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ABSTRACT. Rational functions have deep system-theoretic significance. They represent the natural way of model-
ing linear dynamical systems in the frequency (Laplace) domain. Using rational functions, the goal of this paper to
compute models that match (interpolate) given data sets of measurements. In this paper, the authors show that using
special rational orthonormal systems, the Malmquist-Takenaka systems, it is possible to write the rational interpolant
r(n,m), for n = N−1,m = N using only N sampling nodes (instead of 2N nodes) if the interpolating nodes are in the
complex unit circle or on the upper half-plane. Moreover, the authors prove convergence results related to the rational
interpolant. They give an efficient algorithm for the determination of the rational interpolant.
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1. INTRODUCTION

Rational functions have deep system-theoretic significance. They represent the natural way
of modeling linear dynamical systems in the frequency (Laplace) domain, because the Laplace
transform of a sum of complex exponentials is a rational function; more precisely, the transfer
functions (or frequency responses) of such systems are rational functions. Using rational func-
tions, our goal is to compute models that match (interpolate) given data sets of measurements.

We give first a short summary related to the general solution of the rational interpolation
problem. Let us consider a function f : H → C, H ⊂ C, and a general rational function of the
form:

r(n,m)(x) =

∑n
i=0 αix

i∑m
j=0 βjx

j
,

where αi, βj , x ∈ C , and m and n are not necessarly equal natural numbers. To find a rational
interpolant r(n,m) of type (n,m) requires n+m+ 1 sample points (or in other word nodes), be-
cause we have to determine the αi and βj coefficients (one coefficient can be set to 1). Knowing
(xk, f(xk)), k = 1, . . . , n+m+ 1, we search the solution of the interpolation problem satisfying
the following conditions

r(n,m)(xk) = f(xk), k = 1, . . . , n+m+ 1.

In this paper, we show that using special rational orthonormal systems, the Malmquist-Takenaka
systems, it is possible to write the rational interpolant r(n,m), for m = N,n = N − 1 using only
N sampling nodes (instead of 2N nodes) if the interpolating nodes are in the unit circle or on
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the upper half-plane, moreover we can prove convergence results related to the rational inter-
polant. We give an efficient algorithm for the determination of the rational interpolant. We
will introduce new rational interpolation operators of type (N − 1, N) using N special nodes
in the closed unit disc. These nodes are solutions of certain equation related to the Malmquist-
Takenaka systems and its dual systems, and we will study the properties of the new interpola-
tion operators. We will study the analogue of the problem also for the closed upper half-plane.
Before we present our results, let us revise the classical method to find r(n,m) (see for example
Berrut, Trefethen or Ionita [1, 11] and the reference list therein). We write our interpolation
conditions in the following form:( n∑

i=0

αix
i
k

)
− f(xk)

( m∑
j=0

βjx
j
k

)
= 0.

In matrix form, this is equivalent to
Ab = 0,

where

A :=



1 x0 x2
0 . . . xn0 −f(x0) −f(x0)x0 −f(x0)x2

0 . . . −f(x0)xm

1 x1 x2
1 . . . xn1 −f(x1) −f(x1)x1 −f(x1)x2

1 . . . −f(x1)xm

...
...

... . . .
...

...
...

... . . .
...

1 xM x2
M . . . xnM −f(xM ) −f(xM )xM −f(xM )x2

M . . . −f(xM )xmM


and

b := [α0, α1, α2, . . . , αn, β0, β1, β2, . . . βm]T .

However, there is no any guarantee that the solution exists, and it is unique. It is possible that
there are more b vectors satisfying the equation -if it exists at all. When β0 = 1, β1 = β2 = . . . =
βm = 0, then the problem reduces to the construction of a polynomial interpolant. In this case,
if the nodes xk are different from each other and we have M = n + 1 samples, the problem
has unique solution. If we want to express the interpolation polynomial r(n,0)(x) = Pn(x) =∑n
i=0 cix

i in the basis Φk(x) = xk satisfying the condition Pn(x) = f(xk), k = 1, . . . ,M = n+1,
then the solution c = (c0, c1, . . . , cn) of the system is c = Φ−1f, where f = (f(x1), . . . , f(xn+1))T

and

Φ = V (x0, x1, . . . , xn) =

1 x1
0 . . . xn0

...
...

. . .
...

1 x1
n . . . xnn

 .
We don’t have to solve the linear equation system if we write the interpolation polynomial in
Lagrange form. In this way, we reduce the number of operations. Let us consider the Lagrange
interpolation polynomials corresponding to the n+ 1 sample points defined by

li(x) =
(x− x0)(x− x1) . . . (x− xi−1)(x− xi+1) . . . (x− xn)

(xi − x0)(xi − x1) . . . (xi − xi−1)(xi − xi+1) . . . (xi − xn)
=

∏n
j=0,j 6=i(x− xj)∏n
j=0,j 6=i(xi − xj)

.

Because

(1.1) li(xk) = δik =

{
1 if i = k

0 if i 6= k,
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the solution of the interpolation problem has the following form:

Pn(x) = Ln(x) =

n∑
i=0

li(x)f(xi).

The set {li(x), i = 0, . . . , n} is the so-called Lagrange basis, thus the resulted interpolation
polynomial is the linear combination of the Lagrange basis. There is only one unique Lagrange
polynomial basis perfectly fitting to the set of different sample points {(xi, f(xi)), i = 0, . . . , n}.
Unfortunately, using the Lagrange method, the basis have to be recalculated when we add a
new sample point, requiring O(n2) operations. A solution for this problem, to diminish the
number (cost) of the operations, is the Barycentric Lagrange polynomial interpolation. Using
the divided differences method, we get a much faster algorithm than the Lagrange interpola-
tion, mainly when we have a new, additional sample point. First let us consider the Lagrange
polynomial of constant function 1:

en(x) =

n∑
i=0

{ ∏n
j=0,j 6=i(x− xj)∏n
j=0,j 6=i(xi − xj)

}
= 1.

Using this, we can write for any function f the interpolant Ln(x) in the following form:

Ln(x) =
Ln(x)

en(x)
=

∑n
i=0

{ ∏n
j=0,j 6=i(x−xj)∏n
j=0,j 6=i(xi−xj)f(xi)

}
∑n
i=0

{ ∏n
j=0,j 6=i(x−xj)∏n
j=0,j 6=i(xi−xj)

} .

Simplifying by
∏n
j=0(x − xj), if we consider that

∏n
j=0,j 6=i(x − xj) =

∏n
j=0(x − xj) 1

x−xi
, we

arrive to the following:

Ln(x) =

∑n
i=0

{
1∏n

j=0,j 6=i(xi−xj)
f(xi)
x−xi

}
∑n
i=0

{
1∏n

j=0,j 6=i(xi−xj)
1

x−xi

} .
Let be 1∏n

j=0,j 6=i(xi−xj) = λi, then

Ln(x) =

∑n
i=0

{
λi
f(xi)
x−xi

}
∑n
i=0

{
λi

1
x−xi

}
is called polynomial Barycentic formula. After the determination of each λi, it is relatively
fast to calculate the polynomial in this form, it requires O(n) operations. Another advantage
of the Barycentric formula is that it is numerically stable. In case if we choose λi freely, we
get a rational interpolant r(n,n) fitting to the sample points (when λi = 1∏n

j=0,j 6=i(xi−xj) , we get
the Lagrange polynomial Ln(x)). These rational functions satisfy the interpolation condition
r(n,n)(xk) = f(xk), k = 0, . . . , n. These rational interpolants are called Lagrange rational inter-
polants. Freely choosing the λi-s, there are more rational functions fitting to the sample points.
In order to determine r(n,n) uniquely, we need to fix n+ 1 more λi-s. We can get the Lagrange
rational interpolation which satisfies

r(n,n)(xk) = f(xk), k = 1, . . . , 2n+ 1

without solving the system of equation in the following way:
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1. We have to divide the 2n+1 sample points {xj} into two subgroups, n+1 Lagrange nodes
denoted by ηi and the remaining n sample points denoting by (µj). Similarly, also the set of the
corresponding function values ({f(xj)} ) has to be partitioned.

2. We express r(n,n) with the Lagrange basis
∏n
j=0,j 6=i(x − ηj) associated to the Lagrange

nodes ηi in the following form:

r(n,n)(x) =

∑n
i=0

{
ai
∏n
j=0,j 6=i(x− ηj)

}
∑n
i=0

{
bi
∏n
j=0,j 6=i(x− ηj)

} .
This rational function can be written in barycentric form:

r(n,n)(x) =

∑n
i=0

{
ai

1
x−ηi

}
∑n
i=0

{
bi

1
x−ηi

} .
Similarly to the polynomial barycentric formula, also this rational barycentric formula requires
only O(n) operations. When x = ηi, then r(n,n)(ηi) = ai

bi
= f(ηi), so if we set ai = bif(ηi), then

r(n,n) will exactly interpolate f at the ηi nodes and we get back our earlier formula when the
coefficients were the same in the numerator and denominator.

3. Now, what we have to do is only to determine the unknown coefficients bi using the re-
maining n sample points (µj) and the corresponding f(µj) values (which were still not used).
Using that ai = bif(ηi), for the µj points j = 1, . . . , n the rational function satisfies the follow-
ing:

r(n,n)(µj) = f(µj) =

∑n
i=0

{
bif(ηi)
µj−ηi

}
∑n
i=0

{
bi

µj−ηi

} .
Rearranging these equations, we get the equivalent forms for j = 1, . . . , n:

n∑
i=0

{
bif(µj)

µj − ηi

}
=

n∑
i=0

{
bif(ηi)

µj − ηi

}
,

n∑
i=0

{
bi(f(µj)− f(ηi))

µj − ηi

}
= 0.

These conditions can be written in a matrix form:
(f(µ0)−f(η0))

µ0−η0 . . . (f(µ0)−f(ηn))
µ0−ηn

...
. . .

...

(f(µn−1)−f(η0))
µn−1−η0 . . . (f(µn−1)−f(ηn))

µn−1−ηn


b0...
bn

 = 0.

The matrix is called Loewner matrix (L) and it is an n · (n+ 1) matrix.
4. The Loewner matrix and its null space has to be computed using the partitioned nodes

and the corresponding sample values solving the Lb = 0 equation. In this way, we get the b
vector of the coefficients.
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5. After the above-mentioned steps, we can form the Lagrange rational polynomial using
the barycentric formula:

r(n,n)(x) =

∑n
i=0

{
bif(ηi)
x−ηi

}
∑n
i=0

{
bi

x−ηi

} .

If the number of sample points is large, then the number of operations to determine the rational
interpolant fitting the data is still high. Our goal is to find new methods to write the rational
interpolant using less initial data and to reduce the number of operations if it is possible.

The paper is organized as follows. In Section 2, we present rational interpolation using
Malmquist-Takenaka systems for the unit disc and also for the upper half plane. In both cases,
we give the algorithms how the rational interpolant can be described. We study also the con-
vergence properties of the interpolants. In Section 3, we introduce new rational interpolation
operators with special nodes related to discrete biorthogonality of Malmquist-Takenaka sys-
tems and we study their properties.

2. RATIONAL INTERPOLATION USING MALMQUIST-TAKENAKA SYSTEMS

In what follows, we focus on the determination of a rational interpolant of type (N − 1, N).
According to the algorithms presented in the previous section, to write a rational interpolant
of type (N − 1, N) in general, we would need 2N nodes and the values of the function in
these nodes. In this section, we show that choosing a good basis of rational functions, the
Mamquist-Takenaka system, we can reduce the number of the data and we can avoid to solve
the system of equations associated to the interpolation problem. We will work with some
assumptions regarding the nodes and the function f . We assume that the nodes are in the unit
disc or in the upper half-plane and the function f belongs to the Hardy space of the unit disc
or the Hardy space of the upper half-plane, respectively. Using the corresponding Malmquist-
Takenaka systems, we show that it is possible to write a rational interpolant of type (N −
1, N) using only N nodes and the values of the function in these nodes. Moreover, we give
an algorithm for the determination of the rational interpolant, and we study the convergence
properties of the rational interpolant.

2.1. Rational interpolation with nodes in the unit disc related to Malmquist-Takenaka sys-
tem of the unit disc. Let D denote the open and D denote the closed unit disc, D := {z ∈ C :

|z| < 1}, D := {z ∈ C : |z| ≤ 1}, and let us denote the unit circle with T, T = {z ∈ C : |z| = 1}.
Let us denote the set of analytic functions over D with A(D), the Hardy space of the unit disc
with

H2(D) =

{
f ∈ A(D) : ‖f‖H2(D) = sup

r<1

(
1

2π

∫ π

−π
|f(reit)|2dr

)1/2

<∞

}
.

For every function f ∈ H2(D) and for a.e. t ∈ [−π, π), there exists the finite limit f(eit) :=
limr→1 f(reit). Moreover for the limit function holds that f ∈ L2(T), and ‖f‖H2(D) = ‖f‖L2(T).
The set of the limit functions of H2(D) is the Hardy space of the unit circle denoted by H2(T).
The Malmquist–Takenaka system ([13, 20]) is an orthonormal system of rational functions,
products of Blaschke factors, in the Hardy space of unit disc, which contains as special case
the classical ”trigonometric” system. In system identification, it is frequently applied in order
to approximate the transfer functions of the systems. Let us consider a sequence a = (a1, a2, . . .)
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of complex numbers, an ∈ D of the unit disc D, and denote the Blaschke functions by

ba(z) :=
z − a
1− az

(a ∈ D, z ∈ C, 1− bz 6= 0).

The Malmquist-Takenaka (MT) system Φn = Φan (n ∈ N∗) is defined by

(2.2) Φ1(z) =

√
1− |a1|2
1− a1z

, Φn(z) =

√
1− |an|2
1− anz

n−1∏
k=1

bak(z), n ≥ 2.

When all parameters are equal, i.e., an = a, n ∈ N∗, we obtain the so called discrete Laguerre
system and particularly, when an = 0, n ∈ N∗, we obtain the trigonometric system. Conse-
quently, these systems can be viewed as extensions of the trigonometric system on the unit
circle. These functions form an orthonormal system on the unit circle, i.e.,

〈Φn,Φm〉 =
1

2π

∫ 2π

0

Φn(eit)Φm(eit)dt = δmn (m,n ∈ N∗).

If the sequence a = (a1, a2, . . .) satisfies the non-Blaschke condition

(2.3)
∑
n≥1

(1− |an|) = +∞,

then the corresponding MT system is complete in the Hardy space of the unit disc. Let us
consider the orthogonal projection operator of orderN of an arbitrary function f ∈ H2(T) with
respect to the MT system:

(2.4) PNf(z) =

N∑
k=1

〈f,Φk〉Φk(z).

For a special sequence a = (a1, a2, . . .), Pap proved in [15] that the analytic continuation in
the unit disc of the projection PNf is at the same time a rational interpolation operator in the
unit disc for the analytic continuation of f in the unit disc. In this paper, we show that this
interpolation property is true in general for any sequence a = (a1, a2, . . .), with elements from
D, different from each other.

Theorem 2.1. Let us consider a sequence a = (a1, a2, . . .), with elements from D, different from each
other (ak 6= aj , k 6= j). For every f ∈ H2(T), the projection operator PNf is a rational interpolation
operator of type (N − 1, N) at the points a1, a2, . . . , aN for the analytic continuation of f in the unit
disc.

Proof. In order to prove the interpolation property of PNf , let us consider the kernel function
of this projection operator:

(2.5) KN (z, ξ) =

N∑
k=1

Φk(ξ)Φk(z).

According to the Christoffel-Darboux formula (see [12, 16, 2]), the kernel function can be writ-
ten in closed form

(2.6) KN (z, ξ) = (1− zξ)−1

1−
N∏
k=1

ξ − ak
1− akξ

N∏
k=1

z − ak
1− akz

 .
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From this relation, it follows that the values of the kernel-function at the points (am, m =
1, . . . , N) are equal to localized Cauchy kernels

K(am, ξ) =
1

1− amξ
.

From this property and the Cauchy integral formula, we get that the interpolation property
holds, i.e.,

PNf(am) = 〈f,KN (., am)〉 =
1

2π

∫ 2π

0

f(eit)

1− ame−it
dt = f(am) (m = 1, . . . , N).

�

For special choice of a = (a1, a2, . . .), ai ∈ D, i ∈ {1, . . . , N} (in Pap [15]), it has been shown
that the coefficients of the projection operator PNf can be computed exactly if we know f at
a1, a2, . . . , aN . We show that this algorithm can be extended in general, when we can measure
f at a1, a2, . . . , aN ∈ D with ai 6= aj , i 6= j, i, j,∈ {1, . . . , N}. Consequently, PNf can be written
exactly if we know the values of f(ai). We present here the steps of the algorithm.

1. Step: For k = 1, . . . , N , we write the partial fraction decomposition of Φk:

Φk(ξ) =

k∑
k′=1

ckk′
1

1− ak′ξ
.

Using the orthonormality of the functions {Φk′ , k′ = 1, . . . , k} and the Cauchy formula, we get
that

δkn = 〈Φn,Φk〉 =

k∑
k′=1

ckk′Φn(ak′), (n = 1, . . . , k).

If we order these equality’s so that we write first the relations for n = k then for n = k − 1 etc.,
this is equivalent to

1
0
0
.
.
.
0


=


Φk(ak) 0 0 0 . . . 0

Φk−1(ak) Φk−1(ak−1) 0 0 . . . 0
Φk−2(ak) Φk−2(ak−1) Φk−2(ak−2) 0 . . . 0

...
...

Φ1(ak) Φ1(ak−1) Φ1(ak−2) . . . Φ1(a1)




ckk
ckk−1

ckk−2

...
ck1

 .

2. Step: We solve the previous system of equations. Because of the elements from the main
diagonal are different from zero, this system has a unique solution

(ckk, ckk−1, ckk−2, . . . , ck1)T .

3. Step: For k = 1, . . . , N , we determine the vectors (ckk, ckk−1, ckk−2, . . . , ck1)T , then based
on Cauchy formula, we can compute the exact value of 〈f,Φk〉 knowing the values of f on the
set a1, . . . , aN . Indeed, using again the partial fraction decomposition of ψk and the Cauchy
integral formula, we get that

〈f,Φk〉 =

k∑
k′=1

ckk′

〈
f(ξ),

1

1− ak′ξ

〉

=

k∑
k′=1

ckk′f(ak′).
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FIGURE 1. The first 85 elements of the sequence a

4. Step: We write

PNf(z) =

N∑
k=1

〈f,Φk〉Φk(z),

which is in the same time a projection operator and a rational interpolation operator of type
(N − 1, N) at the points a1, a2, . . . , aN . A Matlab code was developed for the interpolation
process on the unit disc (see code). In the code, we defined the sequence a = (a1, a2, . . .) as it is
given in [15], in equations (2.4), (2.6) and (2.7), where the points of the sequence form concentric
circles. For k = 3, we get the first 85 elements of the sequence (see on Figure 1). We apply the
Steps 1–4 mentioned above to create Pnf for the function

f(z) =
1

2− z2
.

We plot the function f and the projection operator PNf at the points zi = ai. As one can see on
Figure 2, the values of the function and the projection operator are equal at these points, as it
was stated in Theorem 2.1. In general, it is a hard task to study the convergence properties of
an interpolation operator. In this case using that PNf is at the same time projection operator,
we can derive more easily convergence results. The properties of orthogonal projection PNf
on the unit circle were studied by Malmquist and Takenaka [13, 20]. If the sequence a is non-
Blaschke sequence, i.e.,

∑∞
n=0(1−|an|) =∞, then the Malmquist-Takenaka system is complete

in the Hp(T) for 0 < p < ∞ (it follows from K. Hoffman, (1962, pp. 64) [10], J. B. Garnett,
(1981, pp. 53) [9] and Z. Szabó [19, 18]), and PNf converge to f in norm on the circle and the
convergence is compactly uniform on the disc for every f ∈ H2(D).

2.2. Rational interpolation with nodes on the upper half-plane related to the Malmquist-
Takenaka systems on the upper half-plane. Let us denote the upper half-plane with C+, C+ =
{z ∈ C : =z > 0}. Let us denote the set of analytic functions over C+ with A(C+), respectively,

https://github.com/ratinterpolation2023/RationalInterpolationMalmquistTakenaka
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FIGURE 2. The interpolated function f (star) and the interpolation operator
PNf (circle) at zi = ai

and consider the Hardy space of the upper half-plane

H2(C+) =

{
f ∈ A(C+) : ‖f‖H2(C+) = sup

0<y

(∫
|f(x+ iy)|2dx

)1/2

<∞

}
.

If f ∈ H2(C+), for a.e. x ∈ R there exist the finite limit f(x) := limy→0+
f(x + iy), the limit

function of f satisfies the following conditions f ∈ L2(R) and ‖f‖L2(R) = ‖f‖H2(C+). The set
of limit functions is the Hardy space of the real line denoted by H2(R). The Hardy space of the
upper half-plane and the Hardy space of the unit disc H2(D) may be connected through the
Cayley transform. The conformal mapping from C+ to D defined by

(2.7) C(ω) =
i− ω
i+ ω

(ω ∈ C+)

is called Cayley transform and it extends continuously as a bijective mapping from the ex-
tended real line to T. With the Cayley transform, the linear transformation from H2(D) to
H2(C+) defined for f ∈ H2(D) by

(2.8) Tf(z) :=
1√
π

1

i+ z
(f ◦ C)(z)

is an isomorphism. Consequently, the theory of the real line is a close analogy with what
we have for the circle. Using the Caley transform given by (2.7) and (2.8), we can make the
transition of MT system to the upper half-plane. The system

Ψn(z) := cn(TΦn)(z) = (Tf)(z) := cn
1√
π

1

i+ z
Φn(C(z)) (=z ≥ 0, n ∈ N∗)

is the analogue of the Malmquist-Takeneka system for the upper half-plane. It is easy to check
that for a ∈ D with a∗ := 1/a,

(2.9) λa := C−1(a) = i
1− a
1 + a

∈ C+, λa∗ = λa,

√
1− |a|2
|1 + a|

=
√
=λa,
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and

(2.10) b̃a(z) = ba(−1)
z − λa
z − λa

, r̃a(z) = ra(−1)
z + i

z − λa
(z ∈ C+).

This implies that the functions Ψn = cnTΦn (n ∈ N∗), cn =

√
=λan

Φn(−1) are of the form

(2.11) Ψ1(z) =
1√
π

√
=λa1

z − λa1
, Ψn(z) =

1√
π

√
=λan

z − λan

n−1∏
k=1

z − λak
z − λak

.

The system of functions {Ψn}∞n=1 is orthonormal on the entire axis in the following sense

(2.12)
∫ +∞

−∞
Ψn(t)Ψm(t)dt = δmn.

Moreover, if the following non-Blaschke condition for the upper half-plane is satisfied
∞∑
k=1

=λak
1 + |λak |2

=∞,

then (Ψn, n ∈ N∗) is a complete orthonormal system for H2(C+). Let us consider the or-
thogonal projection operator of order N of an arbitrary function f ∈ H2(C+) with respect to
ΨN = {Ψn, n = 1, 2, · · ·, N} given by

(2.13) QNf(z) =

N∑
k=1

〈f,Ψk〉Ψk(z).

Let us consider the kernel function of this projection operator

K̃N (ω,w) =

N∑
k=1

Ψk(w)Ψk(ω).

Then the projection operator can be expressed as a scalar product:

(2.14) QNf(z) =

∞∫
−∞

f(t)K̃N (z, t)dt = 〈f(.), K̃N (., z)〉.

According to [3], the kernel function can be written in the following form:

K̃(ω,w)N =

N∑
k=1

Ψk(w)Ψk(ω) =
1− B̃N (w)B̃N (ω)

2iπ(w − ω)
, ω 6= w,

where

B̃N (ω) =

N∏
k=1

ω − λak
ω − λak

τk, τk =
|1 + λ2

ak
|

1 + λ2
ak

is the Blaschke product on the upper half-plane. Eisner and Pap [4] proved the following
interpolation property of the projection operator:

Theorem 2.2 (Eisner, Pap [4]). For any f ∈ H2(C+), the projection operator QNf is an interpolation
operator of type (N − 1, N) on the set {λak , j, k = 1, . . . , N}, λak 6= λaj , k 6= j, i.e.

QNf(λak) = f(λak) (k = 1, . . . , N).
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If condition (2.2) is satisfied, {Ψk, k = 1, . . .∞} is a complete orthonormal set in the Hilbert
space H2(C+) and we have ‖f − QNf‖H2(C+) → 0 as N → ∞. Since convergence in H2(C+)
implies uniform convergence to the analytic continuation of f on the upper half-plane on every
compact subset, we conclude that QNf → f uniformly on every compact subset of the upper
half-plane. For λa = (λa1 , λa2 , . . .), λan ∈ C+ and λan 6= λak , n 6= k, we show that the coef-
ficients of the projection operator QNf can be computed exactly if we know f in λa1 , λa2 , . . ..
Consequently, QNf can be written exactly if we know the values of f(λai). We present here the
steps of the algorithm.

1. Step: For k = 1, . . . , N , we write the partial fraction decomposition of Φk:

Ψk(ξ) =

k∑
k′=1

bkk′
1

ξ − λak′
.

Using the orthonormality of the functions {Ψk′ , k
′ = 1, . . . , k} and the Cauchy formula, we get

that

δkn = 〈Ψn,Ψk〉 =

k∑
k′=1

bkk′Ψn(λak′ ) (n = 1, . . . , k).

If we order these equality’s so that we write first the relations for n = k then for n = k − 1 etc.,
this is equivalent to

1
0
0
.
.
.
0


=


Ψk(λak) 0 0 0 . . . 0

Ψk−1(λak) Ψk−1(λak−1
) 0 0 . . . 0

Ψk−2(λak) Ψk−2(λak−1
) Ψk−2(λak−2

) 0 . . . 0
...

...
Ψ1(λak) Ψ1(λak−1

) Ψ1(λak−2
) . . . Ψ1(λa1)




bkk
bkk−1

bkk−2

...
bk1

 .

2. Step: We solve the previous system of equations. Because of the elements from the main
diagonal are different from zero, this system has a unique solution

(bkk, bkk−1, bkk−2, . . . , bk1)T .

3. Step: If we determine the vector (bkk, bkk−1, bkk−2, . . . , bk1)T , then based on Cauchy for-
mula, we can compute the exact value of 〈f,Ψk〉 knowing the values of f on the set λa1 , . . . , λan .
Indeed, using again the partial fraction decomposition of Ψk and the Cauchy integral formula
for upper half-plane, we get that

〈f,Ψk〉 =

k∑
k′=1

bkk′

〈
f(ω),

1

ω − λak′

〉

=

k∑
k′=1

bkk′f(λak′ ).

4. Step: We write

QNf(z) =

N∑
k=1

〈f,Ψk〉Ψk(z),

which is in the same time a projection operator and a rational interpolation operator of type
(N−1, N) at the points λa1 , λa2 , . . . , λan . We also developed a Matlab code for the interpolation
process on the upper half-plane (see code). In the code, we use the sequence a = (a1, a2, . . .)
as it is given in [15], in equations (2.4), (2.6) and (2.7), and we defined the λa = (λa1 , λa2 , . . .)

https://github.com/ratinterpolation2023/RationalInterpolationMalmquistTakenaka
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FIGURE 3. The first 21 elements of the sequence λa

FIGURE 4. The interpolated function f (star) and the interpolation operator
QNf (circle) at zi = λai

sequence with Cayley transformation, see in (2.9). On Figure 3, the first 21 elements of the λa
sequence can be seen. Following Steps 1–4 mentioned above, we create QNf for the function

f(z) =
1

2− z2
.

Representing the function f and the projection operator QNf at the points zi = λai , we can see
that the values are equal at these points as it was stated in Theorem 2.2 (see Figure 4).

3. RATIONAL INTERPOLATION WITH SPECIAL NODES RELATED TO DISCRETE
BIORTHOGONALITY OF MAMQUIST-TAKENAKA SYSTEMS

Discretization results connected to MT systems for unit disc and the upper half-plane were
published in [16, 17, 4, 8]. Based on these results, an analogue of discrete Fourier transform
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(DFT) was developed and the discrete versions was applied successfully for compression and
representation of human ECG signals [5, 6]. In paper [7], Fridli and Schipp introduced the dual
of the Malmquist-Takenaka system on the unit disc and proved discrete biorthogonal property
on a set of points of the unit disc. Nagy-Csiha and Pap recently introduced the dual system of
the Malmquist-Takenaka system on the upper half-plane and proved discrete biorthogonality
result on a set of discretization points on upper half-plane [14].

In this section, using the discretization points as nodes on closed disc and on closed upper
half-plane respectively, we introduce new rational interpolation operators and we study their
properties.

3.1. Rational interpolation based on the dual of the Mamquist-Takenaka system in the unit
disc and discrete biorthogonality. Let us denote by z∗ = 1/z. Let Q denote the set of rational
functions. For any f ∈ Q, the domain will be extended to C := C ∪ {∞} by f(a) = ∞ if a is a
pole of f and f(∞) := limz→∞ f(z). Let us consider the following two types of inversions:

f∗(z) := (f(z))∗, f?(z) := f(z∗) (z ∈ C, f ∈ Q).

It is obvious that for any z ∈ T, we have

z = z∗. f∗(z) = f?(z) = f(z) (f ∈ Q).

Moreover, in case of Blaschke-products BN (z) =
∏N
k=1 bak(z), the operations coincide:

B∗N (z) = B?N (z) = BN (z∗) (z ∈ C).

Let us consider the following functions:

(3.15)

Φ?1 = z

√
1− |a1|2
z − a1

= r?a1(z),

Φ?n = Φn(z∗) = z

√
1− |an|2
z − an

n−1∏
k=1

1− akz
z − ak

= r?an(z)

n−1∏
k=1

b?ak(z) (n ∈ N∗), z ∈ C \ D.

The system Φ? := ((Φn)?, n ∈ N∗) is called the dual of the MT system Φ = (Φn, n ∈ N∗). If
z ∈ T, then Φ?n = Φn, n ∈ N∗. If |u| ≤ 1, it is easy to see that the equation BN (z) = u has exactly
N solutions in the closed unit disc counting with multiplicities. In particular, if u ∈ T, then all
of the roots are of multiplicity one and they are on the unit circle. If |u| ≥ 1, then |u∗| ≤ 1. In
that case BN (z) = u if and only if B∗N (z) = u∗. But B∗N (z) = BN (z∗), which implies that the
equation BN (z) = u has N solutions outside of the open unit disc. In the following, we will
consider an u ∈ D for which the equation has N distinct roots. Let us introduce the set:

Za
N,u := {z ∈ C : BN (z) = u, (BN )′(z) 6= 0} (0 < |u| ≤ 1).

If it has N different elements, denote the elements by zk and Za
N,u = {zk, k = 1, . . . , N}. We

recall Theorem 2.1. of Fridli and Schipp in [7]. It is easy to verify (see the proof in [7]) that the
following theorem holds not just for 0 < |u| ≤ 1 as it is mentioned in [7], but for u ∈ C \ {0}.

Theorem 3.3 (Fridli, Schipp [7]). Let 0 < |u| ≤ 1 be a parameter for which the setZa
N,u has N different

elements. Then the Φn,Φ
?
n (1 ≤ n ≤ N) systems are biorthogonal with respect to the following discrete

scalar product

[Φn,Φ
?
m]a,u :=

∑
z∈Za

N,u

Φn(z)Φ?m(z)/KN (z, z∗) = δmn (1 ≤ m,n ≤ N),
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where KN (z, z∗) is the Dirichlet kernel,

KN (z, z∗) =

N∑
k=1

Φk(z)Φk(z∗) =

N∑
k=1

(1− |ak|2)z

(1− akz)(z − ak)
.

On the unit circle, the MT system is orthonormal with respect to the continuous measure,
i.e. ∫

T
Φn(z)Φm(z)dz =

1

2π

∫ 2π

0

Φn(eit)Φm(eit)dt = δmn.

From the definition of the dual system, it follows that the original system and the dual system
are equal on the unite circle T, i.e., if z ∈ T, then Φ?n = Φn, n ∈ N. As a consequence, on the
unit circle the original system and the dual system are biorthogonal with respect to the scalar
product generated by the continuous measure:∫

T
Φn(z)Φ?m(z)dz =

1

2π

∫ 2π

0

Φn(eit)Φ?m(eit)dt = δmn.

The continuous projection operators connected to the MT and dual MT system for f ∈ H2(D)
are the following:

PNf(z) =

N∑
k=1

〈f,Φ?k〉Φk(z), z ∈ D, f ∈ H2(D),

P •Nf(z) =

N∑
k=1

〈f,Φk〉Φ?k(z), z ∈ C \ D, f ∈ H2(C \ D),

where
〈f,Φk〉 =

∫
T
f(z)Φk(z)dz =

∫
T
f(z)Φ?k(z)dz = 〈f,Φ?k〉.

Taking into account, that on the circle Φk = Φ?k, the projection PNf is the same projection
which was studied in the previous section and the projections are related to each other in the
following way:

P •Nf(z) =

N∑
k=1

〈f,Φ?k〉Φ?k(z) =

N∑
k=1

〈f,Φ?k〉Φk(z∗) = PNf(z∗), z ∈ C \ D.

For z ∈ T, the two projection operator are the same: P •Nf(z) = PNf(z). Consequently, it
is enough to study the properties of PNf(z), z ∈ D. In the previous section, we proved that
PNf(z) is a rational interpolant of type (N − 1, N) of f in ak, k = 1, . . . , N . Then P •Nf(z) will
interpolate the analytic continuation of f (if this exists) outside of the disc in a∗k, k = 1, . . . , N .
In analog way, we can consider the discrete projection operator associated to the discrete scalar
product denoted by P ◦Nf , expressed as follows:

P ◦Nf(z) =

N∑
k=1

[f,Φ?k]a,uΦk(z),

where the coefficients are expressed by the discrete scalar product as follows

[f,Φ?k]a,u =
∑

zj∈Za
N,u

f(zj)Φ?k(zj)

KN (zj , z∗j )
.

The question naturally arises, weather P ◦Nf is an interpolation operator or not. In what follows,
we will study the properties of this discrete projection operator. In [19], Szabó studied the
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properties of P ◦Nf for u = 1 and z ∈ T. For this special case, he proved that this projection
operator is also an interpolation operator on the set of discretazation points

Za
N,1 := {z ∈ C : BN (z) = 1},

which are on the the unit circle. In this paper, we will extend the results obtained by Szabó for
P ◦Nf(z) when u ∈ D \ {0}, z ∈ D and the discretization point are in the closed unit disc.

Theorem 3.4. Let 0 < |u| ≤ 1 be a parameter for which the set Za
N,u has N different elements and

P ◦Nf defined as before. For every f ∈ C(D), the projection operator P ◦Nf is a Lagrange type rational
interpolation operator of type (N − 1, N) at zk ∈ Za

N,u, i.e.,

P ◦Nf(zk) = f(zk), zk ∈ Za
N,u.

Proof. Let us consider the kernel function of the discrete projection operator:

(3.16) K◦N (z, ξ) :=
N∑
k=1

Φ?k(ξ)Φk(z) =

N∑
k=1

Φk(ξ∗)Φk(z) = KN (z, ξ∗).

The discrete projection can be expressed using K◦N (z, ξ) and the discrete scalar product more
explicitly:

P ◦Nf(z) = [f(.),K◦N (z, ·)]a,u =
∑

zj∈Za
N,u

KN (z, z∗j )

KN (zj , z∗j )
f(zj).

Let us consider

`N,ξ(z) =
KN (z, ξ∗)

KN (ξ, ξ∗)
.

From the definition, it follows that `N,ξ(ξ) = 1. According to the Christoffel-Darboux formula
for z 6= ξ, the kernel function can be written in closed form

(3.17) KN (z, ξ∗) = (1− zξ∗)−1
(

1−BN (ξ∗)BN (z)
)
.

`N,ξ(z) is a rational function in z of type (N − 1, N). Because of BN (z∗) = B∗N (z) = 1/BN (z),

`N,ξ(z) =
1− Ba

N (z)
Ba

N (ξ)

KN (ξ, ξ∗)(1− zξ∗)
.

From here and the definition of `N,ξ(z), we get that for zj , zk ∈ Za
N,u, zj 6= zk we have

`N,zj (zk) = δjk, so these functions, behave like the Lagrange interpolation polynomials. Con-
sequently, P ◦Nf has the following interpolation property

P ◦Nf(zk) =
∑

zj∈Za
N,u

KN (zk, z
∗
j )

KN (zj , z∗j )
f(zj) = f(zk), zk ∈ Za

N,u.

�

We consider `N,z∗ , the dual of `N,z . For these functions, we can prove the following orthog-
onality properties.

Theorem 3.5. Let 0 < |u| ≤ 1 be a parameter for which the set Za
N,u has N different elements. For

zj , zm ∈ Za
N,u, the functions `N,z∗ , and `N,z satisfy the following biorthogonality relation

1

2π

∫ 2π

0

`N,zj (eit)`N,z∗m(eit)dt =
1

KN (zm, z∗m)
δmj .
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In addition, `N,z satisfies the following discrete orthogonality relation:

[`N,zn , `N,zm ]a,u = δnm
1

Ka
N (zn, z∗n)

.

Proof.

〈`N,zj , `N,z∗m〉 =
1

2π

∫ 2π

0

`N,zj (eit)`N,z∗m(eit)dt

=
1

2π

∫ 2π

0

KN (eit, z∗j )

KN (zj , z∗j )

(
KN (eit, zm)

KN (z∗m, zm)

)
dt

=
1

2π

1

KN (zj , z∗j )KN (zm, z∗m)

∫ 2π

0

N∑
k=1

Φk(eit)Φk(z∗j )

N∑
k′=1

Φk′(eit)Φk′(zm)dt

=
1

KN (zj , z∗j )KN (zm, z∗m)

N∑
k=1

N∑
k′=1

1

2π

∫ 2π

0

Φk(eit)Φk(z∗j )Φk′(eit)Φk′(zm)dt

=
1

KN (zj , z∗j )KN (zm, z∗m)

N∑
k=1

N∑
k′=1

Φk(z∗j )Φk′(zm)
1

2π

∫ 2π

0

Φk(eit)Φk′(eit)dt

=
1

KN (zj , z∗j )KN (zm, z∗m)

N∑
k=1

N∑
k′=1

Φk(z∗j )Φk′(zm)δkk′

=
1

KN (zj , z∗j )KN (zm, z∗m)

N∑
k=1

Φk(z∗j )Φk(zm)

=
1

KN (zj , z∗j )KN (zm, z∗m)
KN (zm, z

∗
j ).

From here if zm = zj , then 〈`N,zm , `N,z∗m〉 = 1
KN (zm,z∗m) . If zm 6= zj , then

KN (zm, z
∗
j ) =

1−BN (zm)BN (z∗j )

1− zmz∗j
=

1−BN (zm)B∗N (zj)

1− zmz∗j
=

1− uu∗

1− zmz∗j
= 0.

We get that for every u ∈ D \ {0}

1

2π

∫ 2π

0

`N,zj (eit)`N,z∗m(eit)dt =
1

KN (zm, z∗m)
δmj .

If u ∈ T, then zj ∈ T for every j = 1, . . . , N , consequently `N,zj = `N,z∗j . In this case, we
have that the system

{
`N,zj , j=1,...,N

}
is orthogonal. If specially u = 1, then we get the result

of Szabó [19]. The discrete orhtogonality of the system
{
`N,zj , j = 1, . . . , N

}
is true for every

u ∈ D \ {0}. Indeed

[`N,zn , `N,zm ]a,u =
∑

zj∈Za
N,u

`N,zn(zj)`N,zm(zj)
1

Ka
N (zj , z∗j )

=
∑

zj∈Za
N,u

δnjδmj
1

Ka
N (zj , z∗j )

= δnm
1

Ka
N (zn, z∗n)

.
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�

Beside the interpolation property, PNf and P ◦Nf reconstruct f exactly in some cases if we
measure the function in the N interpolation points. Let us denote by Pk the space of poly-
nomials of degree at most k. Let us consider the polynomials of the following form: η(z) =∏N
n=1(1− zan) and the set

RN :=

{
p

η
: p ∈ PN−1

}
.

The system
ΦaN = {Φn, n = 1, . . . , N}

forms an orthonormal basis inRN :

RN = span{Φl, l = 1, . . . , N}.

For every f ∈ RN , we have f = PNf = P ◦Nf . Indeed, if f(z) =
N∑
k=1

ckΦk(z), the continuous

biorthogonality implies that

〈f,Φ?j 〉 =

N∑
k=1

ck〈Φk,Φ?j 〉 =

N∑
k=1

ckδkj = cj ,

from which we get that f = PNf . Similarly, from discrete biorthogonality, we get

[f,Φ?j ]a,u =

N∑
k=1

ck[Φk,Φ
?
j ]a,u =

N∑
k=1

ckδkj = cj ,

which implies that f = P ◦Nf .

3.2. Rational interpolation based on the dual of the Mamquist-Takenaka system on the up-
per half-plane and discrete biorthogonality. Recently Nagy-Csiha and Pap introduced the
dual system for the Malmquist-Takenaka system on the upper half-plane. It was proved that
these systems are also discrete biorthogonal with respect to the discrete inner product over a
set of discratization points in closed upper half-plane (see [14]). In this subsection, we prove
that on the discretisation nodes belonging to the closed upper half-plane, we can construct an
interpolation operator of type (N − 1, N).

First, we introduce the notations and we present a short summary of the discrete biorthogo-
nality of Malmquist-Takenaka and it’s dual on the upper half-plane. We consider the isometric
transform of the Malmquist-Takenaka and it’s dual to the upper half-plane. With straightfor-
ward computation, it is easy to see that for

ak = K(λk) =
i− λk
i+ λk

, λk ∈ C+, k = 1, . . . ,∞

the dual system of (2.11) is equal to

Ψ̃λ
1 (z) :=

i+ z

i+ z

√
=λ1√
π

z − λ1

=
i+ z

i+ z
Ψλ

1 (z),

Ψ̃λ
n(z) =

i+ z

i+ z

√
=λn√
π

z − λn

n−1∏
k=1

z − λk
z − λk

=
i+ z

i+ z
Ψλ
n(z).
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For arbitrary values of the variables ω and w from C+ and for any N , 1 ≤ N < ∞, the kernel
function corresponding to the system (2.11) and its dual can be written also in closed form as
follows [3]:

K̃N (ω,w) =

N∑
k=1

Ψλ
k(ω)Ψ̃λ

k(w) =

(
i+ w

i+ w

) N∑
k=1

Ψλ
k(ω)Ψλ

k(w) =
w − i
w − i

1− B̃N (w)B̃N (ω)

2iπ(w − ω)
, ω 6= w,

K̃N (ω, ω) =

N∑
k=1

Ψλ
k(ω)Ψ̃λ

k(ω) =:
1

ρ̃N (ω)
=
w − i
w − i

N∑
k=1

=λk
π(ω − λk)(ω − λk)

.

For ak = K(λk) = i−λk

i+λk
, we assume that the following equation has N different solutions

denoted by zk:

(3.18)
z − a1

1− a1z

z − a2

1− a2z
. . .

z − aN
1− aNz

= u, u ∈ D \ {0}.

We present the analogue of Theorem 3.3 for the upper half-plane. Let us consider tk, where
zk = K(tk) = i−tk

i+tk
is the solution of the equation (3.18), and the following set of nodes on the

closed upper half-plane

(3.19) CN = {tk : k = 1, . . . , N}.

Let us denote by ω = K−1(z) = i 1−z
1+z , w = K−1(ξ) = i 1−ξ

1+ξ , ak = K(λk) = i−λk

i+λk
, zk = K(tk) =

i−tk
i+tk

. Then

(3.20)

(
i 1−ξ

1+ξ − λk
i 1−ξ

1+ξ − λk
|1 + λ2

k|
1 + λ2

k

)
i 1−z

1+z − λk
i 1−z

1+z − λk
|1 + λ2

k|
1 + λ2

k

=

(
ξ − ak
1− akξ

)
z − ak
1− akz

.

According to (3.20) and the property w = K−1(ξ∗), we get

B̃N (w)B̃N (ω) = BN (ξ∗)BN (z).

From this and the definition of zk, it follows that

(3.21) B̃N (tj)B̃N (ti) = BN (z∗j )BN (zi) =
u

u
= 1.

Consider the following discrete scalar product:

〈F,G〉N =
∑
t∈CN

F (t)G(t)ρ̃N (t).

Theorem 3.6 (Nagy-Csiha, Pap, [14]). The finite collection of Ψλ
n, (1 ≤ n ≤ N) and Ψ̃λ

n, (0 ≤ n ≤
N) are discrete biorthogonal systems with respect to the scalar product

〈F,G〉N =
∑
t∈CN

F (t)G(t)ρ̃N (t),

namely
〈Ψλ

m, Ψ̃
λ
n〉N = δmn (1 ≤ m,n ≤ N).

For ω ∈ R, Ψλ
n(ω) = Ψ̃λ

n(ω). If we choose in the proof of the theorem u ∈ T, then the discreti-
sation points are all real numbers, i.e., tk ∈ R, k = 1, . . . , N , and from Theorem 3.6, we reobtain
Theorem 2.2 of Eisner and Pap [4]. For the Hardy space of the upper half-plane, it is possible
to introduce similar projection operators by using the biorthogonal systems (Ψn, Ψ̃n, n ∈ N∗).
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They are also biorthogonal with respect to the continuous measure on the real line. Indeed, for
t ∈ R, we have that Ψ̃λ

k(t) = Ψλ
k(t), consequently∫ ∞

−∞
Ψλ
n(t)Ψ̃λ

m(t)dt =

∫ ∞
−∞

Ψλ
n(t)Ψλ

m(t)dt = δmn.

Similarly as in the case of unit disc, we can consider the following projection operators:

QNf(t) =

N∑
k=1

〈f, Ψ̃λ
k〉Ψλ

k(t), t ∈ C+, f ∈ H2(C+),

Q•Nf(t) =

N∑
k=1

〈f,Ψλ
k〉Ψ̃λ

k(t), t ∈ C \ C+, f ∈ H2(C \ C+),

where

(3.22) 〈f, Ψ̃λ
k〉 = 〈f,Ψλ

k〉 =

∫ ∞
−∞

f(t)Ψλ
k(t)dt.

If t ∈ R, then the two projection operators are the same, QNf(t) = Q•Nf(t), and for t ∈ C+

we have i+t
i+t

QNf(t) = Q•Nf(t). In the previous section, we saw that QNf(z) is a rational inter-
polant of type (N−1, N) of f in λk, k = 1, . . . , N . WithQ•Nf(z), we can construct interpolation
for the analytic continuation of f (if this exists) outside of the disc with nodes λk, k = 1, . . . , N .
In the case of the upper half-plane, the discrete projection operator is the following:

Q◦Nf(t) =

N∑
k=1

〈f, Ψ̃λ
k〉NΨλ

k(t),

where

〈f, Ψ̃λ
k〉N =

N∑
tj∈CN

f(tj)Ψ̃λ
k(tj)

K̃N (tj , tj)
.

The question, whether Q◦Nf is an interpolation operator or not, naturally arises. In what fol-
lows, we will study the properties of this discrete projection operator.

Theorem 3.7. Assume that CN defined by (3.19) has N different elements. For every f ∈ C(C+),
the projection operator Q◦Nf is a Lagrange type rational interpolation operator of type (N − 1, N) at
tk ∈ CN , i.e.,

Q◦Nf(tk) = f(tk), tk ∈ CN .

Proof. Let us consider the kernel function of the discrete projection operator:

(3.23) K̃◦N (z, ξ) :=
N∑
k=1

Ψ̃λ
k(ξ)Ψλ

k(z) = K̃N (z, ξ).

The discrete projection can be expressed also by the kernel function, i.e.,

Q◦Nf(t) = 〈f(.), K̃◦N (t, .)〉N =
∑
tj∈CN

K̃N (t, tj)

K̃N (tj , tj)
f(tj).

Let us consider

qN,ξ(t) =
K̃N (t, ξ)

K̃N (ξ, ξ)
.
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If t 6= ξ, then

qN,ξ(t) =
ξ − i
ξ − i

1− B̃N (ξ)B̃N (t)

K̃N (ξ, ξ)2iπ(ξ − t)
.

If u 6= 0, then for tj , tk ∈ CN , according to (3.21), we have qN,tj (tk) = δik, so these ratio-
nal functions behave like the Lagrange interpolation polynomials. Consequently, the discrete
projection operator Q◦Nf has the following interpolation property

Q◦Nf(tk) =
∑
tj∈CN

K̃N (tk, tj)

K̃N (tj , tj)
f(tj) = f(tk), tk ∈ CN .

�

We introduce qN,t, the dual of qN,t. Similarly to the disc, a biorthogonal property and a
discrete orthogonality of these functions can be proved for these functions.

Theorem 3.8. Assume that CN defined by (3.19) has N different elements. For tj , tm ∈ CN , the
functions qN,tm , and `N,tj satisfy the following biorthogonality relation

〈qN,tj , qN,tm〉 =

∫ ∞
−∞

qN,tj (t)qN,tm(t)dt =
tm − i
tm − i

1

K̃(tm, tm)
δjm.

In addition, qN,tn satisfies the following discrete orthogonality relation:

〈qN,tn , qN,tm〉N = δnm
1

K̃N (tn, tn)
.

Proof. We have

〈qN,tj , qN,tm〉 =

∫ ∞
−∞

qN,tj (t)qN,tm(t)dt =

∫ ∞
−∞

K̃N (t, tj)

K̃N (tj , tj)

K̃N (t, tm)

K̃N (tm, tm)
dt

=
1

K̃N (tj , tj)K̃N (tm, tm)

∫ ∞
−∞

K̃N (t, tj)K̃N (t, tm)dt

=
1

K̃N (tj , tj)K̃N (tm, tm)

∫ ∞
−∞

N−1∑
k=0

Ψλ
k(t)Ψ̃λ

k(tj)

N−1∑
k′=0

Ψλ
k′(t)Ψ̃

λ
k′(tm)dt

=
1

K̃N (tj , tj)K̃N (tm, tm)

N−1∑
k=0

N−1∑
k′=0

Ψ̃λ
k(tj)Ψ̃

λ
k′(tm)

∫ ∞
−∞

Ψλ
k(t)Ψλ

k′(t)dt

=
1

K̃N (tj , tj)K̃N (tm, tm)

N−1∑
k=0

N−1∑
k′=0

Ψ̃λ
k(tj)Ψ̃

λ
k′(tm)δkk′

=
1

K̃N (tj , tj)K̃N (tm, tm)

N−1∑
k=0

Ψ̃λ
k(tj)Ψ̃

λ
k(tm)

=
1

K̃N (tj , tj)K̃N (tm, tm)

i+ tm
i+ tm

N−1∑
k=0

Ψ̃λ
k(tj)Ψ

λ
k(tm)

=
1

K̃N (tj , tj)K̃N (tm, tm)

i+ tm
i+ tm

K̃N (tm, tj).
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If tm 6= tj , then if u 6= 0, according to (3.21),

K̃N (tm, tj) =
tj − i
tj − i

1− B̃N (tj)B̃N (tm)

2iπ(tj − tm)
= 0.

Since

K̃N (tm, tm) =

N−1∑
k=0

Ψλ
k(tm)Ψ̃λ

ktm)

=

N−1∑
k=0

i+ tm
i+ tm

Ψ̃λ
k(tm)

i+ tm
i+ tm

Ψλ
j (tm)

=
i+ tm
i+ tm

tm − i
tm − i

N−1∑
k=0

Ψλ
k(tm)Ψ̃λ

k(tm)

=
i+ tm
i+ tm

tm − i
tm − i

K̃(tm, tm),

then for every u ∈ D \ {0}, we get∫ ∞
−∞

qN,tj (t)qN,tm(t)dt =
tm − i
tm − i

1

K̃(tm, tm)
δjm.

When the nodes tm are all on the real line, then tm = tm, we obtain that the system {qN,tj (t), tj ∈
CN} is orthogonal, and we reobtain the result proved by Eisner, Pap in [4]

〈qN,tn , qN,tm〉N =
∑
tj∈CN

K̃N (tj , tn)

K̃N (tn, tn)

(
K̃N (tj , tm)

K̃N (tm, tm)

)
1

K̃N (tj , tj)
= δnm

1

K̃N (tn, tn)
.

�

Beside the interpolation property QNf and Q◦Nf reconstruct exactly f in some cases if we
measure the function in the N interpolation points. If f has the form f(t) =

∑N
k=1 ckΨλ

k(t),
then the continuous biorthogonality implies that

〈f, Ψ̃λ
j 〉 =

N−1∑
k=0

ck〈Ψλ
k , Ψ̃

λ
j 〉 =

N−1∑
k=0

ckδkj = cj ,

therefore we get that f = QNf . From discrete orthogonality, we get that

[f, Ψ̃λ
j ]λ,u =

N−1∑
k=0

ck[Ψλ
k , Ψ̃

λ
j ]λ,u =

N−1∑
k=0

ckδkj = cj ,

which implies, that
f = Q◦Nf.
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