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Abstract: According to the recent developments on image acquisition via relatively low-cost devices such as smartphones or tablets, 

researches on Structure-from-Motion (SfM) photogrammetry-based 3 dimensional (3D) model reconstruction become more popular and 

wide frequent practice especially for study areas in geology/geomorphology, historical heritage, forestry, etc. Thus, this paper 

demonstrates accuracy assessment of SfM photogrammetry-based 3D model reconstruction of small size objects by altering number of the 

source imagery captured by smartphone and represents change detection of the generated datasets as (i) cloud-to-cloud and (ii) mesh-to-

cloud comparisons. The number of images was decreased as 25% of each datasets belonging three different detail types of small size 

objects as the Safranbolu miniature house (SMH), a trinket made of a combination of historical buildings in Rome (HBR), and a wooden 

object (WO). A total of 12 datasets were generated and 9 cloud-to-cloud, and 21 mesh-to-cloud comparisons were performed. Since the 

obtained results show that the quality of 3D models of objects varies according to their shapes and sizes, change detection analyses show 

that the detail level of the objects are highly correlated with the resultant model accuracy. 

Keywords: Structure-from-Motion (SfM) photogrammetry, Smartphone imagery, 3D Model reconstruction, Change detection 
 

Küçük boyutlu nesnelerin 3 boyutlu modellemesi için akıllı telefon görüntüleri kullanılarak hareketten 
nesne oluşturma fotogrametrisine dayalı bir araştırma  

Öz: Son yıllarda, akıllı telefon ya da tabletler gibi nispeten düşük maliyetli cihazlarla görüntü elde etme alanında yaşanan gelişmeler 

sonucunda, Hareketten Nesne Oluşturma (HNO) fotogrametrisine dayalı 3 boyutlu (3B) modelleme popüler olmuş ve özellikle 

jeoloji/jeomorfoloji, kültürel miras, orman vb. alanlarda yaygın bir uygulama haline gelmiştir. Bu çalışmanın amacı, akıllı telefon kamerası 

ile elde edilen görüntülerden değişen görüntü sayılarına dayalı 3B model oluşturma potansiyelinin araştırılmasıdır. Bu amaçla, küçük 

boyutlu nesnelere ait akıllı telefon kameraları kullanılarak elde edilen farklı sayıdaki görüntüler kullanılarak HNO fotogrametrisine dayalı 

3B veri setleri oluşturulmuş ve bu veri setleri için (i) nokta bulutları arasında, (ii) üçgen model ile nokta bulutu arasında, olmak üzere 

sapma analizleri gerçekleştirilmiştir. Safranbolu minyatürü (SMH), Roma biblosu (HBR) ve ahşap nesne (WO) olmak üzere farklı detay 

düzeylerinde seçilen bu üç farklı boyuttaki nesne için elde edilen görüntüler her veri setinde %25 oranında azaltılmıştır. Bu şekilde, toplam 

12 farklı veri seti oluşturulmuş ve bu veri setleri için nokta bulutları arasında 9, üçgen model ile nokta bulutu arasında ise 21 farklı 

karşılaştırma gerçekleştirilmiştir. Buna göre, elde edilen sonuçlar dikkate alındığında 3B modellerin doğruluğunun, modellemesi yapılan 

nesnelerin şekilsel ve boyutsal farklılığına göre değiştiği görülmekle birlikte, sapma analizine dayalı elde edilen sonuçlar nesnenin detay 

düzeyi ile sonuç model doğruluğu arasında yüksek ilişki olduğunu göstermiştir. 

Anahtar Sözcükler: Hareketten nesne oluşturma (HNO), Akıllı telefon görüntüsü, 3B Model oluşturma, Değişim analizi  
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1. Introduction 

Computer-based 3 dimensional (3D) modeling has been a long-term purpose especially in accurate and realistic model 

generation (Tanskanen et al., 2013). Recent technological developments on image acquisition via relatively low-cost 

equipment and recent development of photogrammetric technique (Prosdocimi et al., 2017) for 3D photogrammetric 

modeling bring acceleration to this essential task. With the development of image processing methods, generating accurate 

digital surface models at relatively low-cost and in less time compared to other methods has become a current research topic 

in this field (Carbonneau, Lane, & Bergeron, 2003; Chandler, Ashmore, Paola, Gooch, & Varkaris, 2002; Lane et al., 2010). 

Moreover, use of metric and non-metric cameras on digital photogrammetry-based modeling extents the implementation 

areas to different studies (Mali & Kuiry, 2018). 3D reconstruction of scenes and objects has widely been used in many 

different applications such as reverse engineering, medicine, security, crime investigation (Chen et al., 2021), 

geomorphological studies, 3D topography reconstruction (Ding, Zheng, Zhou, Xiong, & Gong, 2018), historical heritage 

inventory facilities (De Reu et al., 2014). Recently, the feasibility of image acquisition based on smart devices such as 

smartphones and tablets have been introduced broader fields of applications (Jasińska, Pyka, Pastucha, & Midtiby, 2023). 

Many studies such as in digital landform generation purposes (Micheletti, Chandler, & Lane, 2015), volumetric earthwork 

computations (Jeong, H. Ahn, Shin, Y. Ahn,  & Choi, 2019; Wróżyński, Pyszny, Sojka, Przybyła, & Murat-Błażejewska, 

2017), artefacts of cultural heritage and documentation (Barszcz, Montusiewicz, Paśnikowska-Łukaszuk, & Sałamacha, 

2021) have been conducted by the researchers for 3D model reconstruction following SfM photogrammetry, where the images 

collected via smartphones. Guidi, Micoli, Gonizzi, Brennan and Frischer (2015) aimed to analyze the model quality of small-

medium size objects based on SfM and Image Matching (IM) with different shooting configurations. The results with greater 

overlap considerably decrease in measurement uncertainty. Clini, Frapiccini, Mengoni, Nespeca and Ruggeri (2016) 

conducted a study for 3D digital documentation of small sized (a few cm) archeological artifacts following image-based SfM 

methodology and tested focus stacking, and concluded that effective results regarding high definition 3D models may be 

provided. Collins, Woolley, Gehlken and Ch’ng (2019) investigated 3D small artifact generation using a turntable and an 

automated procedure based on SfM photogrammetry captured by ultra-low cost smartphone and digital camera. The 

automated procedure achieved high precision and visually qualified textures. Jasińska et al. (2023) focused on deformation 

reduction of the 3D models generated via smartphone photogrammetry and conducted a two-stage study as first they 

controlled the performance of stability of the internal orientation parameters by self-calibration and then they modelled small 

objects by selected images. According to the results, even limitations smartphone photogrammetry has introduced potential 

usage areas.  

As it can vary according to the aim of the study, the accuracy investigation of the resultant 3D model is an ongoing issue in 

terms of data source collected via mobile low-cost devices. Since modeling with relatively low-cost devices, decrease in time 

can be searched via the number of the images to be collected for modeling the scene or the object. Although some factors can 

affect the quality of the resultant in terms of complexity, lighting, and materials, there are no guidelines for deciding the 

minimum number of images needed to reconstruct the scene. Although, each feature must be visible in a minimum of three 

images (Westoby, Brasington, Glasser, Hambrey, & Reynolds, 2012). Thus, this study aims to investigate the feasibility of 

using low-cost device collected images for 3D model reconstruction of small size objects with altering the number of images 

to assess the accuracy of SfM photogrammetry-based 3D model reconstruction. As high-level capacity of SfM 

photogrammetry in large scale modeling facilities is a well-known topic, according to the small scale details of smaller objects 

in shape needs to be investigated. Three small size objects were selected regarding level of detail and texture and datasets 

were generated by altering number of the source imagery captured by smartphone. The change detection of the generated 

datasets was performed following two strategies as (i) cloud-to-cloud and (ii) mesh-to-cloud comparisons. The number of 
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images was decreased as 25% of each datasets belonging three different detail types of small size objects. A total of 12 

datasets were generated and 9 cloud-to-cloud, and 21 mesh-to-cloud comparisons were performed. The results of the study 

were represented in the following sections. 

2. Materials and Methods 

Traditional photogrammetry needs 3D camera positions and coordinates of the ground control points (GCP) to build scene 

triangulation and reconstruction. Contrary, the SfM methodology automatically and simultaneously uses multiple overlapped 

images to estimate positions of the camera and scene geometry (Yang, Chao, Huang, Lu, & Chen, 2013). This estimation is 

carried out by the matching features in the set of overlapped images. These features are followed image by image and make 

it possible initial detections of camera positions and object coordinates (Westoby et al., 2012). This is the main issue of the 

SfM, dealing with the determination of the 3D location of matching features in multiple images taken from different angles. 

Identification of the features from each image that is used for image matching is the first step of the solution. The model 

geometry and camera position information are solved simultaneously and automatically in SfM technique, consequently 

camera calibration is not required. The most popular solution to this problem is the Scale Invariant Feature Transform (SIFT) 

method (Lowe, 1999). Features in each image are identified scale and rotation invariant in different illumination conditions 

using this method. Matching points or "key points" are automatically identified in all scales and locations. Then, a feature 

descriptor is created. This is calculated as converting local image gradients into a representation. As should be noted here, 

this is largely insensitive to variations in illumination and orientation. These descriptors are unique enough to allow features 

to be matched in large datasets (Westoby et al., 2012). 

Usually, the number of key points is related to the image quality, texture, sharpness, and resolution of the dataset. Therefore, 

these qualities determine the quality of the resultant point cloud. Complex images produce more key points. Correspondingly, 

the closer distance between the object and the camera stations increases the spatial resolution of the image, hence it increases 

the spatial density and resolution of the point cloud. Since complexity, lighting, and materials could affect the image texture, 

there is no guidance on the minimum number of images required for scene reconstruction. Although, each feature must be 

visible in a minimum of three images (Westoby et al., 2012). After key point identification and descriptor assignment, the 

position of the camera station is estimated using bundle adjustment and a low-density or sparse point cloud is produced. The 

key points from multiple images are matched using the approximate nearest neighbor method. Minimum of two key points 

and three images are required for the reconstruction of the point cloud (Westoby et al., 2012). Multi-View Stereo (MVS) 

algorithms are based on the correlations between measurements from a set of images at once to acquire 3D surface 

information. Many of the MVS methods aim to reconstruct all images simultaneously. Thus, this approach is not practical 

while working with more extensive datasets. Rather selecting a subset from the dataset is more important and clustering them 

into convenient samples (Furukawa, Curless, Seitz, & Szeliski, 2010). Clustering View for Multi-View Stereo (CMVS) 

approach clusters and selects the optimal viewpoint by a four-step iterative approach. These steps are (1) merging the sparse 

point clouds generated from SfM, (2) removing low-quality images, (3) clustering images into smaller components, and 

finally (4) adding images to weak clusters (Mahami, Nasirzadeh, Hosseininaveh Ahmadabadian, & Nahavandi, 2019).  

Patch-based Multi-View Stereo (PMVS) represents the surface with a local tangent plane approximation of a surface. This 

algorithm is easy to implement and effective. The first step of this approach is creating a small 3D patch in 3D space, for 

each matched feature point. The center of this patch is the triangulation point from all the matched feature points from the 

reference and visible images. Afterward, the 3D patch is oriented around the center, which also has to be parallel to the 

current reference image and one of its edges is parallel to the x-axis of the reference image. Then the next step, each point 
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inside of the patch is projected back to the reference image and all visible images. After that, a small two-dimensional patch 

is obtained from each image (Yao, AliAkbarpour, Seetharaman, & Palaniappan, 2018). PMVS uses undistorted images, the 

orientation parameters of these images, sparse point clouds, and projection matrices to determine a dense and accurate set of 

rectangular patches. PMVS consists of matching, expansion, and filtering steps (Mahami et al., 2019). Then estimations are 

refined iteratively using non-linear least-squares minimization. Initially, the 3D point cloud is produced in a relative 

coordinate system. It must be aligned to a real-world coordinate system. The GCPs provide the scale and orientation. Hence, 

in transforming a relative coordinate system to the real-world coordinate system, GCPs are required (Westoby et al., 2012). 

In this study, VisualSFM was used for generating point clouds from images. Following, CloudCompare was used to 

georeference point clouds, then subsequently to remove the outliers and noises. The 3D model reconstruction process was 

utilized in Meshlab. Cloud-to-cloud and cloud-to-mesh distances were calculated in CloudCompare. Mean distances and 

standard deviations were calculated in Matlab. 

3. Case Study 

In this study, the effects of low-cost sensor image and its amounts on point cloud generation were investigated. Three different 

datasets were acquired from iPhone 6S Plus (pixel resolution: 1080x1920; pixel size: 1.5 μm; f: 2.2 mm) for evaluation. The 

datasets were generated by taking images of objects with different shapes. The modeling procedure was implemented to small 

size objects (circa Safranbolu miniature house 12x25x25; trinket made of a combination of historical buildings in Rome 

6x7x6; and wooden object 7x7x10 cm) represented in Figure 1. The objects that were selected for the evaluations depending 

on their detail level are the Safranbolu miniature house (SMH) as complex, a trinket made of a combination of historical 

buildings in Rome (HBR) as sculptural, and a wooden object (WO) as primitive. The workflow was followed in this study 

shown in Figure 2. 

 

Figure 1: The objects that were selected to generate the 3D point clouds: a) Safranbolu miniature house (SMH), b) Historical buildings in Rome 

Trinket (HBR), and c) Wooden object (WO) 

GCPs were marked in the experimental area and measured before acquiring the data. The images were acquired as overlapped 

from 8 angles at 44 camera stations. Thus, 352 images were obtained from approximately the same camera stations for each 

object. After the image acquisition, the datasets were reduced by 25%, 50%, and 75%, respectively according to the 

resampling method, and thus three more datasets, a total of four datasets, were generated for each object. Reduction procedure 

is implement due to investigation of the number of images to be required for 3D modeling association with the accuracy level 

of model. The number of images in all datasets is shown in Table 1. 
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Figure 2: Study workflow 
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Table 1: Number of images in each dataset  

Definition Dataset Number of Images 

Safranbolu Miniature House 

SMH 100 352 

SMH 75 264 

SMH 50 176 

SMH 25 88 

Historical Buildings in Rome 

Trinket 

HBR 100 352 

HBR 75 264 

HBR 50 176 

HBR 25 88 

Wooden Object 

WO 100 352 

WO 75 264 

WO 50 176 

WO 25 88 

SfM/CMVS/PMVS approach was followed to produce dense point clouds for all datasets. In this method, SIFT algorithm 

was utilized for image matching. Following image matching, camera stations are estimated, and low-density or sparse point 

cloud occurs. The number of points in the sparse point cloud is less than in the dense point cloud, hence it is difficult to 

recognize the points, which belong to the object in this step. The estimated camera stations of reference datasets for each 

object are shown in Figure 3. 

 

Figure 3: Estimated camera stations: a) SMH 100 b) HBR 100 c) WO 100 

After that, dense point clouds are created by CMVS/PMVS approach. Each point cloud initially has a relative coordinate 

system and scale. For each point cloud, the same 6 GCPs in the experiment area were used to transform a relative coordinate 

system into a real-world coordinate system based on 3D similarity transformation. 

The point clouds created from images have also points that do not belong to the objects. These points were removed by 

utilizing Statistical Outlier Removal (SOR) filter, noise filter, and manual removal in CloudCompare software, respectively. 

SOR Filter estimates the average distance of each point to its neighbors considering the k-nearest neighbors algorithm. Then 

the points farther than the average distance are removed. 50 nearest neighbors were used in this study to perform the SOR 

filter. The noise filter of CloudCompare is also similar to the SOR filter but it uses the underlying surface instead of the 

average distance estimated by neighbors. The underlying surface is estimated by the radius or the number of neighbors. In 

this study, 50 neighbors were used to calculate the surface. If the point is too far away from the locally fitted plane, it was 

removed. After the utilization of point cloud removal filters, it is also necessary to clean point clouds manually since they 

have other objects in the experimental area. Therefore, all the point clouds were manually cleaned. Table 2 shows the number 

of point clouds subsequent to each step, where the first two columns represent the number of sparse and dense point clouds 

generated and the last three columns demonstrate the filtering stages applied with remaining numbers of points in each step. 

Since the point clouds generated involve points that do not belong to the objects and the objects subjected to this study are 

small size, the differences between the numbers of points have been occurred. 
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Table 2: The number of points in point clouds obtained after each step  

Dataset 

Number of points in point clouds 

Sparse Dense 
SOR 

Filtered 

Noise 

Filtered 

Manually 

Cleaned 

SMH 100 74 552 6 350 941 5 629 279 4 133 005 384 925 

SMH 75 63 406 6 082 690 5 396 043 4 015 097 338 743 

SMH 50 45 950 3 318 940 2 915 703 2 107 655 199 920 

SMH 25 22 912 1 508 194 1 309 501 938 760 94 454 

HBR 100 40 518 6 270 809 5 931 189 4 335 087 201 545 

HBR 75 33 212 4 063 899 3 818 454 2 777 767 135 317 

HBR 50 24 506 3 168 460 2 981 414 2 157 836 102 585 

HBR 25 10 719 1 643 116 1 506 311 1 074 670 57 076 

WO 100 26 554 5 205 536 4 954 481 3 639 560 292 625 

WO 75 20 667 4 254 933 4 022 772 2 935 886 252 776 

WO 50 14 978 2 673 994 2 490 451 1 812 470 152 976 

WO 25 20 518 4 016 088 3 855 715 2 797 078 236 328 

Following the pre-processing steps, 3D Reconstruction was carried out by Screened Poisson Surface Reconstruction method 

(Kazhdan & Hoppe, 2013). There are triangles extending objects outward in some areas on the 3D models. These triangles 

were manually removed by cropping. The number of faces of 3D meshes is shown in Table 3 as the second column in number 

of faces section represents the total number and the third column shows the edited faces that can be deleted or changed in 

shape. 

Table 3: The number of faces in 3D meshes  

Dataset 

Number of Faces 

Screened Poisson 

Reconstruction 
Edited Mesh 

SMH 100 316 206 305 348 

SMH 75 313 173 300 981 

SMH 50 311 228 298 943 

SMH 25 292 952 282 844 

HBR 100 309 177 286 718 

HBR 75 313 655 294 400 

HBR 50 309 244 292 441 

HBR 25 271 781 256 658 

WO 100 433 146 432 467 

WO 75 445 172 444 246 

WO 50 399 448 396 623 

WO 25 450 594 449 974 

4. Results and Discussion 

In this study, the effects of the number of images on the point clouds and mesh generation by using relatively low-cost 

devices, here a smartphone camera, were investigated. Twelve datasets were utilized as three of them were acquired and nine 

of the datasets were derived from those three for three differently shaped objects. Point clouds are generated by implementing 

SfM method. Lastly, meshes are generated by Screened Poisson Reconstruction method.  

Generated clouds are compared by acquired datasets as reference. Cloud-to-cloud distances were calculated based on the 

least square plane and colored by scalar field, which is shown in Figure 4. Further, mean distances and standard deviations 

are calculated by the cloud-to-cloud distance shown in Table 4. In all comparisons, the reference model is generated by using 

100% imagery in all objects. As SMH is a detailed object, the maximum standard deviation is computed between SMH 100 

and SMH 50 as 0.978 although the minimum standard deviation is computed as 0.601 mm between reference and SMH 75 
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as expected. For second object, namely HBR, also involved complex details, the minimum standard deviation is computed 

as 0.270 mm between reference and HBR 25 and maximum standard deviation is as 0.348 mm between reference and HBR 

75. This can be caused by due to the complexity of the object that a proper cloud dataset could not be formed hence the object 

HBR is the most complex one among the objects selected for the test. This can be supported by the results obtained for the 

third object, namely WO because the object WO is the plainest one among them. Thus, the standard deviation and mean 

distance values are computed very close to each other results when compared between reference and WOs 75, 50, and 25. 

This also shows the number of decreasing images may not affect the resultant model if small size and plain featured object 

is selected for 3D modeling. 

a) SMH 100 Cloud vs SMH 75 

Cloud 

 

b) SMH 100 Cloud vs SMH 50 

Cloud 

 

c) SMH 100 Cloud vs SMH 

25 Cloud 

 

Scalar field

 

d) HBR 100 Cloud vs HBR 75 

Cloud 

 

e) HBR 100 Cloud vs HBR 50 

Cloud 

 

f) HBR 100 Cloud vs HBR 

25 Cloud 

 
g) WO 100 Cloud vs WO 75 

Cloud 

 
 

h) WO 100 Cloud vs WO 50 

Cloud 

 
 

i) WO 100 Cloud vs WO 25 

Cloud 

 
 

Figure 4: Cloud-to-cloud distances (for visual representation scalar field: blue (-0.75) to red (1.00)) 

Table 4: Mean distances and standard deviations obtained from cloud-to-cloud comparison  

Reference Point 

Cloud 

Compared Point 

Cloud 
Mean Distance (mm) Std. Deviation (mm) 

SMH 100 

SMH 75 0.471 0.601 

SMH 50 0.639 0.978 

SMH 25 0.710 0.913 

HBR 100 

HBR 75 0.278 0.348 

HBR 50 0.219 0.282 

HBR 25 0.211 0.270 

WO 100 

WO 75 0.521 0.656 

WO 50 0.512 0.652 

WO 25 0.509 0.637 
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a) SMH 100 Mesh vs 

SMH 100 Cloud 

 

b) HBR 100 Mesh vs 

HBR 100 Cloud 

 

c) WO 100 Mesh vs WO 

100 Cloud 

 

Scalar Field 

 

d) SMH 100 Mesh vs 

SMH 75 Cloud 

 

e) HBR 100 Mesh vs 

HBR 75 Cloud 

 

f) WO 100 Mesh vs WO 

75 Cloud 

 
g) SMH 100 Mesh vs 

SMH 50 Cloud 

 

h) HBR 100 Mesh vs 

HBR 50 Cloud 

 

i) WO 100 Mesh vs WO 

50 Cloud 

 
j) SMH 100 Mesh vs 

SMH 25 Cloud 

 

k) HBR 100 Mesh vs 

HBR 25 Cloud 

 

l) WO 100 Mesh vs WO 

25 Cloud 

 
m) SMH 75 Mesh vs 

SMH 100 Cloud 

 

n) HBR 75 Mesh vs HBR 

100 Cloud 

 

o) WO 75 Mesh vs WO 

100 Cloud 

 
p) SMH 50 Mesh vs SMH 

100 Cloud 

 

q) HBR 50 Mesh vs HBR 

100 Cloud 

 

r) WO 50 Mesh vs WO 

100 Cloud 

 
s) SMH 25 Mesh vs SMH 

100 Cloud 

 

t) HBR 25 Mesh vs HBR 

100 Cloud 

 

u) WO 25 Mesh vs WO 

100 Cloud 

 

Figure 5: Compared point clouds by mesh-to-cloud distances (for visual representation scalar field: blue (-0.75) to red (1.00))  
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Mesh-to-cloud distances were also calculated by the meshes set as reference. Compared datasets were colored by scalar field. 

Colored point clouds were shown in Figure 5. Moreover, mean distances and standard deviations are calculated by the mesh-

to-cloud distance shown in Table 5. As a total of 12 datasets were generated, 21 mesh-to-cloud comparisons were performed. 

Here, mesh models of the objects were used for comparison issues. The reference mesh model has been changed as 100, 75, 

50, and 25% usage of images captured by smartphone. For the object SMH, the minimum standard deviation is computed 

between SMH 100 mesh model and SMH 100 point cloud as 0.660 mm and the mean distance of the deviation is computed 

as 0. Contrary to this the maximum differences in standard deviation for this object are as 1.782 and 1.659 mm between SMH 

50 mesh model and SMH 100 point cloud and SMH 25 mesh model and SMH 100 point cloud, respectively. That can be 

concluded as an approximately three times worse models have been obtained when decreasing the number of images up to 

25%. Among the comparisons results represented in Table 5, minimum standard deviation and mean distance values are listed 

for the object HBR. However, as mentioned before this object is the most complex one of them. When investigating the mesh 

models of this object, it can be seen that the details could not be defined and formed properly in the mesh models. Thus, 

compared parts of the object on mesh models has matched. Even so, the minimum and maximum standard deviations of this 

comparison are computed as 0.310 and 0.599 mm between HBR 100 mesh model and HBR 100 and HBR 100 mesh model 

and HBR 75 point clouds, respectively. Finally, for the object WO, the minimum standard deviation value is as 0.196 mm 

between WO 100 mesh model and WO 100 point cloud that value is also the most accurate one among these 21 comparisons. 

Table 5: Mean distances and standard deviations obtained from mesh-to-cloud comparison  

Reference Mesh 
Compared Point 

Cloud 
Mean Distance (mm) Std. Deviation (mm) 

SMH 100 

SMH 100 0.000 0.660 

SMH 75 -0.015 1.002 

SMH 50 0.084 1.544 

SMH 25 0.127 1.520 

SMH 75 

SMH 100 

0.037 1.078 

SMH 50 -0.002 1.782 

SMH 25 -0.202 1.659 

HBR 100 

HBR 100 0.025 0.310 

HBR 75 0.314 0.599 

HBR 50 0.248 0.491 

HBR 25 0.222 0.490 

HBR 75 

HBR 100 

-0.226 0.585 

HBR 50 -0.203 0.505 

HBR 25 -0.200 0.514 

WO 100 

WO 100 0.005 0.196 

WO 75 0.059 0.854 

WO 50 0.077 0.887 

WO 25 -0.080 0.828 

WO 75 

WO 100 

-0.089 0.810 

WO 50 -0.073 1.019 

WO 25 0.068 0.809 

5. Conclusion 

Today’s technological developments on image acquisition and recent development of photogrammetric technique accelerate 

the computer-based accurate and realistic 3D modeling. Recently, due to the widespread increasing usage capacity of the 

smart devices such as mobile phones, tablets etc., and their sensors with different functions i.e. cameras, navigation chipset, 

result in new scientific research areas raised. In terms of 3D photogrammetric modeling, generating accurate digital surface 

models at relatively low-cost and in less time compared to other methods has become a significant tool in many different 

applications such as reverse engineering, medicine, security, crime investigation, geomorphological studies, historical 
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heritage inventory facilities, 3D topography reconstruction, search and rescue facilities etc. As the detail level of objects has 

increased while decreasing the shape sizes, the utility of SfM photogrammetry in terms of providing effective modeling 

solutions using smart devices may reduce the observation cost with meeting the required accuracies that may be changed by 

the aim of study. This study aims to investigate the feasibility of modeling small size objects with SfM based photogrammetry 

using images captured by a low-cost device. Three small size objects were selected regarding level of detail and texture (plain 

to complex) and datasets were generated by altering number of the source imagery captured by smartphone. The change 

detection of the generated datasets was performed following two strategies as (i) cloud-to-cloud and (ii) mesh-to-cloud 

comparisons. The number of images was decreased as 25% of each datasets belonging three different detail types of small 

size objects. A total of 12 datasets were generated and 9 cloud-to-cloud, and 21 mesh-to-cloud comparisons were performed. 

When comparing based on cloud-to-cloud methodology, it can be concluded that the standard deviation and mean distance 

values are computed very close to each other results when considering plain and medium detailed object forms. Moreover, 

decreasing the number of images may not change the resultant model if small size and plain-medium featured object is 

selected for 3D modeling. Additional, comparing mesh models by point clouds results in similar findings with cloud-to-cloud 

comparisons. Lastly, it can be concluded that the obtained results show that the quality of 3D models of objects varies 

according to their shapes and sizes, change detection analyses show that the detail level of the objects are highly correlated 

with the resultant model accuracy. 
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