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Abstract: The aim of this paper is to study the unwanted chaotic oscillation that can severely affect the 

reliable and safe operation of electrical power systems. The dynamical behavior of a benchmark 

three-bus nonlinear electrical power system model is explored using modern nonlinear analysis 

methods, where the Lyapunov exponents spectrum, bifurcation diagram, power spectral density 

and bicoherence are used to investigate the chaotic oscillation in the power system. The analysis 

shows the existence of critical parameter values that may drive the power system to an unstable 

region and can expose the system to bus voltage collapse and angle divergence or blackout. To 

eliminate the chaotic oscillation, a fractional-order fixed time sliding mode controller has been 

used to control the power system in a finite time that can be predetermined by the designer.  The 

Lyapunov theorem has been used to prove the stability of the controlled power system. The results 

confirm the superiority, robustness, and effectiveness of the suggested control algorithm. 
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1. INTRODUCTION 

Electrical power systems are growing day by day to large-scale complex grids with many devices 

interconnected, such as buses, generators, transformers, and different types of linear and nonlinear loads. 

Due to the large expansion of energy demand, most of the power networks today work under stressed 

conditions, and closer to their limits of stability, and are threatened by the possibility of voltage and 

angle instability. Due in part to this operating environment, issues with the dynamic stability assessment 

of power systems are becoming more and more significant. Recent works show that electrical nonlinear 

power systems can undergo  unavoidable chaotic behavior  under certain circumstances and drive the 

power grid to voltage collapse and blackout [1,2]. 

From the early works [3,4,5,6], the authors investigated basic chaotic power systems with two connected 

buses using numerical analysis approaches. The scholars in Ref. [7] revealed the behavior of a three-

node power system's bifurcation process and simplified the analysis by approximating the soft windup 

limiter with a smooth function. In a three-bus power system, researchers in Ref. [8] investigated the 

relationship between distinct instability modes and chaos occurrences, as well as the different routes to 

chaos. A power system of single-machine infinite-bus SMIB topology with a hard limit in the  feedback 

loop of the excitation system has been presented in [9]. Therefore, controlling   the chaotic disorder in  

electrical power networks has been an important research topic.  Many nonlinear control methods have 

been designed for the suppression and quenching  of chaotic oscillations in power systems. In Ref. [10], 

the authors used a linearized state feedback control method to eliminate   chaotic dynamical behavior in 

a power system. The scholars in Ref. [11] suggested adaptive control methods for suppression of chaotic 

oscillations in power systems. The authors of Refs. [12,13] applied synergetic control theory to stabilize 

the dynamic of power systems to the equilibrium point,  employing the analytical design of aggregated 

regulators (ADAR) method. 

The application of fractional-calculus techniques in control permits a greater degree of freedom and 

offers promising strategies to design fractional-order controllers and provide better control performance 

comparable to integer-order control algorithms. In literature, there are many designed fractional-order 

controllers for instance the fractional-order optimal controller [14], fractional-order Takagi–Sugeno 

fuzzy controller based on interval theory [15], robust non-singular terminal sliding mode controller 

using fractional-order calculus proposed in Ref. [16]. A novel fractional-order with incommensurate 

order and linear augmentation control method is suggested in Ref. [17] to remove the coexistence of 

multiple attractors and chaos in the power system. All the aforementioned control techniques cannot 

ensure in advance a preallocated fixed convergence time to a stable equilibrium. Generally, the power 

system can only admit oscillation if it is damped within a short bounded time. Polyakov [18] first 

introduced the concept of fixed-time control in 2012. Fixed-time stability theory is an extended version 

of finite-time stability [19]. This method can maintain stronger robustness compared with the other 

control approaches and ensure a specified upper limit of convergence time [20].  

Motivated by the above literature survey and discussion, this paper aims to provide new insight into the 

complex dynamic behaviours of a benchmark three-bus power system model. The main advantages and 

contributions of this work are listed as follows: 1) Analysis of the chaotic behaviors and period doubling 

is reported by varying the parameter values of the electrical power system consisting of three buses. 2) 

Use modern nonlinear analysis tools of bifurcation plots, Lyapunov exponents spectrum, power spectral 

density (PSD) and bicoherence measure to investigate the system dynamics. 3) Suggests a fractional-

order fixed-time sliding mode control algorithm that effectively can reduce the convergence time, 

eliminate undesirable chaotic oscillation in the electrical system, and prevent bus voltage collapse. 4) 

The suggested controller's key advantages are that it can ensure the stability of the system in a limited 

time regardless of the system states initially and that the settling time to equilibrium is accurately 
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estimated in advance. 5) Lyapunov stability theory is employed to prove the finite-time convergence of 

the system state trajectories to the equilibrium condition. 

The hierarchy of the paper is as follows: Sec. 2 introduces the mathematical representation of the chaotic 

power system. In Sec. 3, the  dynamics of the system are investigated. The chaotic oscillations are 

considered with the parametrical variations. Then, Sec. 4 gives some definitions and lemmas and the 

derivation of the fixed-time fractional-order sliding mode control method. In Sec. 5, for validating the 

theoretical analysis, two simulation scenarios have been presented to demonstrate the controller 

robustness and effectiveness. In Sec. 6, we end with a conclusions sections where remarks are 

underlined. 

 

2. MATHEMATICAL MODEL 

The schematic diagram of the considered system as an electric connection is depicted in Fig. 1. The 

system is a reference benchmark scheme provided in Refs. [3,21], for investigating the stability of bus 

voltage and angle dynamics.  
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Figure 1. The scheme of the considered power system (1). 

The proposed system includes  three buses, bus numbered “1” is used to connect the generator and bus 

“2” is used to connect the load while  bus “3” represents the  infinite bus. The load bus is connected to 

an induction motor  parallel to a constant P-Q load. The dynamics of the power system can be 

represented in a four-dimensional mathematical model  as follows: 
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{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝛿̇𝑚     = 𝜔 = 𝑓1,

𝑀𝜔̇     = −𝑑𝑚𝜔 + 𝑃𝑚 + 𝐸𝑚𝑌𝑚𝑉sin⁡(𝛿 − 𝛿𝑚 − 𝜃𝑚)

    +𝐸𝑚
2 𝑌𝑚sin⁡ 𝜃𝑚 = 𝑀⁡𝑓2,

𝐾𝑞𝑤𝛿̇     = −𝐾𝑞𝑣2𝑉
2 − 𝐾𝑞𝑣𝑉 + 𝐸0

′𝑌0
′𝑉cos⁡(𝛿 + 𝜃0

′)

    +𝐸𝑚𝑌𝑚𝑉cos⁡(𝛿 − 𝛿𝑚 + 𝜃𝑚) − (𝑌0
′co s 𝜃0

′

    +𝑌𝑚co s 𝜃𝑚)𝑉
2 − (𝑄0 +𝑄1) = 𝐾𝑞𝑤 ⁡𝑓3

𝑇𝐾𝑞𝑤𝐾𝑝𝑣𝑉̇     = 𝐾𝑝𝑤𝐾𝑞𝑣2𝑉
2 + (𝐾𝑝𝑤𝐾𝑞𝑣 − 𝐾𝑞𝑤𝐾𝑝𝑣)𝑉

    +√𝐾𝑞𝑤
2 + 𝐾𝑝𝑤

2 (−𝐸0
′𝑌0

′𝑉 cos(𝛿 + 𝜃0
′ − 𝜓)

    −𝐸𝑚𝑌𝑚𝑉cos⁡(𝛿 − 𝛿𝑚 + 𝜃𝑚 −𝜓) + (𝑌0
′

    cos⁡(𝜃0
′ − 𝜓) + 𝑌𝑚cos⁡(𝜃𝑚 − 𝜓))𝑉

2 − 𝐾𝑞𝑤
    (𝑃0 + 𝑃1) + 𝐾𝑝𝑤(𝑄0 + 𝑄1) = 𝑇𝐾𝑞𝑤𝐾𝑝𝑣 ⁡𝑓4

, (1) 

where δ𝑚 refers to the angle of the generator, the deviation in the operating frequency presented by   ω, 
𝑀 parameter defines the  synchronous generator inertia,  𝑑𝑚  exemplifies  the damping coefficient and 

𝑃𝑚  is the generator input power from the prime mover,   θ𝑚  and  𝑌𝑚 , respectively, are the impedance 

angle and the admittance of the transmission line, 𝐸𝑚  represents the voltage magnitude value of the 

generator, 𝑉 and  δ, respectively, indicate  the voltage magnitude  of the load and the phase angle, ψ =

tan−1 (
𝐾𝑞𝑤

𝐾𝑝𝑤
);  𝑄1 and 𝑃1 are, respectively the constant reactive power and the real power of the connected  

 
Figure 2. Waveforms and functions for the chaotic power system from Eq. (1). 
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load. On the other hand, the induction motor reactive power and real power are, respectively, denoted 

as  𝑄0 and 𝑃0. The motor parameters are denoted 𝐾𝑝𝑤, 𝐾𝑝𝑣, 𝐾𝑞𝑤, 𝐾𝑞𝑣, and  𝐾𝑞𝑣2. Finally, Thevenin 

equivalent parameters are denoted as 𝑌0
′, θ0

′ , and 𝐸0
′ . 

 

3. DYNAMICAL ANALYSIS 

To study the dynamical characteristics and nature of the considered electrical system, the parameter 𝑄1 

of the constant load, will be employed as a bifurcation coefficient. The  electrical  and mechanical 

parameters values are as follows [22]: 𝐸m = 1.0, 𝑌m = 5.0,  θm = −5.0, 𝐸0
′ = 2.5, 𝑌0

′ = 8,  θ0
′ = −12, 

𝑑m = 0.05 , M=0.3, 𝐾pw = 0.4, 𝐾qv2 = 2.1, 𝐾qw = −0.03, 𝐾qv = −2.8, 𝐾pv = 0.3, 𝑃0 = 0.6, 𝑇 = 8.5, 

𝑄0 = 1.3, 𝑃1 = 0, 𝑃𝑚 = 1. These values are considered in per unit bases other than the angles values  

θ𝑚  and θ𝑚
′  given in rad. The initial condition is set as  (δ𝑚(0), ω(0), δ(0), 𝑉(0)) = (0.38,0.2,0.1,0.95). 

The time responses of the power model and different projections of the electrical power system chaotic 

attractor  at 𝑄1 = 11.377 are depicted, respectively, in Figs. 2 and 3. These diagrams emphasize how 

aperiodic the system is, with an irregular oscillation and strange attractors topology. By varying the 

bifurcation parameter 𝑄1 within [11.37659, 11.3907] range, and recording the local maxima of the 

power system (1) state ω, the bifurcation diagram plotted as in given in Fig. 4. The bifurcation diagram 

plot shows that when  𝑄1 ∈ [11.37659,11.3818] the power system has a chaotic nature and with period-

doubling root to chaos in the reverse direction is followed. 

 
Figure 3. Several attractors from power system model Eq. (1). 
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Figure 4. Bifurcation diagram of the considered system Eq. (1) showing local maxima in the 𝜔 state of the power 

system. 𝑄1 is the bifurcation parameter. 

Another process of period-doubling bifurcation occurs in the range  𝑄1 ∈ [11.382,11.387]; and in the    

interval, 𝑄1 ∈ [11.3871,11.3907], the power system behaves periodically. The Lyapunov exponent 

spectrum shown in Fig. 5 can show the aforementioned behaviors. Here, one of the calculated Lyapunov 

exponents is positive, as a result, the power system Eq. (1) has a chaotic nature. Fig. 6 shows the power 

spectral density and the bicoherence plot of the analyzed power system. The bicoherence is a measure 

used to present the nonlinear interactions between frequency components in a response of nonlinear 

systems. The chaotic behavior typically exhibits broadband frequency characteristics, which can be 

observed in the PSD and the bicoherence measures given in Fig. 6. 

 
Figure 5. Lyapunov exponent spectrum for the power system Eq. (1) with 𝑄1 as bifurcation parameter. 
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Figure 6. Power spectral density and bicoherence measurement for the power system Eq. (1). 

The previous measures reveal that the chaos complex phenomenon exists in Eq. (1). The chaotic 

oscillation in power systems results in voltage instability and ends at voltage collapse and then can cause 

a severe blackout. Therefore, it is critical to construct a rigorous control mechanism to stabilize the 

power system’s states and damp out unwanted chaotic oscillations, as will be done in the next section. 

 

4. FIXED-TIME FRACTIONAL-ORDER SLIDING MODE CONTROLLER DESIGN 

To implement the fixed-time sliding mode controller in a fractional-order sense, some mathematical 

preliminaries and definitions are necessary. 

4.1. Preliminaries 

Definition 1. The Caputo fractional-order derivative is defined as follows: 

𝐷𝑡0
𝐶

𝑡
𝛼𝑓(𝑡) = {

1

Γ(𝑛−𝛼)
∫  
𝑡

𝑡0

𝑓𝑛(𝜏)

(𝑡−𝜏)𝛼+1−𝑛
𝑑𝜏, 𝑛 − 1 < 𝛼 < 𝑛

𝑑𝑛𝑓(𝑡)

𝑑𝑡𝑛
𝛼 = 𝑛

, (2) 

where α is refereeing to the fractional-order of the derivative; Γ refers to the gamma function. 

Definition 2. The integral using Caputo definition in the fractional-order sense is as follows [23,24]: 
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𝐼𝑡0
𝐶
𝑡
α𝑓(𝑡) =𝑡0

𝐶 𝐷𝑡
−α𝑓(𝑡) =

1

Γ(α)
∫

𝑓(τ)

(𝑡 − τ)1−α

𝑡

𝑡0

𝑑 (3) 

Property 1. For the derivative in  Caputo sense,  the  following equality holds [23]: 

𝐷𝑡0
𝐶

𝑡
𝛼 ( 𝐷𝑡0

𝐶
𝑡
−𝛽
𝑔(𝑥(𝑡))) = 𝐷𝑡0

𝐶
𝑡
𝛼−𝛽

𝑔(𝑥(𝑡)) (4) 

where α ≥ β ≥ 0. 

Property 2.  For the derivative in  Caputo sense,  the  following equality is considered  based on [25]: 

𝐷𝑡0
𝐶

𝑡
α𝑐 = 0,  where⁡c⁡is⁡any⁡constant. (5) 

Lemma 1. For the system defined below [26]: 

{
𝑥̇ ≤ −𝜂sig⁡(𝑥)𝑝 − 𝜆sig⁡(𝑥)𝑞

𝑥(0) = 𝑥0
, (6) 

where parameters 𝜂, 𝜆, 𝑝, 𝑞 > 0 satisfying 𝑝 < 1, 𝑞 > 1 and sig⁡(. )𝜇 = |. |𝜇sign⁡(. ). Then the origin of 

system (6) is fixed time stable, and the settling time 𝑇(𝑥0) will equal: 

𝑇(𝑥0) ≤ 𝑇max ≜
1

𝜂(1 − 𝑝)
+

1

𝜆(𝑞 − 1)
 (7) 

4.2. Controller Design 

The general system under control can be written as, 

𝑥̇ = 𝑓𝑖(𝑥, 𝑡) + 𝑢𝑖 (8) 

where 𝑥, and  𝑓𝑖(𝑥, 𝑡)  are the state variable of the system and smooth nonlinear function, respectively. 

𝑖 = 1,2, …𝑁, and 𝑢𝑖 is the control signal for the nonlinear system. Define 𝑒𝑖 = 𝑥𝑖 − 𝑥𝑖𝑑 as the control 

error, where  𝑥𝑖𝑑   represents the control objective. Then, the dynamical error will be as follows: 

𝑒𝑖̇ = 𝑥𝑖̇ − 𝑥𝑖𝑑̇ = 𝑓𝑖(𝑥, 𝑡) + 𝑢𝑖 − 𝑥𝑖𝑑̇  (9) 

To satisfy  system (8) stability, define the sliding surface  as follows: 

𝑠𝑖 = 𝐷
−α(𝑒𝑖̇ + 𝑎1⁡𝑠𝑖𝑔(𝑒𝑖)

𝑝1 + 𝑏1⁡𝑠𝑖𝑔(𝑒𝑖)
𝑞1) (10) 

where  𝑎1, 𝑏1   are positive parameters;  𝑝1 < 1, 𝑞1 > 1 ;  0 < α < 1 . To drive the system (8) to reach 

the sliding surface (10) through the reaching phase  within a fixed-time, then: 

𝑠̇𝑖 = 𝐷
1−𝛼𝐷𝛼(𝑠𝑖)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (11) 

= 𝐷1−𝛼(𝑒̇𝑖 + 𝑎1sig⁡(𝑒𝑖)
𝑝1 + 𝑏1sig⁡(𝑒𝑖)

𝑞1) (12) 

= −𝑎2sig⁡(𝑠𝑖)
𝑝2 − 𝑏2sig⁡(𝑠𝑖)

𝑞2 ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ (13) 

where  𝑎2, 𝑏2   are positive parameters;  𝑝2 < 1, 𝑞2 > 1; then based on (13)  and facts in Lemma 1, the 

sliding surface (10) will converge to zero within fixed-time, upper bounded by: 
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𝑇2 ≤
1

𝑎2(1 − 𝑝2)
+

1

𝑏2(𝑞2 − 1)
 (14) 

At the end of the first phase of the sliding mode control known as the reaching phase, the sliding surface 

𝑠𝑖 = 0, then, its fractional derivative 𝐷α𝑠𝑖 = 0, therefore using (10) obtain, 

𝑒𝑖̇ = −𝑎1⁡sig⁡(𝑒𝑖)
𝑝1 − 𝑏1⁡sig⁡(𝑒𝑖)

𝑞1 . (15) 

To prove the stability of Eq. (15), choose the Lyapunov function as follows: 

𝑉 = |𝑒𝑖| (16) 

Therefore, the time derivative of Eq. (16) will be: 

{

𝑉̇ ⁡= sign⁡(𝑒𝑖)𝑒̇𝑖
⁡= sign⁡(𝑒𝑖)(−𝑎1sig⁡(𝑒𝑖)

𝑝1 − 𝑏1sig⁡(𝑒𝑖)
𝑞1)

⁡= −𝑎1sign⁡(𝑒𝑖)sig⁡(𝑒𝑖)
𝑝1 − 𝑏1sign⁡(𝑒𝑖)sig⁡(𝑒𝑖)

𝑞1

 (17) 

Because of that 𝑠𝑖𝑔𝑛(𝑒𝑖)⁡𝑠𝑖𝑔𝑛⁡(𝑒𝑖) = 1, then, 

{
𝑉̇ ⁡= −𝑎1|𝑒𝑖|

𝑝1 − 𝑏1|𝑒𝑖|
𝑞1

⁡= −𝑎1𝑉
𝑝1 − 𝑏1𝑉

𝑞1
 (18) 

Therefore, the dynamics begin the sliding phase motion, and based on (15), (18), and Lemma 1, the 

controlled system error 𝑒𝑖 will converge to the dynamical system origin within a fixed-time ultimately  

limited by, 

𝑇1 ≤
1

𝑎1(1 − 𝑝1)
+

1

𝑏1(𝑞1 − 1)
 (19) 

Consequently, the dynamical system state 𝑥𝑖 of the system (8) under the effect of the controller will 

reach the control required states 𝑥𝑖𝑑  within fixed-time too. According to the sliding surface dynamic 

(13), the designed controller output can be determined enlightened by [27] as follows: 

{
𝑢𝑖 = −𝑓𝑖(𝑥, 𝑡) + 𝑥̇𝑖𝑑 − 𝑎1sig⁡(𝑒𝑖)

𝑝1 − 𝑏1sig⁡(𝑒𝑖)
𝑞1

−𝐷𝛼−1(𝑎2sig⁡(𝑠𝑖)
𝑝2 + 𝑏2sig⁡(𝑠𝑖)

𝑞2)
 (20) 

The control signal (20), is an integral sliding mode controller based on fixed-time theory and fractional-

order calculus, that can drive the controlled system (8) within a fixed-time to the origin. Due to the use 

of fractional calculus derivative and integral which have a filtering effect and the fact that 𝑠𝑖𝑔𝑛(𝑥)|𝑥|𝜇 

is continuous, the chattering will be avoided in the control signal.  

4.3. Design of the Power System Chaotic Oscillation Controller 

Eq. (1), will be used to derive the error dynamic model. When the error dynamic model reaches the 
origin through the designed controller, the power system leaves the chaotic state to the equilibrium state. 
The power system required states are 𝑥2𝑑 = ω𝑑 = 0 and 𝑥4𝑑 = 𝑉𝑑 = 1, then errors can be written as  

𝑒2 = ω  and  𝑒4 = 𝑉 − 1. Applying these transforms obtains: 
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{
 
 

 
 𝛿̇𝑚 = 𝑓1
𝑒̇2 = 𝑓2 + 𝑢2
𝛿̇ = 𝑓3
𝑒̇4 = 𝑓4 + 𝑢4

, (21) 

where, 

{
 
 

 
 𝑢2 = −𝑓2 + 𝑥̇2𝑑 − 𝑎1sig⁡

(𝑒2)
𝑝1 − 𝑏1sig⁡(𝑒2)

𝑞1

⁡⁡⁡⁡⁡⁡⁡⁡−𝐷𝛼−1(𝑎2sig⁡(𝑠2)
𝑝2 + 𝑏2sig⁡(𝑠2)

𝑞2) = 𝑃

𝑢4 = −𝑓4 + 𝑥̇4𝑑 − 𝑎1sig⁡(𝑒4)
𝑝1 − 𝑏1sig⁡(𝑒4)

𝑞1

⁡⁡⁡⁡⁡⁡−𝐷𝛼−1(𝑎2sig⁡(𝑠4)
𝑝2 + 𝑏2sig⁡(𝑠4)

𝑞2) = 𝑄

 

Using the designed fractional-order sliding mode control laws 𝑢2 and 𝑢4, will drive the controlled 

system (21) to the required performance, and then the electrical power system will be stabilized within 

fixed-time. 

 

5.  SIMULATION RESULTS 

To demonstrate the superiority, robustness, and the effectiveness of the proposed fixed-time fractional-

order sliding mode controller, two illustrative scenarios have been presented for quenching the critical 

chaotic oscillation in the power system. The parameters in the control laws Eq. (20) are selected as 

follows:  𝑎1 = 𝑎2 = 100 ,  𝑏1 = 𝑏2 = 100,  𝑝1 = 0.9,  𝑞1 = 1.2,  𝑝2 = 0.67, and  𝑞2 = 1.5.    

The controller is implemented in the first scenario at the start of the simulation, and the bifurcation 

parameter is selected such that 𝑄1 = 11.377, so the power system is chaotic. Fig. 7 shows the state 

variable's time-waveforms under the effect of the designed controller; obviously, the responses of the 

power system reach the control objectives with no chaotic oscillation and settle down toward equilibrium 

within finite time. Figs. 8 and 9, show the controlled system error variables  𝑒2 and 𝑒4 and the sliding 

surface function 𝑠2 and 𝑠4, respectively. The system states approach the sliding surface as required 

under the proposed fixed-time fractional-order SMC controller. The implemented controller actions are 

given in Fig. 10. It is obvious that the controller outputs are smooth and chattering free as expected from 

the design. This renders the controller feasible for realistic applications. The physical significant of  the 

𝑢2 control signal is a real power injected/absorbed using energy storage device (ESD). The energy 

storage device can be integrated to the generator bus or bus “1” in Fig. 1. On other hand the 𝑢4 control 

signal represents reactive power Q  injected/absorbed using any FACTS devices such as the SVC or 

STATCOM which allow the flexible and dynamic control of power systems. The FACTS device can be 

connected to the load bus or bus “2” in Fig. 1.  

The second simulation case is prepared as follows: At first, the system works in chaos, and then at a 

certain moment “arbitrary one” the controller has been applied. The system state variables time 

waveforms are shown in Fig. 11, the controller has been activated at 𝑡 = 300(𝑠). The state space 

trajectory is given in Fig. 12, it is obvious that the power system trajectory leaves the chaotic orbit just 

after applying the control signals and then follows the indicated red line in Fig. 12 toward the equilibrium 

within finite time. 
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Figure 7. Time responses of the power system (1) 

where controller activated at t = 0 (s). 

Figure 8. The controlled power system error time 

waveforms. 

 

 

Figure 9. The sliding surfaces of the proposed 

controller. 

Figure 10. Controller outputs applied to the chaotic 

power system. 

 

 

Figure 11. Time responses of the power system (1) 

where controller activated at t = 300 s. 

Figure 12. Orbit trajectory of the power system (1) 

where controller activated at   t = 300 s. The red line 

part indicates the exit path from the chaotic attractor. 

6.  CONCLUSION 

This paper presents an in-depth analysis of the phenomenon of chaotic oscillation in a power system. 

The nonlinear analysis tools, including bifurcation diagrams and Lyapunov exponent spectra, are 

employed to investigate this phenomenon. To mitigate the undesired chaotic oscillation in the electrical 

power system, a novel fixed-time fractional-order sliding mode controller is proposed. The controller 

effectively achieves the desired control objectives, exhibiting an ultimate response within a specified 
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upper-bound settling time. Notably, the control signals exhibit no chatter and facilitate a significant 

recovery of the chaotic power system towards synchronous operation. The stability of the controlled 

system is ensured through the application of Lyapunov stability theory during the controller design 

process. To validate the theoretical analysis, the superiority, effectiveness, and robustness of the control 

algorithm are evaluated across various application scenarios. The experimental results confirm the 

theoretical analysis, substantiating the exceptional performance of the proposed control algorithm. 
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