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ABSTRACT In this paper, we present a lossless image encryption algorithm utilizing robust chaos-based
dynamic DNA coding and DNA operations (DNA XOR and DNA Complement). The entire process of
encryption is controlled by the pseudo-random number sequences generated through a 1D robust chaos map
that exhibits chaotic behaviour in a very large region of parameter space with no apparent periodic window
and therefore possesses a fairly large key space. Due to peculiar feed-forward and feedback mechanisms,
which modify the synthetic image (created to initiate the encryption process) at the encryption of each pixel,
the proposed algorithm possesses extreme sensitivity to the plain image, cipher image and secret key. The
performance analysis proves that the proposed algorithm exhibits excellent features (as expected from ideal
image encryption algorithms) and is robust against various statistical and cryptanalytic attacks.
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INTRODUCTION

The transmission of images/videos over the networks, and stor-
age of such visual media in the cloud has become increasingly
popular due to the proliferation of fast and efficient network tech-
nologies as well as the advancement, and miniaturization of com-
puting devices and storage media. It has inevitably posed security
threats/concerns for the image/visual media. Images can be se-
curely transmitted and stored in encrypted form to safeguard them
from unauthorized access. Since images have different character-
istics (bulk data, high spatial correlation, redundancies) than text
data, therefore, require special attention and algorithms to encrypt
them or hide them from unauthorized uses.

In recent years a variety of image encryption technologies like
image encryption based on optical transforms (Hennelly and Sheri-
dan 2003; Kaur et al. 2022a,b), based on chaos theory(Patidar et al.
2011), DNA-based image encryption (Adleman 1994; Xiao et al.
2006; Gehani et al. 2004) and algorithms based on the amalgama-
tion of these technologies have been developed. Amongst them,
the chaos-based image encryption algorithms have been most suc-
cessful due to effective confusion and diffusion as recommended
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by Shannon(Shannon 1949). However, chaos-based image encryp-
tions do suffer from some limitations like floating number-based
operations, the existence of periodic windows in parameter space
and smaller key space etc. (Teh et al. 2020). In recent years DNA
computing has also gained popularity due to its huge information-
carrying capacity, parallelism and ultra-low energy consumption.
Rather than implementing DNA computing at the molecular level
(Adleman 1994) which requires highly restricted laboratory condi-
tions, it has been frequently used to carry the digital information
(through representing it in DNA sequences) and manipulate it
using feasible DNA operations like addition, subtraction, DNA
XOR, DNA XNOR, DNA Complement etc.(Xiao et al. 2006; Gehani
et al. 2004).

The sole use of DNA coding and operations does not introduce
nonlinearity in the process of information manipulation (scram-
bling and altering) since these operations are primarily linear there-
fore have not been very successful in fulfilling Shannon’s (Shannon
1949) criteria for developing perfect secrecy in image encryption
or steganography algorithms. However, the DNA encoding and
corresponding operations are found to be successful when used in
combination with the dynamical chaos, which is bounded, aperi-
odic behaviour having sensitivity to initial conditions/parameters
and exhibited by deterministic nonlinear dynamical systems. Such
techniques have been termed hybrid DNA-chaos-based image
encryption.
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In DNA-chaos-based image encryption, the images to be en-
crypted are transformed into DNA sequences and then the scram-
bling of DNA bases is executed with the help of dynamical chaos.
These scrambled sequences are then encoded with the help of
DNA operations under the influence of the chaotic dynamical sys-
tem(s). Broadly classifying, there are two ways to design a hybrid
DNA-Chaos-based encryption algorithm: fixed DNA and dynamic
DNA coding (Xue et al. 2020). A fixed rule is used for encoding,
decoding and DNA operations in a fixed DNA scheme (Zhang et al.
2014; Wang et al. 2015) whereas rules are dynamically selected for
encoding, decoding and DNA operations in dynamic DNA coding
(Chai et al. 2019; Dagadu et al. 2019; Wang et al. 2020). For a detailed
review and comparison of various existing hybrid DNA-Chaos-
based encryption algorithms, we refer the readers to a recent work
by Patidar and Kaur (Patidar and Kaur 2023).

In this paper, we propose a novel dynamic DNA coding algo-
rithm for image encryption. All the operations (DNA encoding,
DNA-based-XOR, DNA-based-complement and DNA decoding)
are used under the control of a robust chaos map whose dynamical
behaviour is chaotic in very large parameter space (2 parameter
space) with no apparent periodic window. All of the above fac-
tors contribute towards a larger key space, thereby eliminating the
possibility of brute force attack. The robust chaos map is mainly
used in the algorithm to generate some pseudo-random number se-
quences and the various DNA-based operations in encryption (en-
coding, XORing, Complementing and decoding) are dynamically
selected with the help of these pseudo-random number sequences
for each pixel.

All the pseudorandom number sequences are interdependent
(as generated sequentially) as well as dependent on the secret
keys therefore the algorithm possesses extreme key sensitivity. To
start the encryption process, we create a synthetic image (of the
same size as the plain image) with the help of the same robust
chaos map and the pixels of the synthetic image are modified and
used in the encryption of the corresponding pixel of the plain
image. The process of modification of each pixel of the synthetic
image involves the information from the plain image as well as
the cipher image pixels generated till now and hence, is different
for each pixel. This interdependency leads to extreme sensitivity
concerning plain and cipher images and makes the entire process
of encryption super complex.

The subsequent sections of this paper are structured as: In
Section 2, we briefly introduce the robust chaos map, in Section 3,
the DNA coding, XORing and Complementing. In Section 4 all the
steps of the proposed image encryption algorithm are described, in
Section 5, the results of the performance analysis of the proposed
algorithm are presented and finally, in Section 6 the conclusions
are drawn.

THE ROBUST CHAOS MAP

The robust chaos is defined as the absence of periodic windows
and co-existing attractors in some neighbourhoods within the pa-
rameter space (Zeraoulia 2012). We use the following form of an
iterative one-dimensional map in the proposed image encryption
algorithm as the source of robust chaos (Andrecut and Ali 2001;
Patidar 2022).

xn+1 = F(xn, a, v), (F(x, a, v) =
1 − v−ax(1−x)

1 − v−( a
4 )

∀v ̸= 1, v > 0, a > 0)

(1)
Here x is the state variable, a and v are the parameters. This

iterative map is an S-unimodal map and has a negative Schwarzian

derivative. The function has a unique maximum at x = 0.5 (Figure
1), hence there can be at most one attracting periodic orbit with
the critical point in its basin of attraction. The orbit with initial
condition x = 0.5 will approach to x = 0 in two iterates. Since the
point x = 0 will be unstable if

(F′(0, a, v) = | ln(v)a
1 − v−( a

4 )
| > 1∀v ̸= 1, v > 0, a > 0) (2)

Figure 1 Function plots of robust chaos map maps (Eq.(1))

Figure 2 Derivative of the function F’(0,a,v), (Eq.2) red correspond
to the positive value and blue corresponds to the negative value

In such a case, the map does not possess any stable periodic
orbit hence a chaotic attractor/orbit prevails. In Figure 2, we
have depicted the regions of the parameter space (a, v) where the
derivative F′(0, a, v) is positive and negative respectively through
the red and blue colours. In the red region, the point x = 0 is
unstable therefore the chaotic orbit may exist here. We have also
plotted the bifurcation diagram for the robust chaotic map (Eq.1)
by iterating the map for 5000 iterations and skipping the initial 500
iterations for (i) a fixed value of parameter a = 7.1 and varying v
from 0 to 10 in the step of 0.01 and (ii) a fixed value of parameter
v = 4.3 and varying a from 0 to 10 in the step of 0.01. The results
have been depicted in Figure 3. We observe from the top frame
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(for a = 7.1 ) that point x = 0 is stable up to v = 0.25 and then
it becomes unstable and a chaotic orbit prevails. This fact may
be verified with the quantitative results of the stability condition
(Eq.2) depicted in Figure 2 and the Lyapunov exponent results
depicted in Figure 4. In the bottom frame (for v = 4.3 ) of Figure 3,
we observe that chaos is present for the entire range of parameter
a which is also confirmed from the quantitative results of stability
condition (Eq.2) depicted in Figure 2 and the Lyapunov exponent
results depicted in Figure 4.

Figure 3 Bifurcation plot for the robust chaos map (Eq.(1)): Top
frame for a=7.1 and bottom frame for v=4.3.

To confirm the existence of chaotic orbit and robust chaos, we
have numerically computed the Lyapunov exponent for the above
iterative map and the results are shown in Figure 4. It is clear that
the Lyapunov exponent is positive in the entire parameter space
(without any periodic window) defined by v > 0, a > 0 except for
v = 1 and a very small region near v = 0. In the proposed image
encryption algorithm, we use the above-mentioned iterated func-

Figure 4 Lyapunov Exponent for the robust chaos map (1)

tion in the parameter space defined by v > 1, a > 1 for generating
the pseudorandom sequences.

DNA CODING, XORING AND COMPLEMENTING

In DNA computing 4 nucleic acid bases: Adenine, Thymine, Cyto-
sine and Guanine (A, T, C and G) are encoded as 00, 01, 10 and 11.
There can be a total of 24 different possibilities for such coding out
of them only eight comply with both the binary and DNA com-
plement rules. In Table 1, we have summarized these eight rules
(Wang et al. 2020). For each DNA rule, addition, subtraction and
XOR operations can be formulated by following the conventional
binary operations. Since in the present algorithm we are using
XOR operation on DNA sequences therefore we are giving one
such operation table (Table 2) for the XOR operation on DNA bases
corresponding to the DNA encoding rule 3 (Wang et al. 2020).

The complement rules for the DNA sequences are defined based
on the double helix structure of the DNA strand. If the complement
operation is defined by the function fc(bi) where bi is one of the
nucleic bases of DNA, then the following relation is satisfied:

bi ̸= fc(bi) ̸= fc ( fc (bi)) ̸= fc ( fc ( fc (bi)))

bi = fc ( fc ( fc ( fc (bi))))

According to the above-mentioned relation, there are six dif-
ferent complement base-pair relations (rules) possible. These are
listed in Table 3 (Wang et al. 2020).

Rule 1, in Table 3, may be interpreted as follows:

fc(A) = T;

fc( fc(A)) = fc(T) = C

fc ( fc ( fc(A))) = fc ( fc(T)) = fc(C) = G

The fC( fc(A)) is the Level 2 complement of A that is equal to
C as per the complement rule 1.

The recovery of the complement, for Rule 1, in Table 3, may be
done in the following way:
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■ Table 1 The Eight DNA Encoding Rules

Rule 1 2 3 4 5 6 7 8

00 A A T T C C G G

01 G C G C A T A T

10 C G C G T A T A

11 T T A A G G C C

■ Table 2 The XOR Operation (for DNA Encoding Rule 3)

⊕DNA A T C G

A T A G C

T A T C G

C G C T A

G C G A T

■ Table 3 Six DNA Complement Rules

Rule Complement base pairs

1 AT TC CG GA

2 AT TG GC CA

3 AC CG GT TA

4 AC CT TG GA

5 AG GC CT TA

6 AG GT TC CA

fcr(A) = G;

fcr( fcr(A)) = fcr(G) = C

fcr ( fcr ( fcr(A))) = fcr ( fcr(G)) = fcr(C) = T

The fcr ( fcr ( fcr(A))) is the Level 3 complement recovery of A
that is equal to T as per the complement rule 1.

THE PROPOSED ALGORITHM

Encryption Algorithm
In the proposed image encryption algorithm, the plain im-
age is a grey image of dimension H × W and the secret
key is a set of 15 floating-point numbers and one integer
(x0, a1, v1, N, a2, v2, a3, v3, a4, v4, a5, v5, a6, v6, a7, v7). Here
0 < x0 < 1 and all a > 1, v > 1 and N is an integer preferably
between 100 to 999.

1. Iterate the robust chaos map N times with the initial condition
x0 and parameters a1, v1 and throw the iterates and record
the last value xN for further use.

2. Iterate the robust chaos map HW times with the initial con-
dition xN and parameters a1, v1. These iterates are used to
create a synthetic image (SI) of dimension H × W

SI(k) = ⌊xk × 256⌋, k=1 to HW

3. A pseudo-random number sequence (PRS1) is generated hav-
ing numbers 1 to 8 by iterating the robust chaos map with the
initial condition xN+HW and parameters a2, v2

PRS1i = ⌊xi × 8⌋+ 1; i = 1 to HW

4. Step 3 is repeated with xN+2HW and parameters a3, v3 to
generate PRS2i

5. Step 3 is repeated with xN+3HW and parameters a4, v4 to
generate PRS3i
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6. A pseudo-random number sequence (PRS4) is generated hav-
ing numbers 1 to 6 by iterating the robust chaos map 4HW
times with the initial condition xN+4HW and parameters a5, v5

PRS4i = ⌊xi × 6⌋+ 1; i = 1 to 4HW

7. A pseudo-random number sequence (PRS5) is generated hav-
ing numbers 0 to 3 by iterating the robust chaos map 4HW
times with the initial condition xN+8HW and parameters a6, v6

PRS5i = ⌊xi × 4⌋ ; i = 1 to 4HW

8. Step 3 is repeated with xN+12HW and parameters a7, v7 to
generate PRS6i

Now the process of encryption of ith pixel of the plain
image is done in the following way:

9. Calculate the two terms PIS and CIS dependent on the plain
and cipher images

PIS(i) = mod(sum (PI(i + 1 : HW)) , 256)

CIS(i) = mod(sum(CI(1 : i − 1)), 256)
For i = 1 the value of the previous cipher image pixel CI(i − 1)

is 0.

10. Using PIS and CIS calculated above, the ith pixel of the syn-
thetic image is modified

SI(i) = (SI(i)⊕ PIS(i))⊕ CIS(i)

11. Convert the SI(i) into the DNA sequence (SIDNA(i)) using
the PRS1th

i DNA encoding rule

12. Convert the PI(i) into the DNA sequence (PIDNA(i)) using
the PRS2th

i DNA encoding rule

13. (i)DNA XORing using the PRS3th
i XORing

CIDNA1(i) = (PIDNA(i) ⊕DNASIDNA(i)) ⊕DNA
CIDNA1(i − 1).

For i = 1 the DNA sequence for the previous cipher image pixel
CIDNA1(i − 1) is ‘ATCG’.

(ii) DNA Complement using PRS4th
i DNA Complement rule at

the PRS5th
i level

CIDNA(i) = fc(CIDNA1(i))

14. Convert the CIDNA(i) into the binary form using the PRS6th
i

DNA decoding rule.

The process from Steps 9 to 14 is repeated for all the
pixels of the plain image.

For a complete reference of the proposed image encryption
algorithm and flow of operations, please refer to the block diagram
given in Figure 5.

Decryption Algorithm
In the proposed image encryption method, the decryption process
is identical to the encryption algorithm discussed earlier, except
for the fact that it is executed in reverse order. This means that
the last pixel of the cipher image is decrypted first, followed by
the decryption of each pixel in reverse order until the first pixel is
reached. If the same secret key is used, the original plain image
can be fully recovered.

The decryption starts with the same secret key
(x0, a1, v1, N, a2, v2, a3, v3, a4, v4, a5, v5, a6, v6, a7, v7)
followed by execution of Steps 1 to 8 of the encryption algorithm
(as explained in subsection 4.1) to generate the synthetic image SI
and pseudo-random sequences PRS1 to PRS6.

Now the process of decryption of ith pixel (starting from the
last pixel) of the cipher image is done in the following way:

9. Calculate the two terms CIS and PIS dependent on the cipher
and plain images

CIS(i) = mod(sum(CI(1 : i − 1)), 256)

PIS(i) = mod(sum (PI(i + 1 : HW)) , 256)

For i = 1 (i.e., the last pixel to decrypt) the value of the previous
cipher image pixel CI(i − 1) is 0.

10. Using PIS and CIS calculated above, the ith pixel of the syn-
thetic image is modified

SI(i) = (SI(i)⊕ PIS(i))⊕ CIS(i)

11. Convert the SI(i) into the DNA sequence (SIDNA(i)) using
the PRS1th

i DNA encoding rule

12. Convert the CI(i) into the DNA sequence (CIDNA(i)) using
the PRS6th

i DNA encoding rule

13. (i) DNA Complement recovery using PRS4th
i DNA Comple-

ment rule at the PRS5th
i level

CIDNA1(i) = fcr(CIDNA(i))

(ii)DNA XORing using the PRS3th
i XORing

PIDNA(i) = (CIDNA1(i) ⊕DNACIDNA1(i − 1)) ⊕DNA
SIDNA1(i).

For i = 1 (i.e., the last pixel to decrypt) the DNA sequence for
the previous cipher image pixel CIDNA1(i − 1) is ‘ATCG’.

14. Convert the PIDNA(i) into the binary form using the PRS2th
i

DNA decoding rule.

The process from Steps 9 to 14 is repeated for all the
pixels of the cipher image in reverse order i.e. from the
last pixel to the first pixel.

NIST testing of pseudorandom sequences
To verify the pseudorandomness of the sequences generated
through the robust chaotic map and used in the proposed image
encryption scheme, we have used the NIST test suite. For testing
purpose we have generated 100 sequences of 106 bits each starting
with the randomly chosen initial conditions and parameters within
the allowed robust chaos range as specified above (i.e. 0 < x0 < 1
and all a > 1, v > 1).
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Figure 5 The image encryption algorithm

We have then run the entire NIST test suite comprising 15 para-
metric and nonparametric tests that generate a total of 188 p-values
for each test statistic (there are multiple numbers of variants corre-
sponding to some of the tests). Considering the significance level
of 0.01, a p-value greater than 0.01 indicates that a particular test is
passed by the sequence. We also find the total number of sequences
passing the test out of the total sequences i.e. proportion for each
test statistics and as per the chosen significance level 0.01, if it
falls within the range (0.9833245, 0.9966745), the pseudorandom
sequence generator qualifies for the cryptographic applications.
For each test statistic, we may also observe the uniformity of all 100
p-values in the entire range [0,1] through the Chi-square test on the
100 p-values for each test statistic and generating the p-value of p-
values i.e p − valueT . If p − valueT > 0.0001 then the distribution
of the p-values for that particular test is declared uniform.

We have depicted the results of proportions and the p-valueT
obtained through the NIST test suite for each test statistic in Figure
6 that shows the pseudorandom sequence generator qualifies the
NIST test suite criteria for the cryptographic applications.

PERFORMANCE AND ANALYSIS RESULTS

The performance of the proposed image encryption method is ana-
lyzed through various perceptual quality metrics, statistical mea-
sures, information entropy, plaintext sensitivity measures (NPCR,
UACI), and measures based on DNA sequences (Hamming dis-
tance, base ratio) etc. The details and results of the analysis are
presented below.

We have used two images ‘Peppers’ and ‘Lena’ and encrypted
them with the secret key (x0=0.787; a1=1.65; v1=4.57; N=123;
a2=6.73; v2=5.46; a3=2.57; v3=7.35; a4=6.54; v4=9.83; a5=6.27;
v5=4.76; a6=3.52; v6=2.43; a7=8.53; v7=5.32).

In Figure 7, we have shown the plain images and corresponding
cipher images generated with the help of the proposed image
encryption algorithm. The cipher images look random. In Figure
8, we have depicted the histograms of the plain and cipher images
shown in Figure 7. Visually, the histograms of the cipher images
appear uniform. To confirm the uniformity of the histograms of
cipher images quantitatively, we have calculated two statistical
measures: Chi-square and variance of the histograms for the plain
and cipher images. The results are given in Table 4. It can be
observed that Chi-square and histogram variance are very small
for the cipher images (almost 1% of plain images) which confirms
the uniformity of the cipher image histograms.

The deviations of the cipher image histogram from the ideal
(perfect uniform distribution) histogram are computed using the
metric ‘Deviation from Ideality’. The results are shown in Table
5. As is evident from the values thus obtained, the deviation from
the ideality is negligible. This substantiates that the cipher image
pixel distributions are nearly ideal/uniform.

Also, the deviations between the plain and cipher image his-
tograms are computed using two metrics ‘Maximum Deviation’
and ‘Irregular Deviation’. Observations are listed in Table 5. As is
evident from the values, the deviations are quite large. This sub-
stantiates the fact that the proposed image encryption algorithm
generates the cipher images with histograms significantly different
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■ Table 4 Chi-Square and Histogram Variance

Peppers Lena

Chi-Square
Plain Image 1.9280e+04 2.5400e+04

Cipher Image 218.3680 245.5680

Histogram Variance
Plain Image 1.1768e+04 1.5503e+04

Cipher Image 133.2813 149.8828

■ Table 5 Deviation from Ideality, Maximum Deviation and Irregular Deviation

Peppers Lena

Deviation from ideality 0.0587 0.0618

Maximum Deviation 0.5676 0.6620

Irregular Deviation 0.6446 0.6908

■ Table 6 Correlation Coefficients

Peppers Lena

Horizontal Adjacent Pixels Plain Image 0.9544 0.9322

Horizontal Adjacent Pixels Cipher Image 0.0020 7.5469e-04

Vertical Adjacent Pixels Plain Image 0.9646 0.9684

Vertical Adjacent Pixels Cipher Image 0.0038 -8.3144e-04

2D Correlation Coefficients be-
tween plain image and cipher
image

-0.0045 -0.0077

■ Table 7 Perceptual Quality Metrics

Peppers Lena

MAE 75.3073 72.9944

MSE 8.3264e+03 7.7428e+03

PSNR 8.9262 9.2418

SD 1.4226e+04 1.4087e+04

SSIM 0.0093 0.0066

FSIM 0.3689 0.3614

than the histograms of corresponding plain images.
2D correlation coefficients for various pairs of plain and cipher

images as well as the correlation between the adjacent pixels (hori-
zontally as well as vertically) in the plain and cipher images are
evaluated. The results for correlation coefficients are summarized

in Table 6. The correlation of two similar images in an ideal case is
unity. As the values obtained for the proposed scheme are negli-
gible as compared to the ideal value which clearly shows that the
proposed image encryption algorithm is capable of removing the
high correlation that exist in the plain image pixels.
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■ Table 8 Hamming Distance (DNA)

Peppers Lena

Hamming Distance 119900 119682

■ Table 9 DNA Base Ratio (%)

DNA Base Peppers Lena

Plain Image

A 25.6631 25.7550

T 25.7494 25.0525

C 24.1581 24.4994

G 24.4294 24.6931

Cipher Image

A 25.1038 25.0575

T 25.1713 25.1025

C 24.8988 25.1438

G 24.8263 24.6962

■ Table 10 Global and Local Information Entropy

Block Size Peppers Lena

Global Information Entropy
Plain Image

200 X 200
7.5820 7.4351

Cipher Image 7.9960 7.9956

Local Information Entropy

Plain Image
50 X 50

6.9406 6.6886

Cipher Image 7.9230 7.9260

Plain Image
40X 40

6.7164 6.5113

Cipher Image 7.8806 7.8800

Plain Image
25 X 25

6.2370 6.0016

Cipher Image 7.6697 7.6724

■ Table 11 Plaintext Sensitivity

Peppers Lena Theoretical Value/Range (Wu
et al. 2011) (Significance Level
0.01)

NPCR 99.6450 99.7000 99.5527

UACI 33.4561 33.4321 [33.2255, 33.7016]

The perceptual quality analysis results for the cipher images
produced by the proposed image encryption algorithm are summa-
rized in Table 7. Ideally, the image encryption algorithm should be

able to have significant quality degradation in the images so that
no pattern/feature remains present in the cipher images leading to
a clue for analysing and decoding the information about plaintext
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Figure 6 NIST Testing of pseudorandom sequences

images. The results of our computation of various perceptual qual-
ity metrics are given in Table 7. We may observe that the encrypted
images possess very low perceptual quality.

As the proposed image encryption is based on the conversion
of image pixels into DNA sequences followed by operations like
XORing and complementing of the DNA bases in the DNA se-
quences of the image pixels, we have also done some analysis on
the DNA sequences of the plain images and the cipher images gen-
erated through the proposed image encryption technique. We have
computed the ‘Hamming distance’ between the DNA sequences of
plain and cipher images, it measures the dissimilarity between the
sequences in terms of DNA bases. The results have been shown
in Table 8 which shows that the hamming distance is very large
(almost 120K) which indicates the 75% dissimilarity in the DNA
sequences of cipher and plain images. We have also computed
the ‘Base Ratio’ for all the four DNA bases (A, T, C and G) in the
DNA sequences of plain and cipher images. The base ratio is the
percentage of occurrence of a particular base in the given sequence.
The results have been summarized in Table 9. It is clear that all the
bases have almost 25% occurrence in the plain as well as cipher
images. It also conveys that while encoding the plain image into
the DNA sequence in the proposed image encryption algorithm,
sufficient randomness has been introduced so that the base distri-
bution is almost uniform even in the DNA sequence of the plain
image.

The information entropy is the measure of disorder. We have
computed the information entropy for the whole of plain and
cipher images (i.e., global information entropy) as well as the

Figure 7 Plain images ‘Peppers’ and ‘Lena’ (first column) along with
corresponding cipher images (second column) obtained with the
proposed image encryption algorithm.

Figure 8 Histograms of ‘Peppers’ and ‘Lena’ (first column) and cor-
responding encrypted images (the second column).

average of information entropy by dividing it into a finite number
of non-overlapping blocks (i.e., local information entropy). The
results have been shown in Table 10 which confirms that for the
encrypted images, the global information entropy is very near to
8-bits and the local information entropy is also close to the global
entropy and well above the desired thresholds.

To check the robustness of the proposed image encryption al-
gorithm against the known-plaintext attack, we have also done a
differential analysis of the proposed image encryption. For this
purpose, we make a small change in the plain image (usually only
one pixel) and compare the cipher images corresponding to two

186 | Patidar and Kaur CHAOS Theory and Applications



plain images with only a one-pixel difference and encrypted with
the same secret key. We compute two metrics Net Pixel Change
Rate (NPCR) and Unified Average Change Intensity (UACI) and
the results are shown in Table 11. It shows that these computed
values of NPCR are higher than the theoretical/ideal critical value
and computed values of UACI lie within the theoretical/ideal
range obtained for a pair of random images, therefore, the two
encrypted images, produced for the two plain images differing
by only one-pixel value, are random like. Hence, the proposed
image encryption algorithm is sensitive to the plaintext and robust
against any differential attack.

For brevity, we have not provided the mathematical de-
tails/statistics of all the metrics used in the performance analysis.
We refer the readers to (Kaur et al. 2022a; Patidar et al. 2011; Xue
et al. 2020; Patidar and Kaur 2023; Wu et al. 2011) for complete
details.

CONCLUSION

A novel image encryption algorithm utilizing the robust chaos-
based dynamic DNA coding, DNA XORing and DNA Comple-
menting is proposed. Though there are other DNA-Chaos-based
schemes already available in literature but to the best of our knowl-
edge, the proposed scheme is novel in its approach towards utiliz-
ing the dynamical behaviour of chaos for random selection of one
of the DNA rules. Secondly, the chaotic map is carefully selected
for its robustness due to the absence of periodic windows over
the entire key space. The proposed algorithm possesses all the
essential features of a practical image encryption algorithm. Vari-
ous statistical measures, perceptual quality metrics, information
entropy, plaintext sensitivity measures (NPCR, UACI), measures
based on DNA sequences (Hamming distance, base ratio) etc. have
been used to analyze the performance of the proposed image en-
cryption algorithm and the results show the robustness of the
proposed image encryption algorithm against any statistical or
cryptanalytic attacks. In future, we will present different combi-
nations of chaos/hyperchaos and DNA rules for a comparative
analysis of our proposed work with the existing schemes in terms
of speed and complexity as well.
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