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ABSTRACT. In this study, the modified quadratic Lorenz attractor is introduced in geometric multiplicative cal-
culus. The new system is analyzed and discussed for the chaotic behaviour in detail. The equilibria points, the
eigenvalues of the multiplicative Jacobian, and the Lyapunov exponents are determined. The numerical simulations
are conducted using the Runge-Kutta method in the framework of geometric multiplicative calculus highlighting
the chaotic behaviour.
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1. INTRODUCTION

Many researchers in the field of dynamic systems consider Henry Poincaré as the founding father of dynamic
systems [5]. Poincaré published the fundamental ideas of the theory of dynamic systems at the end of the 19th and
the beginning of the 20th century in [12, 13]. In parallel, Aleksandr Lyapunov defined the stability of sets of ordinary
differential equations [9]. The Lyapunov exponent has been proven to be one of the most important tools in the analysis
of the stability of differential equations to decide if the system is chaotic or not. The Lorenz attractor [6], proposed in
1962, and the Rossler attractor [15], proposed in 1976, are the most popular systems of ordinary differential equations
with chaotic behaviour. Many publications based on these two fundamental attractors analysing these attractors to the
utmost detail have been published.

Numerous research endeavors have explored the realm of attractors, seeking to unveil new ordinary differential
equations capable of generating chaotic behavior. In one such instance, the article by Pehlivan et al. [11] introduces a
distinct chaotic system, underlining its unique mathematical characteristics and its capacity to yield Lorenz-like attrac-
tors. These findings are substantiated through both computational simulations and experimental validations. Similarly,
Chen’s work in [3] brings to light a fresh chaotic attractor within a simple three-dimensional autonomous system, fea-
turing qualities reminiscent of both Lorenz and Rossler attractors. In a related vein, Lu [7] identifies a novel chaotic
attractor in a basic three-dimensional autonomous system, which acts as a bridge connecting the Lorenz attractor and
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Chen’s attractor, effectively capturing the transitional dynamics between the two. The authors in [8] perform a numer-
ical investigation to explore the chaotic behaviors exhibited by the fractional-order Lu system. Building upon these
concepts, the study presented in this article follows the idea of exploring attractors to discover new ordinary differential
equations that exhibit chaotic behavior. This new chaotic attractor, the modified quadratic Lorenz attractor, was pro-
posed by the authors in the framework of standard calculus in [4]. The modified quadratic Lorenz attractor as proposed
in [4] is:

% = s(yz — x), (1.1)
% =rx— xz, (1.2)
dZ 2

— = -b 1.3
T (xy)” — bz, (1.3)

where s, r, and b are real constants. The chaotic properties of this new attractor are discussed using the standard
techniques of dynamic systems, as discussed in any textbook like [10].

In this paper, we will discuss the modified quadratic Lorenz attractor in the framework of geometric multiplicative
calculus. Aniszewska applied a version of multiplicative calculus to analyse dynamic systems [1] by inventing the
so-called Multiplicative Runge-Kutta method. This method was also used later by Aniszewska and Rybaczuk [2] in
the analysis of dynamic systems. Later, the Runge-Kutta method, building the foundation of the numerical simulations
of these systems, was developed by Riza and Aktore [14] in the framework of geometric multiplicative calculus, which
is a different multiplicative calculus than the one used by Aniszewska.

In this article, we delve into the exploration of the modified quadratic Lorenz attractor within the context of geo-
metric multiplicative calculus. Section 2 of this paper delves into an in-depth examination of equilibrium points, the
multiplicative Jacobian, and the computation of eigenvalues, all within the framework of geometric multiplicative cal-
culus. In contrast, Section 3 shifts our focus to the Newtonian interpretation of the modified quadratic Lorenz attractor,
where we employ conventional textbook methods for our analysis.

Interestingly, our numerical simulations yield consistent results for both approaches, regardless of whether we
analyze the system through the lens of geometric multiplicative calculus or conventional methods. Consequently, we
employ the Runge-Kutta method within the framework of geometric multiplicative calculus to generate our numerical
findings. Our assessment of the Lyapunov exponents unmistakably reveals the chaotic nature inherent in the proposed
system.

2. MuLTIPLICATIVE CHAOTIC ATTACTOR DEFINED BY MULTIPLICATIVE DERIVATIVES

Remembering that addition, subtraction and multiplication of functions in Newtonian calculus correspond to multi-
plication, division and powers of functions in multiplicative calculus, the equation (1.1) can be written as

dx d'x  [y"? s
Goomn =TT

Rewriting the equations (1.2) and (1.3) in the same way results in the modified multiplicative quadratic Lorenz
attractor defined by the multiplicative derivatives as

d*x_ yan s
d \ x|~

d*y xr

av_x 2.1
dt xlnz ( )
d*z xln x(Iny)?

dr 7

The powers of the functions are chosen according to the rule x™” = y""* and the constants In s,Inr and Inb are
replaced by s, r and b.
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2.1. Analysis of the System. The first step of analyzing a chaotic system is to find the equilibrium points of the
system. The equilibrium points are obtained from the solution of the system

d*x _ (ylnz)s _

dt X
d*y xr

= =1, 2.2
dt xlnz ( )
d*Z xln x(Iny)?

=—=1.
dt zb

Solution of the system (2.2) gives the following points of equilibria:
E; =1, 1,1,

E, = [exp(m),exp[i/?],exp(”)],

E; = [exp (— Vb 13 ), exp (— i/g] , EXp (r)] .
The 3 x 3 multiplicative Jacobian matrix can be defined as following:
() () In(%2)
= () () ()|
(%) (%) (%)

Therefore, we get for the multiplicative Jacobian of the multiplicative modified quadratic Lorenz system (2.1)

\

In (exp{—ﬁ }) In (exp{ slnz }) In (exp{ g ;’ })
J=| In (exp{ r=ing }) In (exp{0}) In (exp{ Z })
»1n (exp{ m }) In (exp{ w}) In (exp{—%})
s sz shy
S e g i
X z
21n x(In y)? 2(Inx)?Iny _b

x y
Thus, for the equilibrium points E;, E; and E; the corresponding Jacobian matrices has the form

c —r

-s 0 O —se” sre —cse
JEED)=|r 0 0/, and J(Ey3) = 0 0 —cre™"|, 2.3)
0 0 -b 4c2re  4ctre¢  —be"

with ¢ = % \A/E . In order to get the eigenvalues of the Jacobian matrices, we will substitute the corresponding equilib-
rium points in (2.3). Thus, the eigenvalues can be summarized in the following table.

Equilibrium Point Ay A A3
E, -12 -4 0
E —0.0286149 | 0.00644902 + 0.272747i | 0.00644902 — 0.272747i
E; —10017.4 | 0.000690801 + 0.892422i | 0.000690801 — 0.892422i

TasLe 1. Eigenvalues of the Jacobian matrices of the multiplicative chaotic system at the equilibrium
points

Since the two eigenvalues of the equilibrium point E; are negative real numbers, we can say that the system is
unstable at this equilibrium point. On the other hand, each of the other two equilibrium points, E> and Ej3, have two
complex conjugate numbers with positive real parts and a negative real number, which also proves that the system is
again unstable at these equilibrium points.
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3. MucLripLICATIVE CHAOTIC ATTRACTOR DEFINED BY ADDITIVE DERIVATIVES

The modified quadratic Lorenz attractor can also be defined by the additive derivatives. Keeping in mind that the
relation between the ordinary and the multiplicative derivative of a function f(x) is

" )]
ffx)=e7.

The modified multiplicative quadratic Lorenz attractor can be expressed in terms of the additive derivatives as

dx

o= (In(y) In(z) — In(x)),

% = y(rIn(x) — In(x) In(z)), G-
dz

== 2((In(x) In(y))* = b1n(2)).

3.1. Analysis of the System. As we have discussed in Section 2.1, in order to analyze the system (3.1) the first step
is to find the equilibria. Since the system is defined by the additive derivatives, we will solve the system

% = x5 (In(y) In(z) — In(x)) = 0,

% = y(rIn(x) - In(x) In(2)) = 0, (3.2)
% = z((In(x) In(»))* - bIn(z)) = 0.

The solution of the system shows that the equilibrium points of the system (3.2) are the same with the ones that we
have obtained from the solution of the system (2.2), which are given in the Table 2. Defining the system as

d
fi = 5 = xs(n0) In(2) - In(w)
dy
f= e In(x) — In(x) In(2)), (3.3)
dz 2
fi= i Z((In(x) In(y))” = b1n(z))
and keeping in mind that the Jacobian matrix of a 3 x 3 system defined by the additive derivatives can be written as

J=|de db db
| dx dy dz |*
dx dy dz

The Jacobian matrix of the system (3.3) can be written as

slnylnz—slnx—s ”TI“Z @
J= o _ yne rn(x) - In(x) In(z) —— :
2z1n x(Iny)? 2z(Inx)*Iny 2
S = (In(x)In(y))* = bInz - b

Substituting the equilibrium points E;, E; and E; in the Jacobian matrix, results in the corresponding Jacobian matrices
as follows

—S O O —S e—c+crsr ecr_rSC
JEED=|r 0 0]andJ(Ey3)= 0 0 —erer |,
0 0 -b 462;‘6’0’*" 4c2refc+r —b+ 4C2r —br

where ¢ = + i/g . In order to get the eigenvalues of the system we will solve the jacobian matrices J(E;) and J(E; 3) for
the constants s, b and r.

Thus, the eigenvalues of the system (3.1) can be listed in Table 2.
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Equilibrium Point A A A3
E, -12 -4 0
E, —21.3002 | 2.65011 + 23.872i | 2.65011 — 23.872i
E; —21.3002 | 2.65011 + 23.872i | 2.65011 — 23.872i

TasLe 2. Eigenvalues of the Jacobian matrices of the multiplicative chaotic system, defined by addi-
tive derivatives, at the equilibrium points

The results summarised in the Table 2 reveal the instability of the system at the equilibrium point E;, because two
of the three eigenvalues of the Jacobian at E; are negative real numbers. Moreover, the eigenvalues of the Jacobian at
the 2" and the 3™ equilibrium point also show the instability of the system as two of the eigenvalues are complex with

positive real parts being conjugate to each other.

The modified multiplicative chaotic system (3.1) is solved by the 4™ order multiplicative Runge-Kutta method. The
chaotic behaviour changes as the value of b changes. The graphs for fixed values of s and r and varying values of b of
the solution of the system are shown in the following figure.
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Ficure 1. Simulation of the multiplicative chaotic system

3

In Figure 1, we present a visual representation of our defined chaotic system with specific parameter values: s = 12,
r = §, and various values of b. The figure illustrates the system’s behavior under different b values. Notably, we observe
that the system exhibits chaotic behavior across a range of b values between 2 to 10. However, it becomes evident that
the system consistently displays more chaotic dynamics when s = 12, r = 8, and b = 4.
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3.2. Lyapunov Exponents of the System. The chaotic behaviour of a system can also be tested by the Lyapunov
exponents. A system is considered chaotic if a system has at least one positive Lyapunov exponent. In Newtonian
calculus the Lyapunov exponents of a chaotic system can be evaluated by the formula

N4
_ a1
l_lefglgonz:;lndo'

The Lyapunov exponents of a multiplicative chaotic system can also be evaluated in analogy to the ordinary case.
Then, the formula used to evaluate the Lyapunov exponents for the multiplicative chaotic systems can be written as

N g

b I

= lim ) In—-
n=1 0

It can be seen that, for the multiplicative chaotic systems the distances are evaluated in logarithmic scale.
The maximal Lyapunov exponents of the system (3.1) are obtained as /; = 8.1806,/, = 1.0684 and /3 = —15.1893.
Moreover, the Lyapunov dimension of the system can also be calculated as

S

= L +1

=l _,, hth

|l j+1 | |l'5|

As the system has a positive Lyapunov exponent and the Lyapunov dimension is in the range 2-3 the multiplicative

system can be considered as a chaotic system. The following graph shows all of the Lyapunov exponents of the system
(3.1).
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Ficure 2. Plot of Lyapunov exponents of the Multiplicative Chaotic System

In Figure 2, which displays the Lyapunov exponents of the Multiplicative Chaotic System. Each point on the graph
represents a Lyapunov exponent, and their distribution and values are indicative of the system’s chaotic nature. The
presence of positive exponents and the overall pattern observed in the graph provide compelling evidence for the
chaotic dynamics of our system

4. CONCLUSION

In this research, we introduced a novel attractor called the “modified quadratic Lorenz attractor” and conducted
a comprehensive examination of its characteristics. Our investigation encompassed several aspects, including the
equilibrium points, the Jacobian matrix, the eigenvalues of the Jacobian, and the Lyapunov exponents. We performed
this analysis using both geometric multiplicative calculus and conventional calculus. To obtain numerical results, we
applied the geometric multiplicative Runge-Kutta method. The findings from our study consistently demonstrate the
presence of chaotic behavior in this newly proposed system, aligning with the outcomes of our numerical simulations.
This system will used several areas in engineering.
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