-invariance of ptolemaic characteristic 8 we have the equality

BU () = Bl (f 1 (T0))) -
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Now we can replace functions f,, in (2.2.5) by functions f,, on, € R(IV) and pass to the following situation.
Situation. Given a positive integer IV, there exist a number ¢ > 1, a sequence of points {Z, } in C\ {0, 1},
and a sequence of functions {f,} in R(N) such that

Zy| + 11— Zo| < t, (2.2.6)

fn(o) = 07 fn(l) =1, fn(oo) =00, (2.2.7)

and

n)’ ]-a n y Wn )" 17 n
ﬂ(O,l;zn,wn)ZQ(O’z) a,wn) + (0, wn) - (1, 2) — 00 as nm — 00 (2.2.8)

Q(O’ 1) ’ Q(va wn)

under an arbitrary choice of points 2z, € f, (Zy,), wn € f(c0).
In particular, letting w,, = oo we obtain from (2.2.8) the convergence

|zn] + |1 — 2| > 00 as n — oo (2.2.9)

under an arbitrary coice of points z, € f,, 1(Z,).
Suppose there exists a bounded subsequence {w, € f,; }(c0)}. Then we would have for this subsequence

the convergences
q(0, zp) _ |2 ] - Vv 1+ |, |2 N

Q(wnazn) ‘wn - Zn‘
q(1, zp) _ 1 —2,] /14 |wp|? N
Q(w’m Zn) \@ : ‘wn - Zn|

Then we obtain boundedness of subsequences

Q(07 1)‘Q(wnazn) 2\/1+]wn|2 ’
q(0,wp) - (1, 2,,) |wy|
(

q 071)'Q(wm2n) \/Q'\/1—|—|wn\2

which contradicts (2.2.8). Therefore, the assumption above is impossible, so |wy,| — 0o as n — oo under an
arbitrary choice of w,, € f,1(00).
Thus we have the convergence of the sets

fat(00)} = {00, ful1)(Zn) = {00} . (2.2.10)

Moreover, passing to a suitable subsequences we may assume without loss of generality that

Zy — Zp# 00 asn — 00 . (2.2.11)

For more convenience of notation let us denote f, ! by F,. Consider an increasing sequence of open disks
Bj={z:]2|] < RY} where 1 < R < ... < RY) < .. and RVY) — 400 as j — oc.

Let { fT(Lj )} be a given subsequence in {f,}, and {Z,(Lj )} be the corresponding subsequence of points.
Because of (2.2.10) there exists a number n) such that

F9(00) N Bjp1=0; F(Z9)NBjiq =0

n

for all n > nl). ' ,
It means that for all n > n) the functions f,gj)(z) do not take the values oo and quj) in the disk §j+1.
Thus we have two sequences

, , , . 1 ,
{wﬁf)(Z) = fr(zj)(Z) - ZT(LJ)} ; {wg)(Z) = W} ;= nl) (2.2.12)
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of holomorphic fnctions in the disk B;;1 which do not take the value 0.

Since each of these functions takes any its value at no more then N distinct points, the conditions of
generalized Montel’s Theorem (3l Ch. II, Section 7, Theorem 2]|) are fulfilled. According to this theorem
both families (2.2.12) of holomorphic functions in Bjy; are normal families. It means that there exist a
subsequence {j}(LjH)} C {féj)} and the corresponding subsequence of points {Z,(Ljﬂ)} C {Z,(Lj)} such that
each of two sequences

: : : : 1
(oD (2) = £ () - 2§D} {W%) = T zw}
converges uniformly on compact subsets of Bj 1 either to oo or to a holomorphic function in Bji1.

It follows from (2.2.11) that f7(lj+1)(0) —Z0t) = _Z0t) o 7, # 00, and therefore the sequence
{go%j +1)} converges to a holomotphic function ¢! uniformly on compacts in Bj ;.

In the case where the initial sequences {goglj )} and {zpfj )} were converging to holomorphic functions ()
and 1) in Bj, we have 0TV (2) = () (2) and U+ (2) = 17 (z) for all z € B;.

Thus the chains {wﬁf)} D {cpg)} D {4,0%])} D ...and {ng)} D {wr(f)} D...D {wr(lj)} D ... of subsequences
are obtained. Then the diagonal sequences {gog-j )} and {z/J](-j )} converge uniformly on compacts in C to
holomorphic functions ¢(z) and ¥(z). Since p(0) = —Zy # ¢(1) =1 — Zp and ¢¥(0) = —1/Zy # ¢¥(1) =
1/(1 — Zp), each of the fuctions ¢(z) and (z) is non-constant.

Each function in a sequence {gpg-j )} takes any its value at no more then N points. So according to [3],
Ch. I, Section 1, Theorem 2| the entire function ¢(z) is a polynomial of degree < N. But the equality
cpgj)(z) . w](j)(z) = 1 for all j and z € B; implies the equality ¢(z) - 1(2) = 1 at every point z € C. It is
impossible because the polynomial ¢(z) has a point zg where ¢(z) = 0.

This contradiction being obtained completes the proof of the lemma. O

3. Proof of the Main Theorem
The absolute ratio (or cross-ratio) |1, 2, x3, x4] of distinct points in RY is defined by

q(;l"la .Ig) : (I($2, l’4)
q(x1,22) - q(x3,4)

|21, 22, T3, 24| =

where ¢(-,-) denotes the chordal distance between points in R4, The distortion of absolute ratio under K-
quasiconformal mappings f : R — R? had been thoroughly studied by M. Vuorinen in his paper [I0]. He
had obtained the estimate |10, Theorem 3.5|

|f(21), f(22), f(23), f(24)] < nEcal|z1, T2, 23, 24])

where the distortion function 7x 4 depends only on K and d. The distortion function 7x 2 has the explicit
expression [10, (1.9), (1.10)].
Since
B(x1, w2503, 24) = |T1, T2, T3, T4| + |T1, T2, T4, T3]

we can just obtain the estimate for the distortion of ptolemaic characteristic of a tetrad ¥ = (z1, x2; 3, 24)
under a K-quasiconfornal automorphism of R4

BUW)) = [f(x1), f(x2), f(x3), flxa)| +|f(21), f(22), f(24), f23)] <

20k (|21, T2, k3, Xa| + |21, T2, T4, T3|) = 2K a(B(Y)) .

Moreover, it follows from the Proposition 2.1 that the estimate

B(f(¥)) < 2nka(B(W)) (3.1.1)
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is also valid for every general tetrad in R4,

Now let us consider f € F(N, K) and a tetrad ¥ in C. It has been mentioned in section 1 that f = goh
where h : C — C is a K-quasiconformal mapping and g : C — C is a rational function g € R(N). Applying
the Lemma 2.2 to the rational function g € R(IN) we get the estimate

Blg~H (W) < wn(B(D)) -

Applying the estimate (3.1.1) to the K-quasiconformal mapping h~' and the generalized tetrad ¢~ (V) we
get the estimate

B g H(®))) < 2 2(B(g~ 1 (V))) < 2nk2(wn(B(V))) .
Thus we obtain the desired estimate

BUH®)) < wnk(B(F))

with the distortion function wy x = 2nx 20wy depending only on K and N. Now the Theorem 1.1 is proved.
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