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ABSTRACT 

 

In this paper, we study a general class of nonlocal nonlinear coupled wave equations that includes the 

convolution operation with kernel functions. For appropriate selections of the kernel functions, the 

system becomes well-known nonlinear coupled wave equations, for instance Toda lattice system, 

coupled improved Boussinesq equations. A numerical scheme is proposed for the solitary wave solutions 

of the system using the Pethiashvili method. Using the different kernels, the validity of the numerical 

method has been tested.  
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Yerel ve Lineer Olmayan Kuple Dalga Denklemlerinin Genel Sınıfı 

için Yalnız Dalga Çözümleri 
 

ÖZET 

 

Bu makalede çekirdek fonksiyonları ile konvolüsyon işlemini içeren, yerel ve doğrusal olmayan kuple 

dalga denklemlerinin genel bir sınıfını inceliyoruz. Çekirdek fonksiyonlarının uygun seçimleri için 

sistem, Toda kafes sistemi, kuple Boussinesq denklemleri gibi iyi bilinen doğrusal olmayan kuple dalga 

denklemleri haline gelir. Petviashvili yöntemi kullanılarak, sistemin yalnız dalga çözümleri için bir 

sayısal şema önerilmiştir. Farklı çekirdekler kullanılarak, sayısal yöntemin geçerliliği test edilmiştir. 

 

Anahtar Kelimeler: Kuple Boussinesq denklemler, Petviashvili iterasyon yöntemi, yalnız dalga 

çözümleri.  
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I. INTRODUCTION 
 

In this paper, we consider the nonlinear nonlocal coupled wave equations  

 

𝑢1𝑡𝑡 = [𝛽1 ∗ (𝑢1 + 𝑔1(𝑢1, 𝑢2))]
𝑥𝑥

 ,   𝑥 ∈ 𝑅,  𝑡 > 0,               (1) 

 

𝑢2𝑡𝑡 = [𝛽2 ∗ (𝑢2 + 𝑔2(𝑢1, 𝑢2))]
𝑥𝑥

 ,   𝑥 ∈ 𝑅,  𝑡 > 0,           (2) 

 

where 𝑔1 and 𝑔2 are nonlinear functions of 𝑢1 = 𝑢1(𝑥, 𝑡) and 𝑢2 = 𝑢2(𝑥, 𝑡), the subscripts indicate 

partial derivatives. Here the symbol * indicates the convolution  

 

𝛽𝑖 ∗ 𝑣 = ∫ 𝛽𝑖(𝑥 − 𝑦)𝑣(𝑦)𝑑𝑦
𝑅

.                 (3) 

 

The functions 𝑔𝑖(𝑢1, 𝑢2) (𝑖 = 1,2) satisfy the exactness condition 
∂𝑔1

∂𝑢2
=

∂𝑔2

∂𝑢1
  and assume that 

𝑔𝑖(𝑢1, 𝑢2) ∈ C2(𝑅2) , 𝑖 = 1,2 . The general kernel functions  𝛽𝑖(𝑥) are integrable. The Fourier 
transforms of kernel functions satisfy the following condition 

 

0 ≤ β̂𝑖(𝑘) ≤ 𝐶𝑖(1 + 𝑘2)−𝑟𝑖/2 for  all 𝑘 ∈ 𝑅 (𝑖 = 1,2)              (4) 

 

for some constants 𝐶𝑖 > 0, 𝑟𝑖 ∈ R and 𝑟𝑖 ≥ 2.  

 

The system (1)-(2) turns into well-known coupled systems of nonlinear wave equations for some 

appropriate selections of the kernel functions 𝛽𝑖(𝑥). For the kernel functions 𝛽1(𝑥) = 𝛽2(𝑥) = 𝛿 , the 

system (1)-(2) reduces to the coupled nonlinear wave equations 

 

𝑢1𝑡𝑡 − 𝑢1𝑥𝑥 = [𝑔1(𝑢1, 𝑢2)]𝑥𝑥 ,              (5) 

 

𝑢2𝑡𝑡 − 𝑢2𝑥𝑥 = [𝑔2(𝑢1, 𝑢2)]𝑥𝑥 ,              (6) 

 

where 𝛿 is the Dirac delta function. 

 

In the case of the exponential kernel [1], 𝛽1(𝑥) = 𝛽2(𝑥) =
1

2
𝑒−|𝑥|, the system (1)-(2) becomes the 

coupled improved Boussinesq equations 

 

𝑢1𝑡𝑡 − 𝑢1𝑥𝑥 − 𝑢1𝑥𝑥𝑡𝑡 = [𝑔1(𝑢1, 𝑢2)]𝑥𝑥 ,              (7) 

 

𝑢2𝑡𝑡 − 𝑢2𝑥𝑥 − 𝑢2𝑥𝑥𝑡𝑡 = [𝑔2(𝑢1, 𝑢2)]𝑥𝑥 .             (8) 

 

In various contexts, the system (7)-(8) has been obtained to describe bi-directional wave propagation, 

for example, in a diatomic lattice [2], in a Toda lattice model [3] and in a two layered lattice model [4]. 
 

If the kernel functions are chosen as  𝛽1(𝑥) = 𝛽2(𝑥) =
1

2𝑐𝜅
𝑒−

|𝑥|

𝑐  ,  𝜅 =
𝜌

𝑎
  and 𝑐 =

ℓ

√12
 , and taking 

𝑔1(𝑢1, 𝑢2) = (𝑏 − 1)𝑢1 −
𝑏2

2
𝑢1

2 +
𝑏

2
𝑢2

2  and 𝑔2(𝑢1, 𝑢2) = 𝑏𝑢1𝑢2 − 𝑢2  the system (1)-(2) becomes the 

Toda lattice system 

 
ρ

𝑎
𝑢1𝑡𝑡 = b𝑢1𝑥𝑥 −

𝑏2

2
(𝑢1

2)𝑥𝑥 +
𝑏

2
(𝑢2

2)𝑥𝑥 +
ρ

𝑎

ℓ2

12
𝑢1𝑥𝑥𝑡𝑡 ,            (9) 

 
ρ

𝑎
𝑢2𝑡𝑡 = b(𝑢1𝑢2)𝑥𝑥 +

ρ

𝑎

ℓ2

12
𝑢2𝑥𝑥𝑡𝑡 ,                       (10) 
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where ρ is the linear mass density, 𝑎 is a constant, 𝑏 is a coupling parameter and ℓ is the characteristic 

length. These equations describe the propagation of longitudinal and transversal waves on molecules of 

DNA (deoxyribonucleic acid) [3], [5]. This system has been treated numerically in [3] and theoretically 

in [5]. The Cauchy problem for (9)-(10) has been studied in [6], [7]. 

 

In the case of the double-exponential kernel [8], 

 

𝛽1(𝑥) = 𝛽2(𝑥) =
1

2(𝑐1
2−𝑐2

2)
(𝑐1𝑒−|𝑥|/𝑐1 − 𝑐2𝑒−|𝑥|/𝑐2),                      (11) 

 

the system (1)-(2) becomes the coupled higher-order Boussinesq equations 

 

𝑢1𝑡𝑡 − 𝑢1𝑥𝑥 − η1𝑢1𝑥𝑥𝑡𝑡 + η2𝑢1𝑥𝑥𝑥𝑥𝑡𝑡 = [𝑔1(𝑢1, 𝑢2)]𝑥𝑥 ,         (12) 

 

𝑢2𝑡𝑡 − 𝑢2𝑥𝑥 − η1𝑢2𝑥𝑥𝑡𝑡 + η2𝑢2𝑥𝑥𝑥𝑥𝑡𝑡 = [𝑔2(𝑢1, 𝑢2)]𝑥𝑥 ,         (13) 

 

where 𝑐1 and 𝑐2 are real, positive constants and 𝜂1 = 𝑐1
2 + 𝑐2

2 and 𝜂2 = 𝑐1
2𝑐2

2.  

 

The uncoupled form of Eqs. (12)-(13) appears as a model for a dense chain of particles with elastic 

couplings [9] and for longitudinal waves in a nonlocal nonlinear elastic medium [10]. It can be found in 

[11] different types of the kernel functions used in the literature. 

 

In this paper, we focus on a general class of kernel functions. The global existence of the system (1)-(2) 

with initial conditions 

 

𝑢1(𝑥, 0) = 𝜙(𝑥),     𝑢1𝑡(𝑥, 0) = 𝜙1(𝑥),          (14) 

 

𝑢2(𝑥, 0) = 𝜓(𝑥),     𝑢2𝑡(𝑥, 0) = 𝜓1(𝑥)                       (15) 

 

has been proved in [12]. For special cases of kernel functions, the exact solitary wave solutions for the 

system (1)-(2) can be found in the literature. However, solitary wave solutions for the general cases of 

kernel functions are unknown. The aim of our study is to generate the solitary wave solutions of the 

nonlocal nonlinear coupled system by using the Petviashvili method numerically.  

 

We organized this paper as follows. In Section II, we present the Petviashvili’s iteration method and we 

obtain the solitary wave solutions of the system (1)-(2) numerically by using this method. In Section III, 

we perform some numerical tests for the nonlinear nonlocal coupled wave equations. The conclusion is 

given in Section IV. 

 

 

II. THE PETVIASHVILI’S ITERATION METHOD 
 

In this section, we propose the Petviashvili method to obtain the solitary wave solutions of the nonlinear 

nonlocal coupled wave eqs. (1)-(2). The Petviashvili's method was first introduced in [13] to obtain the 

solitary wave solutions of nonlinear wave equations numerically. The conditions in which convergence 

and necessary to obtain the optimal convergence rate were found in [14]. It has been reported in some 

articles that this method can be applied to nonlinear dispersive wave equations [15]-[21]. In this method, 

a stabilizing factor is added to the fixed point iteration scheme. The detailed information about this 

method can be found in [17], [22], [23].  

  

To apply this method to our system, we first use the ansatz 

 

𝑢1(𝑥, 𝑡) = ϕ(ξ) ,   𝑢2(𝑥, 𝑡) = ψ(ξ) ,   ξ = 𝑥 − 𝑐𝑡 ,             (16) 
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where 𝑐 is the wave propagation speed. Using the asymptotic boundary conditions and substituting these 

solutions into (1)-(2) and then integrating twice we have 

 

𝑐2𝜙 = 𝛽1 ∗ [𝜙 + 𝑔1(𝜙, 𝜓)] ,               (17) 

 

𝑐2𝜓 = 𝛽2 ∗ [𝜓 + 𝑔2(𝜙, 𝜓)] .              (18) 

 

Taking the Fourier transform, 

 

𝑢(𝑥) =
1

2π
∫ �̂�(𝑘)𝑒𝑖𝑘𝑥∞

−∞
𝑑𝑘,     �̂�(𝑘) =

1

2π
∫ 𝑢(𝑥)𝑒𝑖𝑘𝑥∞

−∞
𝑑𝑥,         (19) 

 

of the Eqs. (17)-(18), we find 

 

[𝑐2 − �̂�1(𝑘)]�̂�(𝑘) = �̂�1(𝑘)�̂�1 ,               (20) 

 

[𝑐2 − �̂�2(𝑘)]�̂�(𝑘) = �̂�2(𝑘)�̂�2 .              (21) 

 

The numerical calculation of �̂�(𝑘) and �̂�(𝑘) for the Eqs. (20)-(21) can be given in the form 

 

�̂�𝑛+1(𝑘) =
�̂�1(𝑘)

𝑐2−�̂�1(𝑘)
�̂�1𝑛 ,               (22) 

 

�̂�𝑛+1(𝑘) =
�̂�2(𝑘)

𝑐2−�̂�2(𝑘)
�̂�2𝑛 ,              (23) 

 

where �̂�𝑛(𝑘) and �̂�𝑛(𝑘) are the Fourier transforms of 𝜙𝑛(𝑥) and 𝜓𝑛(𝑥) which are the 𝑛𝑡ℎ iterations of 

the numerical solutions. We add stabilizing factors 𝑀1,𝑛 and 𝑀2,𝑛 to ensure the convergence [13]. The 

new algorithm can be given in the form 

 

�̂�𝑛+1(𝑘) = (𝑀1,𝑛)
γ1 �̂�1(𝑘)

𝑐2−�̂�1(𝑘)
𝑔1𝑛 ,            (24) 

  

�̂�𝑛+1(𝑘) = (𝑀2,𝑛)
𝛾2 �̂�2(𝑘)

𝑐2−�̂�2(𝑘)
𝑔2𝑛 ,            (25) 

 

where the stabilizing factors are 

 

𝑀1,𝑛 =
∫ (𝑐2−�̂�1(𝑘))[�̂�𝑛(𝑘)]

2∞

−∞
𝑑𝑘

∫ �̂�1(𝑘)�̂�1(𝑘)�̂�𝑛(𝑘)𝑑𝑘
∞

−∞

 ,               (26) 

 

𝑀2,𝑛 =
∫ (𝑐2−�̂�2(𝑘))[�̂�𝑛(𝑘)]

2∞

−∞
𝑑𝑘

∫ �̂�2(𝑘)�̂�1(𝑘)�̂�𝑛(𝑘)
∞

−∞
𝑑𝑘

 ,                  (27) 

 

and 𝛾1 and 𝛾2 are free parameters. Solitary wave solutions for nonlocal nonlinear coupled wave 

equations can only be constructed under the assumptions  

  

𝑐2 − 𝛽1̂(𝑘) ≠ 0  and   𝑐2 − 𝛽2̂(𝑘) ≠ 0  for all 𝑘 ∈ 𝑅 .            (28) 

 

 

III. NUMERICAL EXAMPLES 

 
In this section, we give some numerical experiments. We first compare the numerical solutions obtained 

by the Petviashvili's method with the exact solutions available in the literature. Then, we obtain the 
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solitary wave profile for the nonlinear nonlocal coupled wave equations (1)-(2), generated by the 

Petviashvili method. 

 

In all experiments, we choose the spatial interval −100 ≤ 𝑥 ≤ 100 and the number of spatial grid 

points 𝑁 = 1024. The numerical operations are performed by using Matlab. We use three different 

errors to control the overall iterative process. These are the stabilization factor error  

 

M = |1 − 𝑀𝑖,𝑛| , 𝑀𝑖,𝑛  are given by (26)-(27),  𝑖 = 1,2  and  𝑛 = 0,1,2 … ,         (29) 

 

the residual error 

 

RES(n) = ||ℛ1𝜙𝑛|| ,     RES(m) = ||ℛ2𝜓𝑚|| ,   𝑛, 𝑚 = 0,1,2 …  ,                       (30) 

 

where   

 

ℛ1ϕ = 𝑐2ϕ − [β1 ∗ (ϕ + 𝑔1(ϕ, ψ))] ,           (31) 

 

ℛ2ψ = 𝑐2ψ − [β2 ∗ (ψ + 𝑔2(ϕ, ψ))] ,            (32) 

 

and error between two consecutive iterations  

 

Error1(𝑛) = ||ϕ𝑛 − ϕ𝑛−1|| ,   Error2(m) = ||ψ𝑚 − ψ𝑚−1|| ,   𝑛, 𝑚 = 0,1,2 … .     (33) 

 

In Example 1 and Example 2, we use exponential kernels  𝛽1(𝑥) = 𝛽2(𝑥) =
1

2
𝑒−|𝑥| with Fourier 

transforms are  �̂�1(𝑘) =  �̂�2(𝑘)  =
1

1+𝑘2  to compare the solitary wave solutions obtained by the 

Petviashvili's method with the exact solutions. 

 

Example 1.  In this experiment, we compare our numerical solution with the exact solution of the 

uncoupled improved Boussinesq equations to test our scheme. For the kernel functions  𝛽1(𝑥) =

𝛽2(𝑥) =
1

2
𝑒−|𝑥| ,  if we take nonlinear functions  𝑔1 and  𝑔2 as  𝑔1(𝑢1, 𝑢2) = 𝑢1

2 and   𝑔2(𝑢1, 𝑢2) = 𝑢2
2  ,  

we obtain uncoupled improved Boussinesq equations 

 

𝑢1𝑡𝑡 = 𝑢1𝑥𝑥 + 𝑢1𝑥𝑥𝑡𝑡 + (𝑢1
2)𝑥𝑥 ,            (34) 

𝑢2𝑡𝑡 = 𝑢2𝑥𝑥 + 𝑢2𝑥𝑥𝑡𝑡 + (𝑢2
2)𝑥𝑥  .            (35) 

 

Since equations (34) and (35) are the same, we only use the first equation. The solitary wave solution of 

(34)-(35) is given by 

 

 𝑢1(𝑥, 𝑡) = 𝑢2(𝑥, 𝑡) = α sech2 (
1

𝐴
√

α

6
(𝑥 − 𝐴𝑡 − 𝑥0))  ,          (36) 

 

where α = 0.25 is the initial amplitude, and 𝐴 = √1 +
2

3
α  is the velocity of the pulse with 𝐴2 > 1  [24].   

 

In the left side of Figure 1, we compare the numerically obtained solitary wave solution of (34)-(35) 

with exact solitary wave solution. In the right side of Figure 1, we present the variation of the 

stabilization factor error M, the residual error RES and Error given by (29)-(33). We choose 𝛾𝑖 = 1.2 

and initial guess 𝑢1 = 𝑒−𝑥2
. It can be seen from the figure, the solitary wave profile obtained by 

proposed method is compatible with the exact solitary wave solution of equations (34)-(35). 
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Figure 1. The numerical and exact solitary wave profiles of the uncoupled improved Boussinesq equation and 

the variation of errors. 
  

Example 2. For the kernel functions β1(𝑥) = β2(𝑥) =
1

2
𝑒     

−|𝑥| , if we choose 𝑔1(𝑢1, 𝑢2) = −𝑏𝑢1
2 + 𝑢2

2  

and  𝑔2(𝑢1, 𝑢2) = 2𝑢1𝑢2  we obtain the following system 

 

𝑢1𝑡𝑡 = 𝑢1𝑥𝑥 − 𝑏(𝑢1
2)𝑥𝑥 + (𝑢2

2)𝑥𝑥 + 𝑢1𝑥𝑥𝑡𝑡 ,          (37) 

  

 𝑢2𝑡𝑡 = 𝑢2𝑥𝑥 + 2(𝑢2𝑢1)𝑥𝑥 + 𝑢2𝑥𝑥𝑡𝑡 ,           (38) 

 

where 𝑢1(𝑥, 𝑡) and 𝑢2(𝑥, 𝑡) describe the longitudinal strain and the transverse strain respectively. This 

system emerges from a weakly nonlinear model of wave propagation in a simple cubic lattice [25]. The 

solitary wave solutions of the system (37)-(38) are given by 

 

𝑢1(𝑥, 𝑡) = 𝑢1𝑐(𝑥 − 𝑐𝑡) ,    𝑢2(𝑥, 𝑡) = α𝑢1𝑐(𝑥 − 𝑐𝑡) ,         (39) 

 

where 

 

𝑢1𝑐(𝑥) =
3

4
(𝑐2 − 1)𝑠𝑒𝑐ℎ2(γ𝑥) ,    α = √2 + 𝑏 ,   γ =

1

2
√

𝑐2−1

𝑐2  .        (40) 

 

The stability of the solitary wave solutions for this system has been studied numerically by [3] and [25]. 

 

  
 
Figure 2. The numerical and exact solitary wave profiles of the system of (37)-(38) and the variation of errors.  

 

In Figure 2, we show the only one solution of the system (37)-(38) because the solutions are linearly 

dependent. Figures for the solution of the second equation of the system (37)-(38) are the same. Here 

we choose 𝑏 = −1, 𝑐 = 1.08 and initial guess 𝑢1 = 𝑒−𝑥2
. It can be seen from the Figure 2 the solitary 
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wave profile obtained by the proposed method is compatible with the exact solitary wave solution of 

equations (37)-(38). 
 

In the following examples, we use kernel functions whose Fourier transforms are known. To our 

knowledge, the exact solitary wave solutions of the system (1)-(2) with the following kernels are 

unknown. So, we construct the solitary wave solutions of the system (1)-(2) with the following kernels 

by using the Petviashvili iteration method given in Section II. 

 

Example 3. In this example, we take the general kernel function with the Fourier transform is 

 

�̂�𝑖(𝑘) =
1

1+𝑘2+𝜂𝑘2 𝑠𝑖𝑛2(𝑘2)
 ,  𝑖 = 1,2 ,           (41) 

 

where 𝜂 is a positive parameter. Choosing  𝑔1(𝑢1, 𝑢2) = 𝑢1
2 + 𝑢2

2    and  𝑔2(𝑢1, 𝑢2) = 2𝑢1𝑢2 , we carry 

out some numerical experiments for different values of  𝜂 .  In Figure 3, we show the numerical solutions 

obtained by the proposed method for the system (1)-(2) with (41).  

 

 
 

(a)                                  (b)                       (c) 
 

Figure 3. The numerical solitary wave profiles obtained by proposed method for the the system (1)-(2) with (41). 

 

In this case, we take (a) 𝜂 = 0.1 , (b) 𝜂 = 5 and  (c) 𝜂 = 50 for  𝑐 = 1.5 . We see that the amplitude of 

the solitary wave solution decreases as we increase values of η. Since the exact solution of the system 

(1)-(2) with (41) is not known, we cannot compare our numerical solution with the exact solution. 

Therefore we show the stabilization factor error |1 − 𝑀𝑛|, the residual error RES, and Error with the 

number of iterations in semi-log scale in Figure 4, respectively, for 𝜂 = 0.1, 𝜂 = 5 and 𝜂 = 50. From 

these results we observe that the solitary wave solutions for the system (1)-(2) with (41) by the proposed 

method converges rapidly to the exact solutions of the given system. 

 

  
 

   (a)                                 (b)                       (c) 

 
Figure 4. The variation of errors for  𝜂 = 0.1, 𝜂 = 5 and 𝜂 = 50 in semi-log scale. 

 

  

Example 4. In this example, we take the general kernel function with the Fourier transform is 
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�̂�𝑖(𝑘) =
1

1+𝑘2+𝑘4 +
𝜇

1+𝑘4  ,  𝑖 = 1,2 ,           (42) 

 

where 𝜇 is a positive parameter. We choose the wave speed c satisfying the condition (28). In this case, 

we choose  𝑔1(𝑢1, 𝑢2) = 𝑢1
2 + 𝑢2

2 and  𝑔2(𝑢1, 𝑢2) = 2𝑢1𝑢2. We carry out some numerical tests for      

(a) 𝜇 = 0.5, (b) 𝜇 = 1 and  (c) 𝜇 = 2  with  𝑐 = 2.5 . 
 

In Figure 5, we present the numerical solitary wave profiles of the system (1)-(2) with (42). We see that 

the amplitude of the solitary wave solution decreases as we increase values of  μ . 

 

 
 

 (a)                                   (b)                       (c) 

 
Figure 5. The solitary wave profiles obtained by proposed method for the system (1)-(2) with (42). 

 

In the Figure 6, we show the variation of three errors |1 − 𝑀𝑛|,  RES and Error. The presented figures 

show that the solitary wave solutions for the system (1)-(2) with (42) by the proposed method converges 

rapidly to the exact solutions of the given system.  

 

  
 

(a)               (b)                      (c) 

 
Figure 6. The variation of errors for  𝜇 = 0.5, 𝜂 = 1 and 𝜂 = 2 in semi-log scale. 

 

IV. CONCLUSION 
 

In this work, we study a general class of nonlinear nonlocal coupled wave equations (1)-(2). Since the 

solitary wave solution for the nonlocal nonlinear coupled system is not known for general kernels, we 

propose a method for numerically constructing the solitary wave profile by using the Pethviashvili’s 

method. The efficiency of the numerical methods is tested for different kernels. As it can be seen from 

the presented figures, our proposed numerical scheme converges considerably well with the solution. 
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