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Abstract 

One of the most dangerous diseases in the world is a brain tumor. A brain tumor destroys healthy tissue in the brain and then 

multiplies abnormally, causing increased internal pressure in the skull. This can lead to death if not diagnosed early. Magnetic 

Resonance Imaging (MRI) is a diagnostic method that is frequently used in soft tissues and gives successful results. In this study, 

a brain tumor was automatically detected from MR images. For feature extraction, a pre-trained Convolutional Neural Network 

(CNN) model named MobilenetV2 was used. Then, the ReliefF algorithm was used for feature selection. The features extracted 

with MobileNetV2 and the features selected with the ReliefF algorithm are given separately to the classifiers and the system 

performance is tested. As a result of experimental studies, it was seen that the highest performance was obtained with the 

combination of MobileNetV2 feature extraction, ReliefF algorithm feature selection, and KNN classifier. 
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Özet 

Dünyadaki en tehlikeli hastalıklardan biri beyin tümörüdür. Bir beyin tümörü beyindeki sağlıklı dokuyu yok eder ve daha sonra  

anormal şekilde çoğalarak kafatasında iç basıncın artmasına neden olur. Bu erken teşhis edilmezse ölüme yol açabilir. Manyetik 

Rezonans Görüntüleme (MRG) yumuşak dokularda sıklıkla kullanılan ve başarılı sonuçlar veren bir tanı yöntemidir. Bu 

çalışmada, MR görüntülerinden bir beyin tümörü otomatik olarak tespit edildi. Öznitelik çıkarımı için MobilenetV2 adlı önceden 

eğitilmiş bir Evrişimsel Sinir Ağı modeli kullanılmıştır. Daha sonra öznitelik seçimi için ReliefF algoritması kullanılmıştır. 

MobileNetV2 ile çıkarılan öznitelikler ve ReliefF algoritması ile seçilen öznitelikler ayrı ayrı sınıflandırıcılara verilerek sistem 

performansı test edilmiştir. Deneysel çalışmalar sonucu MobileNetV2 öznitelik çıkarımı, ReliefF algoritması öznitelik seçimi ve 

KNN sınıflandırıcı kombinasyonuyla en yüksek başarımın elde edildiği görülmüştür. 

 

Anahtar kelimeler: Öznitelik seçimi, ReliefF algoritması, MobileNetV2, Beyin tümörü, Manyetik rezonans görüntüleri 

 

1. Introduction  
 

The brain is one of the body's most intricate organs. A brain tumor is a clump of tissue that develops and multiplies 

uncontrolled in the brain [1]. The American Society of Clinical Oncology estimates that between 85.0% and 90% of the 

brain, cancers are malignancies of the central nervous system [2]. Despite being less frequent than other tumor forms in 

the central nervous system, brain tumors in particular have a high death rate. Therefore, the efficacy of treatment and the 

reduction of mortality from brain tumors depend greatly on early identification [3]. 

 

MRI is superior to other imaging methods like computed tomography (CT) and positron emission tomography in several 

ways (PET). Magnetic resonance imaging (MRI) technologies offer researchers more detailed, increased contrast images 

of the brain for the detection of brain malignancies. Additionally, MRI is a non-invasive method that is safe for the human 
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body. Additionally, MRI technology is quick and takes less time to finish treatments. Consequently, MRI has emerged as 

the method of choice in clinical practice for finding brain tumors [4]. 

 

The use of clinical information and qualified radiologists and other specialists is essential for the early diagnosis of brain 

tumors. Decision-making processes for the detection of brain tumors might be time-consuming due to the shortage of 

professionals in healthcare. Computer-aided systems powered by artificial intelligence can lessen professionals' workloads 

and help them make decisions [4,5]. 

 

Traditional approaches could work well for one dataset but poorly for another since the right features must be extracted 

for each data format. Convolution filters found in deep learning architectures eliminate the requirement for manual feature 

extraction. Because of this, deep learning-based studies have excelled at several tasks involving the classification of 

medical images [6–20]. A pre-trained CNN-based model was utilized by Lu et al. [21] to identify brain cancers in MRI 

images. The MobileNetV2 model's deep features were extracted. The random vector functional-network approach had a 

classification accuracy of 96.0%. The binary classification had a classification accuracy of over 95.0%. For brain MRI 

classification, Talo et al. [22] used five pre-trained CNN networks, including AlexNet, VGG16, ResNet (18, 34, and 50) 

models. ResNet50 had the best accuracy, 95.23%. A unique strategy for brain MRI categorization including various 

processes was reported by Kumar and Mankame [23]. For segmentation, a combination fuzzy structure and a sine-cosine 

algorithm were employed. The segmented images were then utilized to extract features using a statistical method and a 

local binary model (LBP). In order to categorize data, a deep CNN model that was built from scratch was used. The 

method's highest degree of accuracy was 96.23%. 

 

To identify the two types of brain tumors that fall under the deep autoencoder model, low- and high-grade gliomas, Raja 

and Siva [24] developed an architecture. First, a median filter was used to preprocess MR images. Second, segmentation 

was accomplished using a Bayesian clustering approach. An end-to-end learning deep autoencoder model was used to 

classify the MR image samples. The approach had a 98.5% accuracy rate. A unique CNN model was chosen by Devi and 

Gomathi [25] for automatic brain tumor identification. For preprocessing, a canny edge detection technique was applied. 

Then, MR sample saliency map representations were created. A CNN model with five convolutional layers was used for 

the prediction procedure, yielding 91.0% accuracy. For the 3-class (glioma, meningioma, and pituitary tumor) brain MRI 

classification, Alhassan and Zainon [26] suggested a deep CNN structure based on a hard swish-based ReLU activation 

function. The classification performance was enhanced by 3.5% accuracy thanks to the hard swish-based ReLU activation 

function, with the highest accuracy being 98.26%. For the classification of brain tumors, Kumar et al. [27] used a 

ResNet50-based method that included the glioma, meningioma, and pituitary classifications. The accuracy results were 

97.48% and 97.08%, respectively, with and without data augmentation. A unique method for classifying brain tumors into 

three categories was devised by Kokkala et al. [128]. To identify glioma, meningioma, and pituitary samples, a deep dense 

initial residual network was trained. The model had a 99.26% average accuracy. A unique strategy for 2-class brain MR 

image categorization was put forth by Mesut et al. [29]. In this method, deep feature extraction was carried out using two 

pre-trained CNN models, VGG16 and AlexNet. Moreover, all CNN models' convolutional layers were subjected to the 

Hypercolumn method. As a result, the deep feature set now includes local discriminative features. Out of the 2000 features 

collected, 200 features with good representativeness were chosen using the recursive feature elimination (RFE) algorithm. 

The SVM classifier's greatest accuracy was 96.77%. A strategy based on deep feature extraction was put out by Kang et 

al. [30] for the classification of 4-class brain MRI images. Popular pre-trained CNN models like ResNet, DenseNet-169, 

VGGNet, AlexNet, Inceptionv3, ResNeXt, ShuffleNet, MobileNetV2, and MnasNet were used to extract deep features. 

In order to achieve the best feature performance, DenseNet-169, ShuffleNet, and MnasNet models were combined. Several 

classifier techniques, including Adaboost, Gaussian Naive Bayes, K-Nearest Neighbor (KNN), Random Forest, and 

Support Vector Machine (SVM), were utilized in the classification phase. The SVM classifier produced the best 

classification results. 93.72% accuracy was the highest. A novel method for tumor detection and tumor classification from 

brain MR images was developed by Arı et al. [31]. First, a Gaussian filter is used to preprocess MR images of the brain. 

Then, using the proper threshold and morphological operations, malignancies were found. Different combinations of deep 

features were recovered from the fc6 and fc7 layers of the AlexNet and VGG16 models. In the classification phase, ELM 

was utilized. On three datasets, the proposed method's effectiveness was evaluated. 
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2. Preliminaries 

 

Classifiers 

 
The Linear discriminant (LD) method is frequently used in both classification and feature reduction. LD assumes that each 

class produces different Gaussian distributions. LD then finds the best decomposition by considering the maximum 

variance between classes [32]. SVM is a commonly used supervised machine learning method. The main idea behind 

SVM is Vapnik's statistical learning theory. SVM projects the input data into higher dimensional space and builds the 

hyperplane to separate classes in the projected space. Basically, SVM solves linear problems. For solving nonlinear 

problems, SVM uses nonlinear kernel functions such as Gaussian, sigmoid, and polynomial [33]. KNN is a fundamental 

and widely used supervised machine learning technique. KNN uses local knowledge of the predicted input data, so it is a 

feasible and adaptive method. KNN solves the problem by considering the input data point neighbor relations. KNN uses 

distance metrics such as Euclidean, Minkowski, Manhattan, Manhattan, Cosine, Hamming, etc. to detect the neighborhood 

relationship. The k closest instances are selected from the input data, then any class is assigned according to the majority 

relations. The number of neighbors, k, should be an odd number to avoid ambiguity [34]. Decision Trees (DT) are a tree-

based algorithm used in classification and regression problems and are one of the most widely used predictive methods. 

Each node in the tree represents a test on a feature. Node branches indicate the result of the test. Tree leaves contain the 

class labels. Decision tree inference consists of tree construction and tree cleaning phases [35]. 

 

MobileNetV2 

 
Sandler [36] has suggested MobileNetV2, a CNN architecture for mobile devices. The initial version, which was created 

for face feature detection, was tested and trained using data from Google [37]. An inverted residual and a linear bottleneck 

are used in the network structure that was created. It is intended for generic feature extraction as well as image 

categorization. This network implements bottleneck operations, mean pooling, 3×3 and 1×1 convolution. Layers in 

MobileNetV2 total 154. Compared to other popular CNN models, MobileNetV2 employs fewer parameters [38]. An 

effective network design with rapid execution is MobileNetV2. Figure 1 displays the MobileNetV2 convolutional blocks. 

 

 
 

Figure 1. MobileNetV2 convolutional blocks 

 

Relief family of algorithm 
 

Kira and Rendell developed the Relief algorithm in 1992, which is highly sensitive to feature interactions and uses a filter-

method approach to feature selection [39]. It was initially intended for use in discrete or numerical feature binary 

classification issues. Each feature in Relief has a feature score, which may be used to rank and select the features with the 
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highest scores. Further modeling can be guided by these scores, which can also serve as feature weights. Relief feature 

scoring is built on the identification of feature value differences between nearest neighbor instance pairs. If a close instance 

pair of the same class exhibits a variation in feature value, the feature score is reduced (a "hit"). As an alternative, the 

feature score increases if a neighboring instance pair with a different class value exhibits a feature value difference (a 

"miss") [40].  

3. Method 

 

The framework of the proposed approach is given in Figure 2. In this study, a novel approach for automatic ophthalmologic 

disease detection from MR images is proposed. In the first step, deep features are extracted from the pre-trained 

MobileNetV2 ESA model. In the second step, discriminative features are selected using a multi-level algorithm with INCA 

algorithms[41-43]. This algorithm improves the classification performance and reduces the computational cost of the 

classifier. At the third level, the selected features are passed to the SVM classifier. 

 

 
 

Figure 2. Proposed approach architecture 

 

4. Experiments and discussion 

 

On a dataset that is available to the public, the suggested approach was assessed. The collection included MR pictures of 

both brain tumors and healthy individuals [44]. 155 cases of brain tumors and 98 cases of healthy tissue resulted in the 

collection of 253 MR images. The MR pictures were stored in JPEG format with various resolutions and size settings. The 

dataset examples are provided in Figure 3. 

 

 

MR image 
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Brain Tumor Healthy

 
 

Figure 3. Samples for each class on the datasets 

 
The study's entire coding was carried out using Matlab software. The PC used in the study has 16 GB of main memory, 

an Intel i5 processor, and a 4 GB video card. A fully connected layer of the MobileNetV2 ESA model called "Logits" was 

utilized for the extraction of deep features, and 1000 deep features were recovered from it. After that, the ReliefF feature 

selection technique was applied to boost classification performance while lowering computing costs. The number of 

nearest neighbors, a crucial parameter in this technique, was set at 10. Figure 4 provides a representation of the feature 

weights computed using this technique. 

 

 
 

Figure 4. Feature weights calculated with the ReliefF algorithm 

 
The weight values of these computed attributes were used to choose the first 300 attributes. The Matlab Classification 

Learner tool received these features for classification. The evaluation method was 10-fold cross-validation. This procedure 

was repeated twice, once before feature selection and once after. Table 1 provides the categorization accuracy results from 

this technique. 
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Table 1. Classification performance 

 

Classifier All features Selected features (with ReliefF) 

DT 

LD 

SVM 

KNN 

0.88 

0.86 

0.92 

0.95 

0.91 

0.90 

0.94 

0.99 

 
As shown in Table 1, the ReliefF feature selection algorithm improved the performance of all classifiers. The best 

classification performance was obtained with the KNN algorithm (0.99).  

 

The complexity matrices in Figure 5 are given to see the effect of feature selection on classification performance. As 

demonstrated above, the ReliefF algorithm increased the number of predicted instances in both classes and as a result, the 

accuracy was improved by 4%. 

 

 
 

Figure 5. ReliefF impact of feature selection on performance 

 

When the studies conducted with the same data are examined, Table 2 presents the general summary. Nanda et al. 

[45] emphasized that they used a new hybrid saliency k-mean segmentation (Saliency-K-mean-SSO-RBNN) by 

taking advantage of the social spider optimization (SSO) algorithm in their study in the Radial Basis Neural Network 

(RBNN). The salience map focuses on the relevant point in the target image. It was reported that 96%, 92%, and 94% 

accuracy were obtained in the study, in which processes were tested with three different data sets. Demir and Akbulut 

[46], used the convolution and fully connected layers of a new R-CNN model in the deep feature extraction phase. 

Among the features obtained, the 100 most dominant features in terms of distinctiveness were selected with the 

L1NSR algorithm. The best performance in the classification phase was obtained with SVM using the Gaussian 

kernel. In addition, in the study, the method was tested with another data set with four classes and 96.6% accuracy 

was achieved. Alnabhan et al. [47] wanted to reduce the complex relationship of CNN parameters by using Egyptian 

Vulture Optimization (EVO) technique in their study. They also tested their methods, which they tested with ANN 

and deep learning-based classifiers, on another data set with four classes. Asif et al. [48], tested their proposed method 

with two different data sets in their study. Preprocessed MR images were exported to Xception, NasNet Large, 

DenseNet121, and InceptionResNetV2. They used ADAM, SGD, and RMSprop algorithms as optimizers when using 

MR images for testing. They obtained 99.67% accuracy by using the Xception model with the data set having a larger 

sample size. 
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Table 2. Comparison of current studies with the same data set [43] 

 

Reference Method Classification (Acc.%) 

Nanda et al. (2023) 

Demir and Akbulut (2022) 

Alnabhan et al. (2022) 

Asif et al. (2022) 

Proposed Method 

Saliency-K-mean-SSO 

R-CNN, L1NSR 

CNN-based EVO model 

Xception, ADAM optimization 

MobileNetV2, ReliefF algorithm 

RBNN 

SVM 

CNN 

Xception 

KNN 

%92 

%98.8 

%93.51 

%91.94 

%99 

 

5. Conclusion 

 

In this study, a deep learning-based hybrid technique for the classification of brain tumors is presented. In the study, deep 

features were extracted with the pre-trained MobileNetV2 architecture. It is desired to reduce the computational cost and 

processing load without transmitting the features to the KNN algorithm, which is a powerful classifier. The ReliefF 

algorithm is used for the mentioned feature extraction step. In order to see the performance effect of the algorithm on the 

designed model, the model in which all the features are added to the system and the situation after the feature selection is 

given to the classifier separately. As a result of the comparison, it was concluded that the classification performed 2% 

better, and ultimately a high accuracy of 99% was achieved. The mentioned success rate can be a helpful system for experts 

since the treatment and diagnosis stage of brain tumors is considered to be of critical importance. In future studies, it is 

planned to test CNN models trained from scratch on the same dataset to improve classification accuracy. 
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