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ABSTRACT. The Hybrid numbers are generalizations of complex, hyperbolic
and dual numbers. In recent years, studies related with hybrid numbers have
been increased significantly. In this paper, we introduce the generalized bivari-
ate conditional Fibonacci and Lucas hybrinomials. Also, we present the Binet
formula, generating functions, some significant identities, Catalan’s identities
and Cassini’s identities of the generalized bivariate conditional Fibonacci and
Lucas hybrinomials. Finally, we give more general results compared to the
previous works.

1. INTRODUCTION

The Fibonacci and Lucas numbers are defined by

0 ifn=0 2 ifn=20
F,={1 ifn=1 and L,={ 1 ifn=1, (1)
Fn71+Fn72 1fn>2 Ln71+Ln72 1fn>2

respectively. For more information about the Fibonacci and Lucas numbers, we
refer to book [9]. Until now, there have been interesting generalizations and appli-
cations of the Fibonacci and Lucas numbers [5-7,/12,[16]. For example, Falcon and
Plaza found the general k—Fibonacci sequence {F}, » }22 by studying the recursive
application of two geometrical transformations used in the well-known 4—triangle
longest-edge (4TLE) partition [7]. Furthermore, Edson and Yayenie [6] proposed
the bi-periodic Fibonacci sequence. Also they gave generating function, the gener-
alized Binet formula and some basic identities for ¢,,. By analogy to the studies [6]
and [16], Bilgici [5] defined the bi-periodic Lucas numbers and he gave generating
functions, the Binet formulas and some special identities for these sequences. Later,

2020 Mathematics Subject Classification. 05A19, 11B37.

Keywords. Bivariate conditional polynomials, hybrid numbers, Binet formula’s, generating
function, Catalan’s identities, Cassini’s identities.

I Bsurekome@gmail.com-Corresponding author; ©20000-0002-3558-0557

2B mathzeynep2111@gmail.com; 20000-0002-7575-7644.

(©2024 Ankara University
Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics

37



38 S. KOME, Z. KUMTAS DALLAROGLU

Yilmaz et al. [18] presented generalized of Fibonacci and Lucas polynomials. Also
they obtained some new algebraic properties on these numbers and polynomials.
Yazlik et al. introduced a novel extension of the Fibonacci and Lucas p—numbers
and demonstrated that these generalized Fibonacci and Lucas p—sequences can be
simplified into various other number sequences [17]. Ait-Amrane and Belbachir pre-
sented the bi-periodic r—Fibonacci sequence and its related family of companion
sequences. They also explored the bi-periodic r—Lucas sequence of type s, where s
ranges from 1 to r, extending the classical Fibonacci and Lucas sequences. [1]. Bel-
bachir and Bencherif [4] have generalized to bivariate polynomials of the Fibonacci
and Lucas, properties obtained for Chebyshev polynomials. Ait-Amrane et al. pre-
sented a novel extension of hybrid polynomials, which combine elements of both
Fibonacci and Lucas polynomials and studied various fundamental characteristics
of these polynomials, including recurrence relations, generating functions, Binet for-
mulas, summation formulas, and a matrix representation [2|. Panwar and Singh [11]
introduced a generalized bivariate Fibonacci-Like polynomials sequence. Bala and
Verma [15] presented the generalized Bivariate bi-periodic Fibonacci polynomials.

For any nonzero real numbers a,b,c and d, the generalization of bivariate bi-
periodic Fibonacci polynomial is defined as [15],

axB,_1(z,y) + cyBp_ao(x,y), if niseven

e ;> 2 (2)
bxBp_1(z,y) + dyBp—_o(z,y), if nisodd

Bn(z,y) = {

where By(z,y) = 0, B1(z,y) = 1. Also, the authors obtained Catalan’s identity,
Cassini’s identity, d’Ocagne identity and Gelin Cesaro identity along with Generat-
ing function and Binet’s formula for the bivariate bi-periodic Fibonacci polynomial.
The authors presented the generating function of the bivariate bi-periodic Fibonacci
polynomial as:
_ t + axt?® — cyt? 3
1 — (abx? + (¢ + d)y)t2 + cdy?tt 3)
Moreover, they obtained Binet’s formula for the bivariate bi-periodic Fibonacci
polynomial as:

G S e R o) e 0 Gt 1) Kl B
(abz?)L 3] B1— Ba .

Then, Bala and Verma (3] defined the bivariate bi-periodic Lucas polynomials as
follows:

For any nonzero real numbers a; and as, the generalization of bivariate bi-
periodic Lucas polynomial is defined as [3],

G(1)

B”(xv y) =

() = a1xly—1(z,y) + ylp—o(z,y), ?f n %s even > (5)
aZIln—l(xa y) + yln—?(x7 y)a if n is odd

where, lo(x,y) = 2,11 (x,y) = asz.
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Ozdemir [10] introduced the hybrid numbers as a new generalization of complex,
hyperbolic and dual numbers. The set of hybrid numbers, denoted by K, is defined
as

K={a+bi+ce+dh: abcdeR,i’=~-1,e=0h’=1ih=-hi=e+i}. (6)
The following table presents products of i, €, and h.

TABLE 1. Products of i, €, and h

x |1 i € h
1)1 i € h
ili -1 1-h e+i
ele h+1 0 —€
hlh —e—-i € 1

This table shows that the multiplication operation in the hybrid numbers is
not commutative, but associative. Liana |13] presented the special kind of hybrid
numbers, namely Horadam hybrid numbers. Then, Kizilates [8] obtained a new
generalization of Fibonacci hybrid and Lucas hybrid numbers. He gave some alge-
braic properties of g—Fibonacci hybrid numbers and the g—Lucas hybrid numbers.
Finally, Liana and Wloch [14] introduced the Fibonacci and Lucas hybrinomials,
which can be considered as a generalization of the Fibonacci hybrid numbers and
the Lucas hybrid numbers. Sevgi [12] defined the generalized Lucas hybrinomials
with two variables. Also, he obtained the Binet formula, generating function and
some properties for the generalized Lucas hybrinomials.

In the light of the above—cited recent works, some natural questions are that: can
we define the bivariate conditional Fibonacci and Lucas Hybrinomials? Moreover,
can we find the generating function, Binet formulas and some important identities
for the bivariate conditional Fibonacci and Lucas Hybrinomials? In this study, we
will investigate the answer to these questions.

This paper is structured in four section. First section includes preliminaries and
literature review. In the second section, we define bivariate conditional Fibonacci
hybrinomials and we give generating functions, Binet formulas and some impor-
tant identities of these hybrinomials. In the third section, we discuss bivariate
conditional Lucas polynomials and the bivariate conditional Lucas hybrinomials.

2. GENERALIZED BIVARIATE CONDITIONAL FIBONACCI HYBRINOMIALS

In this section we give some identities of the generalized bivariate conditional
Fibonacci hybrinomials. The next definition presents the bivariate conditional Fi-
bonacci Hybrinomials.

Definition 1. For any variables x,y and nonzero real numbers a,b,c and d, we
have

BHn(x7y) = Bn(x7y) + iBnJrl(mu y) + 5Bn+2(m7y) + th+3($,y), (7)
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where By, (x,y) was given in and the initial conditions are BHy(z,y) = t+ecax+
h(abz? + dy) and BHy(z,y) = 1 + daz + (abz® + dy) + h(a?bx® + adzy + aczy).

We can see from the following table that the generalized bivariate conditional
Fibonacci hybrinomials are the generalization of many works for different values of
a,b,c and d.

TABLE 2. The generalized bivariate conditional Fibonacci hybrinomials

Generalized Bivariate Conditional Fibonacci Hybrinomials
Bivariate Fibonacci Hybrinomials

Bivariate Conditional Fibonacci Hybrinomials
Bivariate Pell Hybrinomials
Bivariate Jacobsthal Hybrinomials

LIRS
N S| = o
N =] =] =0
N~~~ &

Lemma 1. For the generalized bivariate conditional Fibonacci hybrinomials
{BH,(x,y)}>",, we have

n=0’

BHs, (z,y) = (abx2 + (e+ d)y) BHyy, _o(x,y) — cdy* BHay,_4(,y)
BHopq1(2,y) = (abx2 + (e+ d)y) BHoy—1(z,y) — cdyzBHgn_g(sc, Y).
Proof. By using the definition of the generalized bivariate conditional Fibonacci

hybrinomials, we obtain
BHan(2,y) = Ban(,y) + iBant1(2,y) + €Bany2(2,y) + hBanys(2,y)

= (axBop—1(2,y) + cyBon—2(2,y)) + 1 (bxBan(2,y) + dyBan-1(,y))
+ e(arBant1 (2, y) + cyBan(z,y))
+ h(bzBani2(2,y) + dyBan1(,y))

= [az (bwBan—2(2,y) + dyBan—3(x,y)) + cyBan—2(x,y)]
+1i[bx (azBan-1(2,y) + cyBan—2(z,y)) + dyBan—1(,y)]
+e [az (brBan(7,y) + dyBan-1(2,y)) + cyBan(z,y))]
+h bz (axBony1(2,y) + cyBon(2,y)) + dyBany1(z,y)]

— [(abx2 + cy) Bo,—o(x,y) + dy (axBayn—3(z, y))]
+ i[(aba:2 + dy) Bon—1(z,y) + cy (bxBap—2(z,y))]
+ 6[(abx2 + cy) Bon(z,y) + dy (axBay—1(x,y))]
+h[(aba® + dy) Bani1(z,y) + cy (baBaa(z,y))]
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= [(abz® + cy) Ban—2(w,y) + dy (Bap—2(2,y) — cyBan—s(z,y))]
+i[(aba® + dy) Ban—1(z,y) + cy (Bzn—1(2,y) — dyBan—3(z,y))]
+ 5[(abx2 + cy) Bon(z,y) + dy (Ban(z,y) — cyBan—2(z,y))]
+h[(aba? + dy) Bani1(2,y) + ¢y (Bant1(2,y) — dyBan—1(z,y))]
= [(abx2 + (c+d) y) Bon_o(x,y) — cdy? Ban_4(2,y)]
+ i[(ab:c2 + (c+4d) y) Boy—1(z,y) — cdyzBQn_g(x, y)]
+ E[(abe + (c+d) y) Bon(2,y) — cdy®Boy_o(x,y)]
+h[(abz® + (¢ + d) y) Bops1(2,y) — cdy’ Bap1 (2, y)]
= (aba® + (c+ d) y) [Bon—2(z,y) + iBayp—1(2,y) + €Ban(2,y) + hBayy1(z,y)]
— cdy?[Bap_a(z,y) + iBan_3(z,y) + €Ban_2(x,y) + hBay,_1(x,y)]
= (abx2 + (c+d) y) BHy, _o(x,y) — cdy* BHay,_4(2,y).
Similar to the above steps, we can obtain
BHapy1(z,y) = (abz® + (¢ + d)y) BHap—1(2,y) — cdy? BHan_3(z,y).
Thus, the proof is completed. O
Next, we give the generating function of the bivariate conditional Fibonacci
hybrinomial BH,,(x,y).

Theorem 1. The generating function for the bivariate conditional Fibonacci hy-
brinomial BH,,(x,y) is

S BHo(z,y) + BH1(z,y)t
g T1- (abz? 4 (c+ d) y) t? + cdy?t*
N [BHQ(J: y) — (abz® + (c+ d)y) BHo(z,y)] t* (8)
— (abz? + (c+ d) y) 2 + cdy?t*
[BHg(;r:,y) (abx + (c+d) ) BHl(x,y)] 3
— (abx? + (c+ d) y) t2 + cdy?t*

Proof. We define

@0@) = Z BHgn(x, y)t2"
n=0

@1(0 = Z BH2n+1(J,‘, y)t2n+1.
n=0
So that
B(t) = Go(t) + &1 (L).
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‘We have

@0(15) = Z BHQn(:L‘, y)th

n=0
= Z BHy,(z,y)t*" = BHo(z,y)t° + BHy(x, y)t* + Z BHy, (z,y)t"
n=0 n=2

= BH()(-'IJ,y) + BH2($7y)t2

+ Z [(abz® + (¢ + d)y) BHan—2(z,y) — cdy® BHay—s(z,y)] t*"

n=2

= BHy(x,y) + BHa(z,y)t* + (abs® + (c + d)y) £ > BHapo(x,y)t" >

n=2

(o)
— cdy’t? Z BHy,, _y(x,y)t>" 4

n=2

— BHy(x,y) + BHy(z, y)t?
+ (abz® + (c+ d)y) t*

X ZBHQTL—Q(Ivy)t2n72 +BH0(xay)t0 - BHo(I7y)tO
n=2
— cdy’t &, (1)
= BHy(z,y) + BHa(z,y)t* + (abz® + (c + d)y) t*&0(2)
— (aba® + (c+ d)y) * BHo(z,y) — cdy*t* &o(t).

Thus, we get

_ BHy(x,y) + (BHa(z,y) — (abz? 4 (¢ + d)y) BHo(z,y)) t*
N 1 — (abx? + (¢ + d)y) 2 + cdy?t* '

Go(t) (9)

Similarly, we find

&1(t) = Y BHyp i1 (z,y)t™" ™

n=0

= Z BH2n+1(xa y)t2n+1

n=0

= BH (2,y)t + BHs(z,y)t* + Y BHop 1 (2, y)t>" "

n=2
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= BH,y(x,y)t + BH3(z,y)t?

+ Z [(abx2 + (c+ d)y) BHoy, 1 (x,y) — cdy* BHy, _3(x, y)] 2ntl

n=2

= BH, (z,y)t + BH(x,y)t* + (aba® + (c+ d)y) £* Y BHap 1 (2, y)t*" "

n=2

[ee]
— cdy®t* Y " BHyp,_s(x,y)t™"

n=2

= BH,(x,y)t + BH3(z,y)t?

+ (abz® + (c+ d)y) t* Z BHyy 1 (z,y)t*" ' + BHy(x,y)t — BHy(z,y)t

n=2
— cdy?t* &, (1)
= BH,(z,y)t + BH3(z,y)t* + (aba® + (c + d)y) t*(t)

— (abaz® + (c+ d)y) t* BH: (z,y) — cdy*t' &, (t).
Therefore, we get
B BH;(z,y)t + (BHg(x,y) — (abw2 + (c+ d)y) BHl(x,y)) 3
B 1 — (abaz? + (c+ d)y) t? + cdy?t* '
By virtue of @ and , we can obtain

&(t) = Bo(t) + G1(t)

=Y BH,(z,y)t"
n=0

_ BHy(x,y) + BH;(z,y)t + [BH;(z,y) — (aba? + (c+ d)y) BHy(z,y)] t?
B 1 — (aba? + (c+ d) y) t2 + cdy?t*
[BHg(SC, y) — (aba:2 + (c+d) y) BH(z, y)] 3
1 — (abz? + (c+d) y) t2 + cdy?t*

Gy(t) (10)

Hence, the proof is completed. (I

Now we give the Binet formula of the bivariate conditional Fibonacci hybrinomial
BH, (z,y).

Theorem 2. The n'* term of the generalized bivariate conditional Fibonacci hy-
brinomial BH,,(x,y) is

Ge(mBi 2 (By + (d— )y)L 31+ 5, 8L (g, 4 (4 — )y) LB IHEY

BH’n 5 = n
(e:0) (aba?) (3] (5, — B)

(11)
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where 8, and By Toots of the characteristic equation P

0. Also,

and

Qg(n) =

~

5

(a )5(”) 65(”

(abx?®+(c—d)y)\—abdz?y =

(az) "D 4 55 ez (B c)y) Y
&(n+1)
# e G - o)
&(n) pé(n)+1
" h(agw)gim (81 + (d = )y) "
(n) pé(n)
o = (a0 4 LTI (g gy

(ax)*) g,

(abx2)E

+e (CleZQ) (52+(d_c)y)
(n) pé(n)+1
B
h(a(g;)bxz)g(zHl (By+ (d—c

)y)g(nﬂ)ﬂ

Proof. We use the following properties throughout the proof:
o B+ By = abs® + (c— d)y

o 3-8y =

—abdz?y

o (81 +dy)(By +dy) = cdy2

o (By+dy) (aba®) =

B (By + (d = c)y)

o (By+dy) (aba®) = By (B2 + (A= c)y).
Note that 8, (z,y)

BHQn('ra y)

= B, and By(z,y)

= (5. By using , we have

= Ban(2,y) + iBant1(2, y) + €Bant2(2,y) + hBapis(z, y)
(az) [ﬁ? (By+(d=c)y)" — By (By + (d - C)y)n]
(abx?)" B — B
L BB (A=) = B (By + (d—c)y)"
(abx?)" B1— By
(az) B A —oy)" T =BT (Bo+ (d—o)y)" T
(abz?)" B — 52
1 B A= oy)" = BT By + (d— )y)" T
_‘_h(abﬁ)"+1 l By _52 ]
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BB+ (=)
(abx2)™ (B, — Ba)

@z +1 (B + (d — ) + e 5y (B, + (d = )y) + h— iy (8, + (d - c)yf}

B3 (Bt (d—)y)”
(abx?)" (B, — Bs)

X

ﬁﬁg By + (d - c)y)2:|

X |az +1(8,+ (d = )y) + 6B, (B, + (A~ )y) + h

Here, we choose the &g and 7, as follows:

o = [a 4105, + (0= ) + e 555, (B + (0= ) + 0B (5 + (d - )

o = [0 4105 + (0= ) + 2550 (B + (0= ) + 0B, (8 + (d - ).

Finally, the following equation is obtained:

Qof1 (B1+ (d—c)y)" —FoB3 (By+ (d = )y)”

BHQn(zvy) = (abe)n (ﬁl _ B2) (12)
In a similar way, by using , we have
BHan11(,y) = Bant1(2,y) + iBant2(2,y) + e Bants(2,y) + hBonta(z,y)
-1 [,3? (B1+ (d—)y)" ™ — B3 (By + (d - C)y)”ﬂ}
(abz?)" By — B,
Ly (az) [ Bt (d—y)" T - By (B, + (d - C)y)nﬂ}
(abx2)" ! B1— B
et { B+ (A= y)" T = BT (By + (d - C)y)"+2]
(abxz2)" ! By — B,
o (a7) { 1B+ (d—)y)" " — B2 (By + (d— C)y)”+2]
(abx2)"? By — B

BB+ (d— oy
(aba?)" (B, — B)

. axr 1
X 1+lwﬂ1 +6Mﬂl (61 +(d*C)y)+h

B2 (By + (d— )™
(aba®)" (B, — By)

A Bat ey (B (A= )+ B B (B (a9

Wﬂ? (By+ (d— c)y)]

143
X | +labﬂc2
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Here, we choose the a; and 7, as follows;

—~ 1+i ar
oy = i—
! abxz?

1
B1+ 5@51 (B +(d—c)y) + hi(a;;;)z B (B + (d— c)y)}
~ . 1
7, = {1 + 1%62 + Ewﬂg (By + (d = c)y) + hﬁﬁ% (By + (d— c)y)} .

Finally, the following equation is obtained.

Q1BY (B + (= )" =355 By + (A=) g
(aba?)" (B, — By)

By virtue of and , we can obtain the following equation.

BHap 1 (z,y) =

—~ 12 n n N BN " .,
BH (.CL‘ y):aé(n)612 (B1+(d—c)y)\.2J+E( )_’Yg(n)/322 (/BQ‘F(CZ—C)y)L?J'%( )
n ) (abx2)L%J (Bl _ 52) .

where 3, and B, roots of the characteristic equation A\* — (abz? + (¢ — d)y)\ —
abdx?y = 0. Also,

&(n) p&(n)
~ n . \ax 5 n
Qg(n) = (al’)g( 4 1(()1)2)5(710 (B +(d— C)y)é( )
abx
&(n+1)
ax
w8 B @0y

(abx?)
(ax)g(n) 5§(")+1

o (abz2)S(MH! (By + (d— c)y)* "I
and
Aem = ()" + iw (By + (d — c)y)s "+
+ gw (Bs + (d—0)y)
+ h% (By + (d — C)y)s(nﬂ)ﬂ '

]

Now, we give the Catalan’s identity of the bivariate conditional Fibonacci hy-
brinomial BH,(z,y).
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Theorem 3. For any integers n and r and n > r > 0, we have

2
BHs(n4r)+e(6) (@ ¥) BHa () 16y (2, y) — (BHapte(i) (%, 9))
1
 (aba?)*" (B — By)?

~ ngmn — o)) HED — o) G | BB+ (@d=y)\"
x [%uw:m& By™ (B1 + (d—c)y)" &) (By + (d — c)y)™ T {1 (—/82 (52+(d_0)y)> H

1
+
(ab$2)2n (B1 — 52)2

BB B BT — &)y HE@ — )@ |1 — Bz Bz + (d—)y)\"
R R R e e I e rr M I

where Qg(iy and e (;) are defined in Theorem([2)) and i € {0,1}.

Proof. In order to prove Catalan’s identity, we will examine in two different cases.
Case i = 0:

= 2n42r n r
af(2n+27’)5\1_ # (5 ( ))L 3 |+&(2n+2r)

BHQ(n+r) (xv y) =

(abaﬁ)L (5 — By)
B %(znﬂr)ﬂgTJ (52 ( — o)y )Lz"ﬁz"Hg(zMgr) "
(abxz) (ﬂl B5)
= a05711""7" (ﬂl + ( - C)y)n-‘rr . 70ﬂn+T (BZ + (d . C)y)n+r
(abz2)" " (8, — By)
= [ 22527 |+£(2n—2r)
BHQ(nfr) (x’y) Oé§(2n 2r)ﬂ1 Q(BL;L 2?] )y)
(abz?) (B, — By)
B 35(2n_2r)6£'TJ (52 ( P e G 5)
(abx2) (51 52)

_ QBT (B (d—)y)" T =By (Bt (d—c)y)" "
(abx?)" ™" (By — B,)

Qg (2n) ﬁ ] By + (d— Sy )L%J+€(2n727‘)
(aba) ) (8, — )
_ %(271)@% (By + (d — c)y)LF1+eCm 18)
(abe)L%J (ﬁl _ ﬂg)
aoBy (81 +(d=)y)" =783 (Ba + (d = )y)"
(abx?)" (By — Ba) .

BH2n(ajay) =
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By virtue of (14)), and (16]), we have
BHy(n4r)(2,y) BHa(n—ry(x,y) — (BHan(z, y))2
1
- (awa)Zn (B — 52)2
(@058 8,7 (31 + (0= )" 8+ a = [1 - (GO =) )
. 1
(abx?)*" (By — B,)°

x [%aoﬁml" (B + (d— cJy)" (By + (d — )y)" [1 - (B(M—(d_)y))” '

Casei=1

a1 BT (B + (d—c)y)" T — 7,857 (By + (d— c)y)" T

BHQ(n+r)+1(1'7y) = ((Lb(EZ)n+T (,81 — 52) (17)
~ on—r d— n—r+l o~ pn—r d— n—r+1

BHQ(n—r)+1(CC:y) = SR Gl C)Eya)bIQ)nfr (giﬂj 52)(/82 = W) (18)

By (2,y) = PL B1+ (=)™ — 7,5 (B + (d = y)"™" (19)

(abz?)™ (81 — B3)
By virtue of (17), and (19)), we have
BH2(n+r)+l (.Z', y)BHQ(nfrH»l ($, y) - (BH2n+1(ZE, y))2
1
~ (aba?)*" (B, — By)°
x {aﬁlﬁl%” (81 + (d = c)y)" " (B + (d = c)y)""! {1 - (—gl G ; - ?y)) H
1
+
(aba?)™" (By — B,)°

< (@88, 0+ (0= 9 (8, + -t [1- (Gl 0=gu

Finally, we get

BHy(ntry4¢(5) (@, Y) BHo(n—ry (i) (2, y) — (BH2n+5(i)($,y))2
1

~ (aba?)*" (B, — Bo)°

~ =~ n n n I3 n 7 18 ﬁ + d—c "
x [ecTe 818" (B + (= 9D (8 + (@ = O 1 - (H) Il

1
+
(abz2)*" (B) — By)?

X hmagum%" (B + (d — )y)" D (8, + (d — c)y) W {1 - (

v ||

O
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Now, we give the Cassini’s identity of the bivariate conditional Fibonacci hybri-
nomial BH, (z,y).

Corollary 1. Forn >0, we get

BHy(nt1)4¢0) (@ Y) BHy(n—1)+¢(i) (T, y) — (BH2n+§(i)(l“,y))2
1
 (aba?)*" (By — Ba)°

SR BmBn 0] oy te@ [ B1 (B +(d—c)y)
< [Be e 782" (81 + (d = )™ (8, + (d = )+ |1 - (ELEE=E |

1
+
(abz2)*™ (B) — By)?

A amgm e _onte@ [ (B2Ba+ (d—c)y)
* [Vs(z) e@B2"B1" (By + (d = c)y) (Br+(d=cly) {1 (Bz (Bz+(d—0)y)>H'

where Qg(iy and Ye(;) are defined in Theorem and i € {0, 1}.
Proof. Taking r = 1 in Catalan’s identity the proof is completed. ]
3. GENERALIZED BIVARIATE CONDITIONAL LUCAS HYBRINOMIALS

In this section we give some identities of the generalized bivariate conditional
Lucas hybrinomials. We start with the following definition.

Definition 2. For any four numbers a,b,c and d belonging to R — {0}, the gener-
alization of bivariate conditional Fibonacci polynomial is defined as,

o n>2 (20)
axLy_1(x,y) + cyLn_o(z,y), if n is odd

Ln(z,y) = {bl“Lnl(vay) +dyLn_o(z,y), ifnis even

where Lo(x,y) = 2, L1(x,y) = ax.

Lemma 2. For the generalized bivariate conditional Lucas polynomials
{Ln(z,y)},2 we have

LQn(ma y) = (abx2 + (C + d)y) LQn—Q(x7 y) - Cdyngn_4(.’E, y)
Lont1(z,y) = (abx® + (c+ d)y) Lon—1(z,y) — cdy®Lay—3(z,y).

Proof. By using the definition of the generalized bivariate conditional Lucas poly-
nomials, we have

Lon(x,y) = (brLan—1(2,y) + dyLan—2(z,y))

[bx (axLon—2(2,y) + cyLan-3(z,y)) + dyLan—2(z,y))

[(abx2 + dy) Lop—o(z,y) + cy (bxLop_s(x,y))]

[(abx® + dy) Lon—2(x,y) + cy (Lan—2(2,y) — dyLon—a(z,y))]
— [(abx2 + (c+d)y) Lap—2(z,y) — cdy? Loy _4(z,y)].

Similar to above steps, we can obtain

Lons1(z,y) = (abz® + (c+ d)y) Lan—1(z,y) — cdy®Lan—3(z,y).
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Thus, the proof is completed. O

Next we give the generating function for the bivariate conditional Lucas polyno-
mial L, (z,y).

Theorem 4. The generating function for the bivariate conditional Lucas polyno-
mial Ly (x,y) is

2+ axt — (abav2 + 2cy) t2 + adxyt®
1— (abz? + (c+d) y) t? + cdy?t* ~

E(t) =3 La(z,y)t" = (21)
n=0

Proof. We define

Eo(t) =Y Log(z,y)t™"
n=0

E1 (t) = Z L2n+1(I7 y)t2n+1.
n=0

So that
E(t) = Eo(t) + E1(2).
We have

Ey(t) = Z Loy (2, y)t*"
n=0

== Z L2n(xa y)th = Lo(iL’, y)to + LQ(xv y)t2 + Z LQn(xa y)t2n
n=0 n=2
= LO(Ia y) + LQ(xa y)tQ

+ Z [(abz® + (c+ d)y) Lon—2(x,y) — cdy® Loy _4(z, y)] t*"

n=2

= LO(xa y) + L2 (.T, y)tz + (abxz + (C + d)y) t2 Z LG_g(l‘, y)t2n72

n=2

0o
- Cdy2t4 Z L2n74(xa y)th—4

n=2

=2+ (aba® + 2dy) t?

+ (aba® + (c+ d)y) t? Z Lon_o(z, y)t*" =2 + Lo(z,y)t° — Lo(z, y)t°

n=2

— cdy*t*Eo(t)
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=2+ (abz® + 2dy) t* + (abz® + (c + d)y) t*Eo(t)
— 2 (aba® + (c + d)y) t* — edy®t* Ey(t)
Eo(t)[1 — (abz® + (c + d)y) t* + cdy®t'] = 2 — (abz® + 2cy) t*.

Thus, we get

2 — (abx2 + 20y) t2

Eo(t) = .
o) =1z (abz? + (c + d)y) t2 + cdyt*

Similarly, we find

E1 (t) = Z L2n+1 ((E, y)t2n+1

n=0

= Z Lop i1 (2, y)t*" ' = Ly (z,y)t" + La(a, y)t* + Z Lop g1 (z, y)t?"+!

n=0 n=2

= Ll(m?y)t + L3($,y)t3

+ Z [(abz® + (c+ d)y) Lon—1(z,y) — cdy® Loy _5(z, y)] t*" !

n=2

= Ll(xvy)t + L3(‘r7y)t3

+ (abz?® + (c + d)y) t* Z Lop_1(z,y)t* 1

n=2

oo
— cdy?*t* Z Lon_3(z,y)t*" 3

n=2

= axrt + (a2bx3 + 2adzy + acxy) 3

+ (abx2 + (e+ d)y) 12 Z Loy _1(z,y)t*" 1 + Ly(z,y)t — Ly (z, y)t

n=2
— cdy*t* B, (t)
= azt + (a®bz® + 2adzy + acxy) t* + (abz® + (c + d)y) t*Ey (t)
—ax (aba® + (c+ d)y) t* — cdy®t*Ey (1)
Ei(t)[1 = (aba® + (c + d)y) > + cdy®t'] = axt + adzyt®.

Therefore, we get

B axt + adzyt®
11— (aba? + (c + d)y) 12 + cdy?t*’

Eq(t)
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By virtue of and (23), we can obtain
E(t) = Eo(t) + E1(t)
> 2+ axt — (aba? + 2cy) t? + adwyt®
:ZLn($7y)t”: 2 2 274
v 1 — (abx? + (c+ d) y) t2 + cdy?t

Hence, the proof is completed. ([

Now we give the Binet formula of the bivariate conditional Lucas polynomial
L(z,y).

Theorem 5. The nt" term of the generalized of bivariate conditional Lucas poly-
nomial Ly, (z,y) is

(—ax)&™
B1— P

x l (€00+ 18y + (~D)E03, ) (8, + dy) 2

Ln(.’L‘,y) =

(DI dy 1€t Vey) (B +ay)tE @D

— (& +1)8, + (~)FDB,) (8, +dy)
— (DS dy + £n+ Vyey) (8 +dy) ' ]

where 3, and B, Toots of the characteristic equation \*—(abz*4(c—d)y) A\ —abdx?y =
0.

Proof. We use the following properties throughout the proof:
o By + By =aba® + (c—d)y

Bi- By = —abdz?y

(81 + dy) (By + dy) = cdy?

(81 + dy) (abz®) = B, (B, + (d — )y)

(B + dy) (abz®) = B, (B2 + (d — )y)

Note that 8, (z,y) = 8, and By(x,y) = B,. Since ﬂé;;;y and ﬂj;;y are roots of

1 — (abx® + (c + d)y)t* + cdyt* = 0.
If we assume

EO (t) = Z L2n(xa y)t2n
n=0

E1 (f) = Z L2n+1($7 y)t2n+1.

n=0



GENERALIZED BIVARIATE CONDITIONAL FIBONACCI AND LUCAS HYBRINOMIALS 53

Then,
E(t) = Eo(t) + Er ().

By using Maclaurin’s series expansion

Az—B . —n—1r2n S —n—1r72n+1
z2—C:ZBC 72— ACTZ

n=0 n=0

and above-mentioned identities, we simplify both Ey(t) and E;(t) as follows:
2cdy? — (abx? + 2cy) - (B, + dy)
2 (ﬁl+dy)
cdy?
2cdy? — (abx2 + 20y) (By +v)

ﬁ __(Bg+dy)
cdy?

Eo(t) = ! [

cdy® (81 — B2)

— 1 S 2 oy (Bitdy\ " o
= G5 [((abx + 2¢y)(By + dy) — 2cdy?) ( oy ) ] t

n=0

—n—1
[((abw2 +2cy) (B, + dy) — 2cdy?) (’62 + dy) ] 42n

1 o0
cdy? (B, — By) Z:: cdy?

n=0
1

- m Z ((abe + 2¢y) (B + dy) (B, + dy)

n=0

— 2cdy® (B, + dy)) (By + dy)" ] 2

o0

I DD [((abxz +260)(3, + dy) 5, + do)
1 2/ n=0

— 2cdy® (B, + dy)) (81 + dy)" ] 2

1 oo
- (ﬂrﬂz)z

[(abxg — 2835 + 2cy — 2dy) (B, + dy)"
n=0

— (abz® — 2B, + 2cy — 2dy) (B, + dy)" ] 2"

:ﬁz [(ﬁl_ﬁ2_(d_c)y)(52+dy)"

n=0

—(By =By —(d—c)y) (B + dy)n]tQ".
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We solve Fj(t) with the same approach used in Ey(t) and we get the value of

oo

3 —axﬁ ] Z [(By + 2dy) (By + dy)™ — (B, + 2dy) (B, + dy)"] 2"+,
1 2/ n=0

We know that E(t) = Ey(t) + E1(t). So we find

Ei(t) =

sl é(n)
-2 /;x K (n+1)8, + (1) g,
n=0
+ (=)D (2) M gy 4 ¢(n + 1)cy> (B, + dy) 2!
- <5( 1)y + (151,
+ (=1 @) M dy + £(n + 1)cy> (By + dy) 2] ] :
Thus,
(—axz)™ £(n+1)
Ly(z,y) = B, =B, En+1)8, +(-1) Ba

+ (1)) My 4 g(n + 1)cy> (B, + dy)' 2!
- (§(n + 1), + (—1)5" VB,

+ (1) 2)E M gy 4 g(n + 1)cy> (B, + dy) 2 ] :

In the following definition, we give bivariate conditional Lucas Hybrinomials.
Definition 3. For any variable x,y and nonzero real numbers a,b, c and d, we have

LHn(SL’, y) = Ln<x7 y) + iLnJrl(xa y) + 5Ln+2(m7 y) + th+3(w7 y) (25)

where L, (x,y) was given in and the initial conditions are with LHy(x,y) =
2 + dax + e(abx® + 2dy) + h(a*bx? + 2adxy + acry) and LHy(z,y) = ax + i(abz? +
2dy) + +e(aba® + 2adzy + acry) + h(a?b?x* + 2bedx®y + abex?y + abdx®y + 2d2y?).

We can see from the following table that the generalized bivariate conditional
Fibonacci hybrinomials are the generalization of many works for different values of
a,b,c and d.
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TABLE 3. The generalized bivariate conditional Lucas hybrinomials

Generalized Bivariate Conditional Lucas Hybrinomzials

Bivariate Lucas Hybrinomials

Bivariate Conditional Lucas Hybrinomials

Bivariate Pell Lucas Hybrinomials

=N =R
NS = O

N ===

N~ ==

Bivariate Jacobsthal Lucas Hybrinomials

Lemma 3. For the generalized bivariate conditional Lucas hybrinomials
{LH,(z,y)},",, we have

LHy,(z,y) = (ab2® + (¢ + d)y) LHay—2(2,y) — cdy’ LHop—_a(z,y)
LHoni1(z,y) = (aba® + (¢ + d)y) LHan—1(z,y) — cdy’ LHzp—3(z, y).

Proof. By using the definition of the generalized bivariate conditional Lucas hybri-
nomials, we obtain

= Lon(2,y) + iLl2nt1(2,y) + eLant2(2,y) + hlonys(z,y)

= (bxLan—1(z,y) + dyLan—2(z,y)) +i(axLlon(z,y) + cyLon—1(z,y))

LHZn (:L’, y)

+e(bxLony1(w,y) + dyLan (v, y)) + h(azLono(7,y) + cyLani1(z,y))

= [ (axLop—2(x,y) + cyLan—3(x,y)) + dyLon—2(x,y)]

+ilaz (brLan—1(2,y) + dyLan—2(,y)) + cyLan—1(z,y)]
+e [bx (axLan (v, y) + cyLon—1(7,y)) + dyLon(z,y))]
+hlaz (bxLony1(z,y) + dyLon(w,y)) + cyLani1(z,y)]

= [(abz® + dy) Lan—2(z,y) + cy (bxLan_3(z,y))]

+i[(abz® + cy) Lon—1(z,y) + dy (axLon—2(z,y))]
+ e[(aba® + dy) Lon(z,y) + cy (bxLon—_1(z,y))]
+ h[(abz® + cy) Lopt1 (2, y) + dy (axLay (z,y))]

= [(abx2 + dy) Lon—2(2,y) + cy (Lan—2(x,y) — dyLan—a(z,y))]

+i[(abz® + cy) Lon—1(z,y) + dy (Lan—1(z,y) — cyLon_3(z,y))]
+e (abx + dy) Loy (x,y) + cy (Lon(z,y) — dyLon—o(z,y))]
+ h[(abz® + y) Lont1(2,y) + dy (Lan+1(x,y) — cyLon—1(z,y))]

= [(abx + (c+d) ) Lon_o(x,y) — cdy? Loy _4(z,y))

+ i[(abalc2 + (¢+4d) y) Lon_1(z,y) — cdy® Lo, _3(z, y)]
+e[(aba? + (¢ + d) y) Lon(2,y) — cdy® Lop—o(z,y)]
+ h[(abx2 + (c+4d) y) Lopi1(z,y) — cdy®Lon—1(2,y)]

+
+
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= (aba® + (c+ d)y) [Lon—2(2,y) + iLon—1(2,y) + Loy (z,y) + hLoyi1 (2, y)]
— cdy? [Lon—a(x,y) +iLlon_3(x,y) + €Lon—2(x,y) + hloy_1(x,y)]
= (abx2 + (c+d) y) LHo, o(x,y) — cdy* LHoy _4(x,y)

Similar to above, we can obtain
LHopi1(z,y) = (aba® + (¢ + d)y) LHay—1(z,y) — cdy’ LHap—5(2, y).

Thus, the proof is completed. O

Next we give the generating function of the bivariate conditional Lucas hybrino-
mial LH,(z,y).

Theorem 6. The generating function for the bivariate conditional Lucas hybrino-
mial LH,(z,y) is

Q(t) =Y LHn(z,y)t"

_ LHo(z,y) + LH1(z,y)t + [LH:(z,y) — (abz® + (c + d)y) LHo(z,y)] t*
B 1— (abz? + (¢ + d) y) t2 + cdy?t*
[LHs(z,y) — (aba® + (c+ d)y) LH1(z,y)] t*
1 — (abz? + (c+ d) y) t2 + cdy?t* ’

Proof. We define

Qo(t) = LHap(z, y)t*"

n=0

Ql(t) = Z LH2n+1($, y)t2n+1.

n=0
So that

Qt) = 2o(t) + 21(1).
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‘We have

20(t) =Y LHop(z, y)t*"

n=0
=Y LHap(x,y)t*" = LHo(x,y)t° + LHz(x,y)t* + Y LHan(w, y)t"
n=0 n=2

= LHo(z,y) + LHa(z, y)t?

+ Z [(ab:z:2 + (c+ d)y) LHy, o(z,y) — cdy* LHa, _4(, y)] 2

n=2

= LHy(z,y) + LHa(z,y)t* + (abz® + (c + d)y) t? Z LHa, oz, y)t?" 2

n=2

— cdy?t? Z LHoy,4(x, y)t2"_4

n=2

= LHo(z,y) + LHa(z,y)t?

+ (abz® + (c+ d)y) £ Z LHa, (2, y)t>" 2 + LHo(z,y)t° — LHo(z,y)t°

n=2
— cdy®t1 02 (t)
= LHy(z,y) + LHa(z,y)t* + (abz® + (c + d)y) t*2(t)
— (abz® + (e + d)y) t*LHy(z,y) — cdy*t*2o(2).
Thus, we get
_ LHo(z,y) + (LHx(x,y) — (abz® + (¢ + d)y) LHo(z,y)) t*

() 1 — (abz? 4 (c + d)y) t? + cdy?t?

(26)

Similarly, we find

Q1(t) = LHopia(z, )"+

n=0

= Z LH2n+1(x7 y)t2n+1 = LHl (.’L’, y)t + LH3($7 y)t3

n=0

(o)
+ Y LHyppa(z,y)t*"

n=2

= LH,(z,y)t + LH3(z,y)t*

+ Z [(abx2 + (ec+ d)y) LHoyy 1 (x,y) — cdy* LHo,, _3(, y)} 2ntl

n=2
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= LH,(z,y)t + LH3(x,y)t*

+ (abz® + (c+ d)y) t* Z LHoy, 1 (z,y)t>" ! — cdy?t? Z LHoy, 3(z,y)t>" 3

n=2 n=2

= LH,(z,y)t + LH3(z,y)t>

+ (abz® + (c + d)y) t* Z LHy, 1 (z,y)t>" ' + LH, (z,y)t — LH, (z,y)t
n=2

— cdy®t1 02 (t)
= LH,(z,y)t + LH3(z,y)t* + (abz® + (c + d)y) t* (1 (t)
— (abz® + (c+ d)y) t*LH; (z,y) — cdy*t* (1 (t).

Therefore, we get

_ LH,(z,y)t+ (LHg(Jc, y) — (abx2 + (e+ d)y) LH, (x,y)) t?’.

2t
1®) 1 — (aba? + (c + d)y) t2 + cdy’t*

(27)

By virtue of and , we can obtain
02(t) = o(t) + 21(t)
n=0

B LHy(x,y) + LHy(x,y)t + [LHQ(J:, y) — (abx2 + (e+ d)y) LHy(x, y)] 12
N 1 — (aba? 4+ (c+ d) y) t? + cdy?t*
[LH3(x,y) — (aba? + (c+d)y) LH;(z,y)] t3
1 — (abx? + (c+d) y) t? + cdy*t* '

Hence, the proof is completed. O

Now we give the Binet formula of the bivariate conditional Lucas hybrinomial
LH,(x,y).

Theorem 7. The n'" term of the generalized of bivariate conditional Lucas hybri-
nomial LH, (x,y) is

S B+ dg) ) — e (81 4 dy) 12
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where 3, and B4 roots of the characteristic equation > —(abz?+(c—d)y) A\—abda?y =
0. Also,

Be(m) = (~a2) ™ (€ +1)8y + (-1, + (1D @M dy + (n + 1ey)
+i(—a) D (6B + (~D B, + (—DEM @)y + g(m)ey) (8, + dy)*
+e(—a2)*™ (&n+ DBy + (DD By + (—)EFD @M dy 4 6(n + Dey) (8, + dy)
+ h(=a)S D (g(n)By + (~1E By + (~)S @Dy + g(m)ey) (B, + dy) <!

and

Fe(n) = (—an)*™ (&(n+ 1By + (~DS DBy 4+ (—DSHD @My 4 £(n + 1)ey)
+i(—ax)$ D (gn)By + (~DEM B, + (~)EM @)D ay + (n)ey) (8, + dy)$™)
+e(=a)*™) (& +1)By + (~)EHD By 4+ (—1)E D @) dy 4 g(n + 1ey) (8 + dy)

+ h(=a2) ) (€ + (~DEM B, + (~DEM@)EDay + gn)ey) (8, + dy) I

Proof. Firstly, by using 7 we have

LHop(z,y) = Lon(2,y) +iLlont1(2,y) + €Lant2(2,y) + Loy i3(7,y)

_ (/52 + dy)" [(61 — By — dy + cy) +i(—ax) (By + 2dy)

B1— B
£(B1 — By — dy + cy) (By + dy)
+ h(—ax) (B, + 2dy) (B + dy)]

[(By — By — dy + cy) + i(—azx) (B, + 2dy)

e(By — By —dy +cy) (By +dy)
+ h(—az) (8y + 2dy) (B, + dy) ]

(Bt dy)”
B1 — By

Here, we choose the &g and 7 as follows;

@0:[(51_52 dy + cy) + ( )(62—|—2dy)+6(51—52—dy+cy)(ﬂ2—|—dy)
+h(—az) (B, + 2dy) (B, + dy) |

o0 = [(/82 — By —dy+cy) +i(—ax) (B; +2dy) + e (By — By — dy +cy) (81 + dy)
+h(—az) (8 + 2dy) (B, + dy) |.

Finally, the following equation is obtained:

LHon(@9) = 5 5,
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In similar way, by using (24), we have
LH2n+1 (1'7 y) = L2n+l (ZL', y) + iL2n+2 (x, y) + 5L2n+3(x7 y) + hL2n+4(x7 y)

W [(—az) (B, + 2dy) +1(By — By — dy + cy) (Bs + dy)
© e(—az) (By + 2dy) (By + dy)

+h(B, — By — dy + cy) (Bs + dy)* ]

_ (Butdy)” [(—ax) (By +2dy) +1(By — By — dy + cy) (By + dy)

B, — Bs
+e(—az) (By + 2dy) (By + dy)
+h(By— By — dy +cy) (By + dy)*].

Here, we choose the Wy and 7 as follows;
@1 = [(—ax) (By + 2dy) +1 (B, — By — dy + cy) (B, + dy)
+ e(—az) (B, + 2dy) (By +dy) +h (By — By — dy + cy) (B, + dy)” |
1= [(—az) (By + 2dy) +1(By — By — dy + cy) (By + dy)
+e(—az) (B, +2dy) (B, + dy) + b (By — B, — dy + cy) (8, + dy)* .

Finally, the following equation is obtained.
@1 (By +dy)" =71 (B, +dy)"

LHopi1(x,y) = 30
2 l+1( y) /Bl _ /32 ( )

By virtue of and (0], we can obtain the following equation

Sen a5, (8, 4+ dy)lH
LH, (1) = ) (B2 +dy) Tem) (By +dy) >~
B1 — By

where 3, and S, roots of the characteristic equation A\* — (abz® + (¢ — d)y)\ —
abdz?y = 0. O

Now, we give the Catalan’s identity of the bivariate conditional Lucas hybrino-
mial LH, (z,y).

Theorem 8. For any integers n and r andn =1 > 0, r > 0, we have
LHo o) +e(0) (@ 4) LHo(n—r) ) (8, 9) — (LHan ey (2,9))
| BeFecn (B dy)" (8, +dy)" [1 - (5242
(B1 ~ 8)*
Fe@eco (B +dy)" (B +dy)" [1 - (5522)]
’ (51— B)” |
where We(;y and Ge(;y are defined in Theorem@ and i € {0,1}.
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Proof. In order to prove Catalan’s identity, we will examine two different cases.

Case 1 = 0:
Y 2n+2r ~ 2n+42r
We(2nt2r) (Ba + dy)t 7 - Te(ontar) (B + dy)t "
LHQ(n+r)(xa y) =
B1— B
_ Do (Ba+dy)" — 50 (By +dy)" T
B — B

~ L2n72rJ e L2n72'rj
Wen—2r) (B +dy) =~ —Gean—ar) (B1 +dy)" Z

LHQ(nfr) (.I', y) =

B — B
W (By+dy)" " =G0 (B +dy)" T
B B1 — By
Lo (z.y) = We(2an) (B + CZ?J)L;J :gg(%) (B, + dy)'
1~ P2
_ Wo (By + dy)n — 0o (B + dy)n
B B1— B

By virtue of , and , we have

LHs 4y (2,y) LHo -y (2,y) — (LHan(, y))
500 (B +dy)" (B, +dy)" [1 - (G|
- (B; = Ba)
Folo (B + dy)" (8, + dy)" [1 — (Baxie)"]
(B, — B2)° '

+

Case 1 = 1:

D1 (By +dy)""" — 1 (By +dy)""”
By =B

LH2(7L+T‘)+1 (xa y) =

@1 (By +dy)" ™" =71 (By +dy)" "
B1— By

LHQ(TL—T)+1 (l’, y) =

@1 (By +dy)" — 71 (B, +dy)"
B1 — Bo

LHapi1(2,y) =
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By virtue of (34), and (36]), we have
LHQ(nJrr)Jrl (Z‘, y)LHQ(nf'r)+1 (l‘, y) - (LH2n+1 (-73’ y))2

D By +dy)" (B + )" 1 (5) ]

(81— Ba)?
BBk Gty [1 - () |
(81 = Ba)? '
Thus, the proof is completed. 0

Now, we give the Cassini’s identity of the bivariate conditional Lucas hybrinomial
LHn(2,y).

Corollary 2. Forn >0, we get
LHo (1)) (% Y) DHom-1) () (2, 9) — (LHangen (2,9))°
Fe@en) (B + dy)" (B + )" [1 — (52)]
(B~ B)°
| Fewben (1 + )" (o )" [1 - (35|
(By — B5)°
where We(;y and T¢(;y are defined in Theorem and i € {0,1}.

Proof. Taking r = 1 in Catalan’s identity the proof is completed. O

4. CONCLUSION

The Fibonacci and Lucas numbers are well-known numbers, which have been
studied by many researchers for years. These numbers arise in the applications of
mathematics, computer science, physics, biology and statistics [9]. In this paper,
by combining the Fibonacci and Lucas numbers with hybrid numbers, we present
the generalized bivariate conditional Fibonacci and Lucas hybrinomials which are
generalization of many works in the literature. Moreover, we derive many proper-
ties of generalized bivariate conditional Fibonacci and Lucas hybrinomials such as
Binet’s formulas, Catalan’s identity, Cassini’s identity of the hybrinomials.
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