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Internal combustion engines are frequently used in transportation, power 

plants, and in many other applications for industrial purposes. For this 

reason, it is very important that the maintenance is done systematically 

and that the faults are detected correctly. In this study, two different 

methods were used for the detection of the healthy internal combustion 

engine (H) and faulty internal combustion engines (single-cylinder 

misfire-F1, two-cylinder misfire-F2). In the first method, classical signal 

features were extracted from engine vibration measurements and used in 

the training of artificial neural networks (ANNs) and support vector 

machine (SVM). In the second method, convolutional neural networks 

(CNNs), a deep learning method in which features are extracted 

automatically, are used. Spectrograms of engine vibration signals were 

used to train pre-trained CNNs with different structures. Spectrograms 

were obtained by applying short-time Fourier transform (STFT) to 

vibration signals. The results of GoogleNet and ResNet-50 models 

trained with spectrograms were compared with the results obtained from 

models based on ANNs and SVM. 

Keywords: Fault detection, Internal Combustion Engines, Neural Networks, 

Deep Learning, Condition Monitoring, Vibration Signals 
 

1. Introduction 

Internal combustion engines are used in many 

vehicles such as cars, trucks, ships, 

submarines, and aircraft. They are also 

preferred in applications such as agriculture, 

transportation, and electricity generation 

facilities. For this reason, the maintenance of 

internal combustion engines and the exact 

detection of their faults are extremely critical 

issues for performance, safety, and reliability. 

The processes that take place inside the 

internal combustion engine are extremely 

complicated and hard to model analytically. 

Therefore, modern techniques of machine 

learning (supervised learning, unsupervised 

learning, reinforcement learning, and deep 

learning) are used in combustion control and 

optimization, estimation of emission values, 

and design or optimization of engine elements 

in internal combustion engines [1]. 

2. Literature Review 

In the literature, there are a limited number of 
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studies on the detection of faults such as 

knocking, misfiring, or deterioration of engine 

elements in the internal combustion engine 

with machine learning techniques. In their 

study, Jafarian et al. [2] placed four vibration 

sensors in different positions of an automobile 

engine and investigated various faults, 

including misfire and valve clearance, using 

the data obtained by the sensors under various 

operating conditions. They also classified the 

engine state using various machine learning 

techniques with the signal features obtained 

using fast Fourier transform (FFT). Li et al. [3] 

developed an intelligent diagnostic method for 

marine diesel engines using instantaneous 

angular velocity information. In their work, 

they performed the implementation and 

evaluation of a technique based on the 

combination of empirical mode 

decomposition, independent component 

analysis, and support vector machine (SVM). 

Moosavian et al. [4] developed an intelligent 

diagnostic approach based on acoustic and 

vibration signals using a combination of sensor 

fusion and classifier and used artificial neural 

networks (ANN) and SVM techniques to 

diagnose spark plug faults in an internal 

combustion engine. Saharma et al. [5] 

performed the detection of misfire faults in an 

internal combustion engine using the features 

extracted from the vibration signals and the 

decision tree algorithm.  Devasenapati et al. [6] 

used decision trees for feature selection and 

classification to identify misfire faults in a 

four-stroke four-cylinder internal combustion 

gasoline engine. Castresana et al. [7] utilized a 

multi-output ANN model to obtain a complete 

performance map of a ship’s diesel engine. 

Wang et al. [8] proposed a new diagnostic 

method through hybrid algorithm-based 

multidimensional feature extraction for the 

detection of undiagnosed engine faults that 

affect the normal operation of vehicles. Cai et 

al. [9] presented a new method for diagnosing 

diesel engines by combining back propagation 

neural networks, known as Bayesian networks, 

with a rule-based algorithm. Kowalski et al. 

[10] used the extracted features by monitoring 

various signals produced by the engine as 

inputs for a feedforward neural network-based 

classification algorithm. Karatuğ and 

Arslanoğlu [11] developed a condition-based 

maintenance system for fault diagnosis in ship 

engine systems using ANN and illustrated 

three scenarios. Flett and Bone [12] used 

machine learning methods to detect valve 

spring and valve clearance faults in diesel 

engines and compared their methods with each 

other in terms of performance. Wang et al. [13] 

diagnosed the faults of a diesel engine based on 

adaptive wavelet packets and empirical mode 

decomposition and used fractal dimension 

features for this purpose. Basurkoa and 

Uriondo [14] developed a condition-based 

maintenance strategy for medium-speed diesel 

engines used on ships. They trained a feed-

forward neural network to build the engine 

performance model and detected the engine's 

fuel consumption and fault condition. In the 

study by Küçüksarıyıldız et al. [15], specific 

fuel consumption for a 60 HP tractor was 

evaluated under different conditions of axle 

load, tire pressure, and drawbar force. The 

results were also predicted using ANN, with 

the best model demonstrating high accuracy in 

its predictions. Togun and Baysec [16] 

developed an ANN model to predict torque and 

brake specific fuel consumption of a gasoline 

engine using spark advance, throttle position, 

and engine speed. Based on experimental data, 

the model was trained and tested, showing 

satisfactory accuracy. The ANN model is also 

presented as an explicit mathematical function. 

Çay et al. [17] developed an ANN model to 

predict brake specific fuel consumption, 

effective power, average effective pressure, 

and exhaust gas temperature of a methanol 

engine. Based on experimental data from a 

four-cylinder engine, the model achieved 

regression values close to 1, RMS values 

below 0.015, and mean errors under 3.8%, 

demonstrating its effectiveness in predicting 

engine performance. Parlak et al. [18] studied 

an ANN model using a back propagation 

algorithm to predict specific fuel consumption 

and exhaust temperature of a Diesel engine at 

different injection timings. The model 

achieved a mean absolute relative error of less 

than 2% compared to experimental results, 

indicating strong consistency and making it a 

useful tool for preliminary thermal engineering 

analyses. 

Looking at the studies in the literature, it can 

be seen that vibration analysis is the prominent 
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approach in diagnosing the faults of internal 

combustion engines. In addition, studies using 

modern machine learning techniques in the 

detection of engine faults are also extremely 

limited. With the effective use of modern 

machine learning techniques, engine faults can 

be diagnosed. Therefore, in this study, two 

methods based on machine learning and 

vibration analysis are utilized for the detection 

of internal combustion engine faults. 

Accordingly, vibration signals were classified 

using two different machine-learning methods. 

In the first method, ANN and SVM models are 

trained with classical features extracted from 

their signals. In the second method, 

spectrograms were obtained from vibration 

signals and CNN models were used to detect 

engine faults. Engine vibration data shared by 

Randall in his Vibration-based Condition 

Monitoring book [19] were utilized to validate 

the two methods presented. Finally, the results 

obtained from the methods were compared in 

terms of performance. 

3. Materials and Methods 

3.1 General information 

In a diesel engine, the thermodynamic energy 

obtained by the ignition of the air-fuel mixture 

in the cylinder is converted into mechanical 

energy via the slider-crank mechanism. Fig. 1 

shows an inline 6-cylinder internal combustion 

engine with a 1-5-3-6-2-4 ignition pattern. 

 
Fig. 1 6-cylinder internal combustion engine 

Significant vibrations occur in engines due to 

factors such as oscillating and rotating parts, 

cyclical changing of gas pressure due to 

combustion, and inertia forces of moving parts. 

These vibrations usually occur as torsional 

vibration, longitudinal vibration, and mixed 

vibrations. Torsional vibrations are mainly 

caused by the cyclic gas pressure in the 

cylinder as a result of combustion and the mass 

forces of the moving parts. That is, changing 

the crankshaft rotational speed causes velocity 

fluctuations, hence torsional vibrations 

[19,20]. Therefore, torsional vibrations can 

contain information about engine malfunctions 

that affect gas pressure, such as misfires and 

valve clearance. Fig. 2 shows angular velocity 

fluctuations for a misfire in a cylinder of an 

inline 6-cylinder engine with a 1-5-3-6-2-4 

ignition pattern. There are six uniform 

fluctuations in normal operation. As shown in 

the figure, if one of the cylinders misfires, the 

speed drops significantly and must be 

gradually rebuilt by the following cylinders 

[19]. 

 
Fig. 2 The misfire in one cylinder and angular velocity 

fluctuates [19]. 

3.2 Experimental data 

In this study, vibration signals obtained from 3 

different cases of a 6-cylinder internal 

combustion engine were used [19]. Vibration 

signals were obtained from the engine block 

with an accelerometer located near the 6th 

cylinder. In the first case, the engine runs 

normally. In the second case, there is a misfire 

fault in one cylinder. In the third case, there are 

misfire faults in two cylinders. Misfire faults 

were achieved by removing the ignition cables. 

The firing order is 1–5–3–6–2–4. The 

sampling frequency for measurements in all 

cases is 24 000 Hz. Since the engine speed 

fluctuates, especially for faulty conditions, the 

signals containing the cycles are divided into 

shorter segments (32x1024). The average 

engine speed is nominally 1500 rpm. More 

detailed information can be found in the 

relevant reference [19]. 

3.3. Methodology 

In this study, we applied two different methods 

for the detection of a healthy internal 

combustion engine (H) and faulty internal 
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combustion engines (single-cylinder misfire-

F1, two-cylinder misfire-F2). In the first 

method, we extracted classical features from 

engine vibration signals and used them in 

training ANN and SVM. These features are 

mean ( M ), root mean square ( RMS ), standard 

deviation ( SD ), variance (VAR ), kurtosis ( K

), and skewness ( S ). In the second method, we 

used CNNs, a deep learning method, to detect 

engine faults. We utilized spectrograms of 

engine vibration signals to train pre-trained 

CNNs with different structures. We used the 

short-time Fourier transform (STFT) to obtain 

the spectrograms. 

3.3.1. The first method based on classical 

machine learning algorithms 

The main purpose of feature extraction is to 

determine a set of quantitative coefficients to 

describe the distinctive abilities of the 

vibration signal characteristics in order to 

diagnose internal combustion engine faults. 

The features extracted from the signals are 

shown in Table 1. 

Table 1 Features of the engine vibration signals 

Property Name Formula 

Mean ( M ) 
1

1 N

i

i

M x
N =

=   

Root mean square (

RMS ) 

2

1

1 N

i

i

RMS x
N =

=   

Standard deviation (

 , SD ) 

2

1

1
( )

N

i

i

SD x x
N


=

= = −
 

Variance (
2 ,VAR ) 

2 2

1

1
( )

N

i

i

VAR x x
N


=

= = −  

Skewness ( S ) 

3

1

3

( )

( 1)

N

i

i

x x

S
N 

=

−

=
−


 

Kurtosis (K) 

4

1

4

( )

( 1)

N

i

i

x x

K
N 

=

−

=
−


 

ANN and SVM, which are used to detect 

engine faults using features in the first method, 

are among the most well-known modern 

machine-learning algorithms. ANN was 

developed with inspiration from the human 

brain and nervous system. In the ANN 

algorithm, artificial neurons process the 

features determined as input in the hidden layer 

and produce output about the engine faults. A 

two-layer feedforward neural network is used 

for the detection of engine faults. The number 

of hidden neurons was determined as 10 and 

the network was trained with the Levenberg-

Marquardt backpropagation algorithm. SVM 

is also applied to classification and fault 

detection problems. This study, it is aimed to 

minimize the loss function while classifying 

the engine faults with SVM and to obtain the 

optimal hyperplane separating the classes in 

the best way. Since there is a lot of work in the 

literature on the mathematical details of SVM 

and ANN [21], no further information is given 

here. Input and target data for both ANN and 

SVM were randomly divided into three 

partitions. 70% of the data was used for 

training and 15% for validation. Finally, 15% 

of the data was used for a completely separate 

test. 

3.3.2. The second method based on deep 

learning 

Traditional machine learning methods rely on 

predefined features, while deep learning 

techniques, especially Convolutional Neural 

Networks (CNNs), excel at automatically 

learning complex data structures. CNNs 

effectively extract hierarchical features from 

raw data without extensive manual feature 

engineering, enhancing accuracy and reducing 

processing time. Their capability to handle 

large datasets makes them ideal for 

applications like fault detection, leading to 

more accurate and reliable results. 

Consequently, CNNs are increasingly favored 

for engine fault detection tasks over classical 

approaches. 

The second method applied in this study is 

based on the STFT, which is one of the time-

frequency analysis methods. We obtained the 

spectrograms from the motor vibration signals 

with STFT and used them to generate the 

dataset for the deep learning algorithm. 

STFT is a Fourier-based transform used to 

determine the frequency and phase of local 

parts of the signal that change over time. With 

STFT, a long-time signal is split into short 

segments and the Fourier transform is 

implemented for each short segment separately 

to obtain the spectrogram. Finally, 

spectrograms are plotted as a function of time. 

In Eq. 1, x(t) represents the time signal,   is 

the time axis, and   is the frequency [22]. 
2

, ( , ) ( , )Spektrogram x xP STFT   =            (1) 



International Journal of Automotive Engineering and Technologies, IJAET 13 (4) 191-200         195 

 

We used the spectrograms obtained with STFT 

to train pre-trained CNNs with different 

structures to detect engine faults. CNNs are a 

special subclass of ANNs, and classification 

with CNN is mostly performed on images. 

CNNs are a specially developed version of 

multilayer perceptrons. In multilayer 

perceptrons, each neuron in one layer is 

connected to all neurons in the next layer. CNN 

consists of convolutional and subsampling 

layers. Each of these layers has a specific 

topographic structure, and each layer contains 

different clusters of neurons. Each neuron is 

also linked to neurons in previous layers [22]. 

In Fig. 3, a typical CNN architecture is given. 

The input layer in the figure represents the 

spectrograms in our problem, and the output 

layer is the engine fault. The mathematical 

details of CNNs will not be given here as they 

have been extensively discussed in the 

literature [22]. 

 
Fig. 3 Typical CNN architecture 

Pre-trained CNNs are modified and applied to 

new classification problems. In this way, the 

time and effort required to train a network is 

much less than to train a network from scratch 

[23]. Detailed features of the pre-trained CNNs 

used in this study are given in Table 2. Also, 

Table 3 shows the training parameters. 

Spectrograms of vibration signals for an 

healthy internal combustion engine (H) and 

faulty internal combustion engines (single-

cylinder misfire-F1, two-cylinder misfire-F2) 

were obtained separately. The spectrograms 

obtained for each engine were divided into 

three groups as training (50%), test (25%), and 

validation (25%). CNN outputs are modified 

and changed to classify healthy and faulty 

engines. Using training and validation data, 

CNNs were trained on deep features, and faults 

were classified. Finally, the trained network 

was tested, and faults were diagnosed based on 

data labels. 

4. Results and Discussion 

4.1. Signal analysis 

The representations of vibration signals 

obtained from H, F1, and F2 engines in the 

time and frequency domain can be seen in Fig. 

4. Since the signal data is divided into 32 

segments, these representations contain 1 out 

of 32 of the measurements used in the 

calculations. Accordingly, the frequency 

amplitudes of the vibration signals of the H 

engine are lower than the faulty engines. 

However, a more detailed examination can be 

made to extract the features of the signals. 

Table 2 Features of the pre-trained CNNs 

 GoogleNet ResNet-50 

Layer depth 22 50 

Layer Number 144 177 

Connection 

Number 
170 192 

Type of Input Spectrogram Spectrogram 

Size of Input 224x224x3 224x224x3 

Type of Output Classification Classification 

Size of Output 3 3 

Weight 

learning rate 

factor 

10 10 

Bias learning 

rate factor 
10 10 

The Loss 

Function 
Cross-entropy Cross-entropy 

Table 3. Training parameters of pre-trained CNNs 

 GoogleNet  ResNet-50 

Frequency of 

Validation 
5 Hz 

Rate of Learning 0.001 

Maximum Epoch 5 

Size of Mini Batch 10 

Input Data Resolution 483 x 430 pixel  

4.2. The Results of the First Method 

Fig. 5 shows the different features of vibration 

signals of healthy and faulty internal 

combustion engines. Accordingly, looking at 

the M values, it can be seen that the F2 engine 

produces the highest features. The H engine 

produced the lowest M values. Looking at the 

RMS  values, it can be seen that the H engine 

produces the highest features. The F1 engine 

produced the lowest RMS  values. There is a 

similar trend for SD  and VAR  features. 

Looking at the S  values, it can be seen that the 

F2 engine produces the highest features. The 

F1 engine produced the lowest S  values. K  

features were close to each other for all three 

engines. 

All these features are used to create the dataset 

that is organized to detect motor failure with 

ANN and SVM. 
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Fig. 4 Time and frequency domain representations and spectrograms of internal combustion engines vibration signals 

 

Fig. 5 Different features of vibration signals of healthy and faulty internal combustion engines 
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Fig. 6 shows the training, validation, and test 

performances of the ANN model. Accordingly, 

the best validation performance is 0.043846 at 

epoch 11. Fig. 7 shows the training, validation, 

and test confusion matrices of the ANN model. 

Looking at the all confusion matrix, it can be 

seen that the overall success rate of the model 

is 97.9%. 

In this study, features extracted from the 

vibration signals of engines are also used in 

training SVM models. In order to avoid figure 

redundancy, the results of the SVM models are 

given directly. As can be seen from Table 4, all 

SVM models achieved a validation success of 

95.8%. 

4.3. The results of the second method 

The CNNs used in this study were adapted to 

the problem of engine diagnostics and trained 

with spectrograms obtained from vibration 

signals. At the end of the training, validation 

success, loss, and gradient values were 

calculated. Finally, the successes of the tested 

CNNs with the data set reserved for the test 

were compared with each other. For CNN 

models, the goal is to identify healthy and 

faulty engines. Table 5 shows the class labels 

of the engines and the number of samples 

utilized for the training, validation, and test of 

different CNN models. 

Table 4. Results of training of SVM models 

SVM Models 
Validation 

Accuracy (%) 

Linear 95.8 

Quadratic 95.8 

Cubic 95.8 

Gaussian 95.8 

Table 5. Class labels and sample numbers 

Class Label H F1 F2 

Training 

Samples 
22 22 22 

Validation 

Samples 
10 10 10 

Test Samples 10 10 10 

Fig. 8 demonstrates the accuracy rates for two 

different CNN models. Accordingly, 

GoogleNet and ResNet-50 models reached a 

100% validation rate at the end of the training 

process. Since the number of layers and 

connections of the ResNet-50 model is higher, 

the training time is longer. With all other 

conditions remaining the same, the increase in 

complexity in the CNN architecture positively 

affects the accuracy rate and increases the 

training time. 

 
Fig. 6 Training, validation, and test performances of 

the ANN model 

 
Fig. 7 Training, validation, and test confusion matrices 

of the ANN model 

 
Fig. 8 Accuracies for different CNN models 

The losses in training and validation processes 
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for different CNN models can be seen in Fig. 

9. Losses are a measure of the difference 

between the estimated output and the actual 

output. Losses decrease with the number of 

iterations. The loss values of the models 

decreased over time due to the variation in the 

validation rates during the training period. 

 
Fig. 9 Losses for different CNN approaches 

The success rates of CNN models trained and 

tested with different numbers of samples can 

be seen in Table 6. Accordingly, as the number 

of samples increases, the validation and test 

successes, and training times of the two CNN 

models increase. It can be seen from the table 

that the training time of CNNs with more 

complex architecture such as Resnet-50 will be 

longer. 

The performance of the CNN models, as 

shown in the table, indicates that both 

GoogleNet-CNN and ResNet-CNN achieve 

100% validation success with an increase in 

training samples, which is a promising result. 

However, strong correlations between input 

and output data can sometimes lead to success 

without overfitting, especially with smaller 

datasets—this raises concerns about the 

models' generalization ability. The tendency of 

the models to memorize training data may limit 

their performance on different engine types or 

fault conditions. Therefore, it is crucial to 

consider strategies that enhance robustness and 

generalizability, such as adding more data or 

employing regularization techniques, to ensure 

reliable performance across diverse scenarios 

and validate results against various datasets. 

In this context, the study contributes to the 

diagnosis of internal combustion engine faults 

by utilizing both classical machine learning 

methods (SVM and ANN) and deep learning 

techniques (CNN). It was observed that ANN 

achieved a success rate of 97%, outperforming 

SVM, while the ResNet-50 architecture also 

achieved a diagnostic performance of 100%. 

This underscores the potential of deep learning 

methods in this field. In contrast to most 

existing literature, such as Jafarian et al. [2] 

and Moosavian et al. [4], which primarily 

focus on classical machine learning 

approaches, this study suggests that integrating 

both classical and modern methods may 

enhance fault detection capabilities. 

5. Conclusions 

In this study, classical machine learning 

methods and CNNs were used for the diagnosis 

of internal combustion engines with different 

faults. While SVM and ANN are applied for 

fault diagnosis, classical features obtained 

from vibration signals are used for training 

purposes. Spectrograms were preferred when 

applying CNN models. The results obtained 

from the ANN and SVM models were 

compared. Accordingly, ANN performed 

better than SVM (97%). Two CNN models 

with different architectures showed similar 

diagnostic performance (100%). However, 

higher test success was achieved with the more 

complex Resnet-50. This model, which has a 

more complex architecture, has a longer 

training duration. As a result, it is seen that 

classical machine learning and deep learning 

algorithms can effectively classify the misfire 

faults of internal combustion engines. 

Table 6 Sample number effect on CNN performance 

CNNs 

Number of 

Training 

Samples 

Validation 

Success 

(%)  

Test 

Success 

(%) 

Training 

Duration 

(s) 

GoogleNet-CNN 11 85 80 40 

GoogleNet-CNN 22 100 95 81 

GoogleNet-CNN 44 100 100 160 

ResNet-50-CNN 11 90 90 90 

ResNet-50-CNN 22 100 100 180 

ResNet-50-CNN 44 100 100 160 
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