
CONSTRUCTIVE MATHEMATICAL ANALYSIS
6 (2023), No. 2, pp. 128-141
http://dergipark.org.tr/en/pub/cma

ISSN 2651 - 2939

Research Article

Beyond Descartes’ rule of signs
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ABSTRACT. We consider real univariate polynomials with all roots real. Such a polynomial with c sign changes and
p sign preservations in the sequence of its coefficients has c positive and p negative roots counted with multiplicity.
Suppose that all moduli of roots are distinct; we consider them as ordered on the positive half-axis. We ask the question:
If the positions of the sign changes are known, what can the positions of the moduli of negative roots be? We prove
several new results which show how far from trivial the answer to this question is.
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1. INTRODUCTION

In the present paper, we study a problem related to a generalization of Descartes’ rule of
signs formulated in [5]. About this rule see [1], [2], [3], [4], [7], [9], [10], [16] or [17]. For its
tropical analog see [6]. A related problem concerning polynomials in one variable is considered
in [15]. A degree d real polynomial Q :=

∑d
j=0 ajx

j is hyperbolic if all its roots are real. Suppose
that all coefficients aj are non-zero. For such a polynomial, Descartes’ rule of signs implies that
it has c positive and p negative roots (counted with multiplicity, so c + p = d), where c is the
number of sign changes and p the number of sign preservations in the sequence of coefficients
of Q. The signs of these coefficients define the sign pattern (sgn(ad), sgn(ad−1), . . ., sgn(a0)). We
deal mainly with monic polynomials in which case sign patterns begin with a +. In this case,
we can use instead of and equivalently to a sign pattern the corresponding change-preservation
pattern which is a d-vector and (by some abuse of notation) whose jth component equals c if
ad−j+1ad−j < 0 and p if ad−j+1ad−j > 0. One can consider also the moduli of the roots of
a hyperbolic polynomial defining a given sign pattern. We study the generic case when all
moduli are distinct. A natural question to ask is:

Question 1.1. When these moduli are ordered on the real positive half-axis, at which positions can the
moduli of the negative roots be?

Descartes’ rule of signs provides no hint for the answer to this question. In the present
paper, we recall known and we introduce new results in this direction which show how far
from trivial the situation is.

Notation 1.1. (1) We denote by 0 < α1 < · · · < αc the positive and by 0 < γ1 < · · · < γp the
moduli of the negative roots of a hyperbolic polynomial. We explain the notation of the order of
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these moduli on the positive half-axis by an example. Suppose that d = 6, c = 2, p = 4 and

α1 < γ1 < γ2 < α2 < γ3 < γ4 .

Then for the order of moduli we write PNNPNN , i. e. the letters P and N denote the relative
positions of the moduli of the positive and negative roots.

(2) A sign pattern beginning with i1 signs + followed by i2 signs − followed by i3 signs + etc. is
denoted by Σi1,i2,i3,....

In what follows, we consider for each given degree d couples of the form (change-preservation
pattern, order of moduli) (called couples for short). Such a couple is compatible with Descartes’
rule of signs if the number of components c (resp. p) of the change-preservation pattern is equal
to the number of components P (resp. N ) of the order of moduli. A couple is called realizable
if there exists a polynomial defining the change-preservation pattern of the couple and whose
moduli of roots define the given order.

Remark 1.1. For fixed d and c, there are
(
d
c

)
change-preservation patterns and

(
d
c

)
orders of moduli

hence
(
d
c

)2
compatible couples. Thus for a given degree d, the total number of compatible couples is

(1.1) χ(d) :=

d∑
c=0

(
d

c

)2

=

d∑
c=0

(
d

c

)(
d

d− c

)
=

(
2d

d

)
.

This is the coefficient of xd in the polynomial (x + 1)d(x + 1)d = (x + 1)2d. Using Stirling’s formula
n! ∼

√
2πn(n/e)n, one concludes that χ(d) ∼ 22d/

√
πd.

Example 1.1. (1) For d = 1, the only compatible couples are (c, P ) and (p, N). They are realiz-
able respectively by the polynomials x− 1 and x+ 1.

(2) For d = 2, there are
(
4
2

)
= 6 compatible couples. Out of these, the couples (cp, PN) and

(pc, NP ) are not realizable. Indeed, for a hyperbolic polynomial x2−ux−v (resp. x2+ux−v),
u > 0, v > 0, one has the order of moduli NP (resp. PN ). The remaining 4 couples are
realizable. To see this one can consider the family of polynomials x2 + a1x + a0. In the plane
of the variables (a1, a0) the domain of hyperbolic polynomials is the one below the parabola
P : a0 = a21/4. We list the realizable couples and the open domains in which they are realizable:

(cc, PP ) {a1 < 0, 0 < a0 < a21/4} , (pp, NN) {a1 > 0, 0 < a0 < a21/4} ,

(cp, NP ) {a1 < 0, a0 < 0} , (pc, PN) {a1 > 0, a0 < 0} .

We can make Question 1.1 more precise:

Question 1.2. For a given degree d, which compatible couples are realizable?

The above example answers this question for d = 1 and 2. For d = 3, 4 and 5, the exhaustive
answer is given in Section 3.

Remark 1.2. There exist two commuting involutions acting on the set of degree d polynomials with
non-vanishing coefficients. These are

im : Q(x) 7→ (−1)dQ(−x) and ir : Q(x) 7→ xdQ(1/x)/Q(0) .

The role of the factors (−1)d and 1/Q(0) is to preserve the set of monic polynomials. When acting on a
couple, the involution im changes the components c to p, P to N and vice versa while the involution ir
reads the vectors of a given couple from the right. A given couple is realizable or not simultaneously with
all other couples from its orbit under the action of im and ir. An orbit consists of four or two couples.
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Notation 1.2. For a sign pattern σ, we denote by k∗(σ) the number of orders of moduli with which σ
is realizable. For an order of moduli Ω, we denote by l∗(Ω) the number of sign patterns realizable with
Ω. For a given d, we denote by r̃∗(d) the ratio between the numbers of realizable and of all compatible
couples.

Example 1.2. (1) For the sign pattern Σ3,3,1 one has k∗(Σ3,3,1) = 6. Indeed, consider the polyno-
mial

(x− 1)(x+ 1)4(x− b)
=x6 + (3− b)x5 + (2− 3b)x4 + (−2b− 2)x3 + (2b− 3)x2 + (3b− 1)x+ b .

For b > 0 sufficiently small, it defines the sign pattern Σ3,3,1. One can perturb its 4-fold root
at −1 to obtain polynomials with the same sign pattern and with exactly k moduli of negative
roots which are > 1 and 4 − k moduli which are < 1, where k = 0, 1, . . ., 4; these moduli are
close to 1. On the other hand, the only other realizable order with this sign pattern is

γ1 < α1 < α2 < γ2 < γ3 < γ4 , i. e. NPPNNN ,

see [11, Theorems 3 and 4], which makes a total of 6 orders of moduli realizable with Σ3,3,1.
(2) For m ≥ 1, n ≥ 1, one has k∗(Σm,n) = 2 min(m,n) − 1, see [11, Theorem 1 and Corol-

lary 1].

Our first result is the following theorem:

Theorem 1.1. (1) For d ≥ 1, the only orders realizable with all compatible change-preservation
patterns are PP . . . P and NN . . .N . The corresponding change-preservation patterns are
cc . . . c and pp . . . p.

(2) For any d ≥ 1, there exist sign patterns realizable with all compatible orders. For d ≥ 5, there
exist sign patterns with c = 2 which are realizable with all

(
d
2

)
compatible orders.

(3) There exists no sign pattern σ such that k∗(σ) = 2.
(4) The only sign patterns σ with k∗(σ) = 3 are the ones of the form Σ2,d−1, ir(Σ2,d−1), im(Σ2,d−1)

and irim(Σ2,d−1).
(5) For any ` ∈ N∗, there exist a degree d and an order Ω such that l∗(Ω) = `.

The theorem is proved in Section 4. In Section 2, we recall some notions and known re-
sults and we continue the formulation of the new ones. In particular, for each of the 6 classes
of non-realizable couples introduced in Section 2, we compare the number of couples which
it contains with the number of all compatible couples, see (1.1). In all 6 cases, the limit of
their ratio as d → ∞ is 0 (see part (2) of Remarks 2.3, part (2) of Remarks 2.4, Remark 2.5,
Remark 2.6, Remark 2.7 and part (4) of Theorem 2.3). On the other hand, when considering
the cases d = 3, 4 and 5 in Section 3, we arrive to the conclusion that it is plausible to have
limd→∞ r̃∗(d) = 0 (see Notation 1.2). This however cannot be explained by the presence of
the 6 classes of non-realizable couples, so for the moment it is not evident what the exhaustive
answer to Question 1.2 should be.

We finish this section by a result of geometric nature. Consider the space of coefficients
Oad−1 · · · a0 ∼= Rd. The hyperbolicity domain is the set of values of (ad−1, . . . , a0) for which the
corresponding monic polynomialQ is hyperbolic. The resultantR := Res(Q(x), (−1)dQ(−x), x)
vanishes exactly whenQ has two opposite roots or a root at 0. When the coefficients aj are real,
the polynomials Q(x) and Q(−x) have a root in common either when Q(0) = 0 or when Q has
two opposite real non-zero roots or when Q has a pair of purely imaginary roots.

Example 1.3. For d = 1, 2 and 3, one obtains R = −2a0, R = 4a0a
2
1 and R = −8a0(a2a1 − a0)2,

respectively.
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We denote by [.] the integer part and we set

Q1 := x[d/2] + ad−2x
[d/2]−1 + ad−4x

[d/2]−2 + · · · ,

Q2 := ad−1x
[(d−1)/2] + ad−3x

[(d−1)/2]−1 + ad−5x
[(d−1)/2]−2 + · · · and

R0 := Res(Q1(x), Q2(x), x)) .

Theorem 1.2. (1) One has R = (−1)[d/2]+12d−[(d+1)/2]+1a0R
2
0.

(2) The quantity R0 is an irreducible polynomial in the variables aj .

The theorem is proved in Section 5. Properties of the set {R0 = 0} and its pictures for d ≤ 4
can be found in [8].

2. CANONICAL SIGN PATTERNS, RIGID ORDERS OF MODULI AND FURTHER RESULTS

Definition 2.1. For a given change-preservation pattern, the corresponding canonical order is obtained
by reading the pattern from the right and by replacing each component c (resp. p) by P (resp. by N ).
E. g., the canonical order corresponding to the pattern ccpcp is NPNPP . This definition allows to
define the canonical order corresponding to each given sign pattern beginning with +.

Each sign or change-preservation pattern is realizable with its canonical order, see [12, Propo-
sition 1].

Definition 2.2. (1) A sign pattern (or equivalently a change-preservation pattern) realizable only
with its corresponding canonical order is called canonical.

(2) If all monic hyperbolic polynomials having a given order of moduli define one and the same sign
pattern, then the order is called rigid.

Remark 2.3. (1) It is shown in [13] that canonical are exactly these sign patterns which have no
four consecutive signs equal to

(+,+,−,−, ) , (−,−,+,+) , (+,−,−,+) or (−,+,+,−) .

Hence canonical are these change-preservation patterns having no isolated sign changes and no
isolated sign preservations, i. e. having no three consecutive components cpc or pcp.

(2) In the proof of Proposition 10 in [13], the set of all canonical change-preservation patterns is
represented as union of four subsets, namely of patterns beginning with a single p or c, patterns
ending by a single p or c, patterns both beginning and ending by a single p or c and patterns
whose two first letters are equal and whose last two letters are also equal. For d ≥ 100, the
number of patterns in each of these sets can be majorized by 2 · [d/2] · 2d−[0.26d]−1. Hence the
number of all canonical sign-preservation patterns is ≤ τ(d) := 8 · [d/2] · 2d−[0.26d]−1 and for
large d, the number of all non-realizable couples with canonical sign-preservation patterns is

≤ τ(d)

d∑
c=0

(
d

c

)
= 8 · [d/2] · 22d−[0.26d]−1 < 22d/

√
πd ∼ χ(d) ,

see Remark 1.1; we majorize one of the factors
(
d
c

)
in (1.1) by τ(d).

Remark 2.4. (1) It is proved in [14] that rigid are the orders of moduli PP . . . P ,NN . . .N (defin-
ing the change-preservation patterns cc . . . c and pp . . . p, the two corresponding couples are
realizable by any polynomials having distinct positive or distinct negative roots) and also

(2.2) PN := PNPNPN . . . , NP := NPNPNP . . . .
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Each of the latter two orders (we call them standard) defines, depending on the parity of d, one
of the sign patterns

(2.3) σ+ := (+,+,−,−,+,+,−,−, . . .) or σ− := (+,−,−,+,+,−,−,+,+, . . .) .
(2) For each fixed degree d, there are

(
d

[d/2]

)
compatible couples with the order PN and

(
d

[d/2]

)
with the order NP , see (2.2). Hence there are 2

(
d

[d/2]

)
− 2 compatible couples in which the

order of moduli is rigid (more exactly standard) and which are not realizable, and one has
limd→∞(2

(
d

[d/2]

)
− 2)/χ(d) = 0, see (1.1) and use Stirling’s formula.

Definition 2.3. We call superposition of two standard orders of moduli Ω1 and Ω2 any order obtained
as follows. One inserts the components of Ω2 at any places between the components of Ω1 or in front of
the first or after the last component of Ω1 by preserving their relative order. Example: the order

PN̄NPP̄NN̄P̄ N̄ is superposition of PNPN and NPNPN

(we overline in this superposition the moduli coming from Ω2; in this example there is more than one
way to attribute the moduli of roots in the superposition as coming from Ω1 or Ω2; the superposition of
two standard orders is not uniquely defined).

The following proposition explains how one can obtain new examples of non-realizable cou-
ples on the basis of standard orders.

Proposition 2.1. Each superposition of two standard orders is realizable only with sign patterns of the
form

(+,+, ?,−, ?,+, ?,−, . . .) , (+, ?,−, ?,+, ?,−, . . .) or (+,−, ?,+, ?,−, ?,+, . . .)
which are the “products” of sign patterns σ+σ+, σ+σ− and σ−σ−.

Proof. Indeed, suppose that in the superposition of standard orders, the roots coming from
the order Ωi are roots of a polynomial Ti, i = 1, 2. Then in the product T1T2 every second
coefficient, the leading coefficient and the constant term are sums of products of a coefficient of
T1 and a coefficient of T2 either all with opposite or all with same signs, so the corresponding
components of the “products” of sign patterns are well-defined. �

Remark 2.5. The number of letters N in a standard order is equal to the number of letters P or differs
from the latter by 1. Hence in the superposition of two standard orders the modulus of this difference is
majorized by 2. Besides, not more than [d/2] of the signs of coefficients are not determined by the order
of moduli, so the number of non-realizable couples corresponding to superpositions of standard orders is
less than

2

((
d

[d/2]

)
+

(
d

[d/2]− 1

)
+

(
d

[d/2]− 2

))
· 2[d/2] < 6

(
d

[d/2]

)
· 2(d+1)/2

which is ∼ 12 · 23d/2/
√
πd (we use Stirling’s formula here). At the same time χ(d) ∼ 22d/

√
πd (see

Remark 1.1).

There exist other situations in which the order of moduli defines the signs of part of the
coefficients of the polynomial.

Example 2.4. Consider for d = 8k + 2, k ∈ N∗, and for c = 2 the order of moduli

Ω : γ1 < · · · < γ4k < α1 < α2 < γ4k+1 < · · · < γ8k .

It is realizable only with sign patterns having two sign changes. Denote by U1 and U2 monic hyperbolic
degree 4k + 1 polynomials with roots

−γ1 , −γ2 , . . . , −γ2k , −γ4k+1 , −γ4k+2 , . . . , −γ6k , α1
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and

−γ2k+1 , −γ2k+2 , . . . , −γ4k , −γ6k+1 , −γ6k+2 , . . . , −γ8k , α2

respectively. Hence they define sign patterns of the form Σmi,ni
, i = 1, 2. According to [11, Theo-

rem 1], if ni < mi, then the polynomial Ui has ≤ 2ni − 2 moduli of negative roots which are ≤ αi; if
ni > mi, then it has ≤ 2mi − 2 moduli of negative roots which are ≥ αi. Hence one has ni ≥ k + 1
and mi ≥ k + 1. This implies that the first k + 1 and the last k + 1 coefficients of the product U1U2 are
positive, i. e. the order of moduli Ω is not realizable with sign patterns Σj1,j2,j3 which do not satisfy the
conditions j1 ≥ k + 1 and j3 ≥ k + 1.

Remark 2.6. There are
(
d
2

)2
compatible couples with c = 2 hence less than

(
d
2

)2
non-realizable couples

concerned by Example 2.4. Using the involution im (see Remark 1.2), one can give as many such
examples with c = d− 2. One has limd→∞

(
d
2

)2
/χ(d) = 0, see (1.1).

The proposition and theorem that follow describe other situations in which certain compat-
ible couples are not realizable.

Proposition 2.2. Suppose that d is even, that the leading monomial and the constant term are positive
(hence c is even), that all coefficients of odd powers are negative and that c < d. Then there is no modulus
of a negative root in any of the intervals (0, α1), (α2, α3), . . ., (αc−2, αc−1), (αc,∞).

Proof. Indeed, for a monic hyperbolic polynomial Q satisfying these conditions one has Q(t) >
0, if t belongs to any of the mentioned intervals. As all odd monomials are with negative
coefficients, one has also Q(−t) > Q(t) from which the proposition follows. �

Remark 2.7. For d even, the number of sign patterns as defined in Proposition 2.2 is≤ 2d/2 (half
of the signs of coefficients are fixed), so if d is large, then the number of such non-realizable
couples is

≤ 2d/2
d∑

c=0

(
d

c

)
= 23d/2 < χ(d) ∼ 22d/

√
πd ,

see Remark 1.1.

Theorem 2.3. (1) Suppose that

(2.4) c ≤ p and αc < γp, αc−1 < γp−1 , . . . , α1 < γp−c+1 .

Then ad−1 > 0. Hence a couple with ad−1 < 0 and order satisfying conditions (2.4) is not
realizable.

(2) For fixed d, the number of orders of moduli satisfying conditions (2.4) is

(2.5) T c
d :=

(
d

c

)
− C0

(
d− 1

c− 1

)
− C1

(
d− 3

c− 2

)
− C2

(
d− 5

c− 3

)
− C3

(
d− 7

c− 4

)
− · · · ,

where Ck :=
(
2k
k

)
/(k + 1) is the k−th Catalan number.

(3) One has

(2.6) T c
d =

(
d

c

)(
1− c

d− c+ 1

)
=

(
d

c

)
d− 2c+ 1

d− c+ 1
.

(4) For the number ν(d) of non-realizable couples satisfying condition (2.4) and with ad−1 < 0 one
has limd→∞ ν(d)/χ(d) = 0, see (1.1).
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Remark 2.8. The quantity T c
d

(
d−1
c

)
(resp.

(
d
c

)(
d−1
c

)
) is the number of couples in which the change-

preservation pattern begins with p and the order satisfies condition (2.4) (resp. of all compatible couples
in which the change-preservation pattern begins with p). For c fixed, one has limd→∞ T c

d/
(
d
c

)
= 1.

Indeed, this is the ratio of two degree c polynomials in d whose leading coefficients equal 1/c!.

Proof of Theorem 2.3. Part (1). Indeed, ad−1 = γ1 + · · ·+ γp − α1 − · · · − αc > 0.
Part (2). The first term in the right-hand side of (2.5) is the number of all orders with c

components equal to P . The second term is the number of orders beginning with P ; they do
not satisfy conditions (2.4). The third (resp. the fourth) term is the number of orders beginning
withNPP (resp. withNPNPP orNNPPP ). The fifth term is the number of orders beginning
with NPNPNPP , NNPPNPP , NPNNPPP , NNPNPPP or NNNPPPP etc.

That is, for k ≥ 2, the kth term is the number of orders among whose first 2k − 1 compo-
nents there are k letters P and which are not included in one of the previous terms (excluding
the initial

(
d
c

)
). In an equivalent way, the kth term contains orders among whose 2k − 2 first

components there are exactly k− 1 letters P and for s ≤ 2k− 2, among their s first letters there
are not less letters N than letters P . Hence this is the number of lattice paths in the plane with
possible steps (1, 1) and (1,−1) going from (0, 0) to (2k− 2, 0) which do not descend below the
abscissa-axis. The number of such paths is Ck−1.

Part (3). Formula (2.6) can be proved by induction on d. For d = 1 and 2 and for c ≤ d, it is
to be checked directly. Suppose that it is true for d ≤ d0. Then for d = d0 + 1, one applies to
any binomial coefficient in the formula the well-known equality

(
n
k

)
=
(
n−1
k−1
)

+
(
n−1
k

)
. Thus

T c
d = T c

d−1 + T c−1
d−1 =

(
d−1
c

) (
1− c

d−c

)
+
(
d−1
c−1
) (

1− c−1
d−c+1

)
=

(
d
c

) (
1− c

d−c+1

)
,

where the rightmost equality is to be checked straightforwardly.
Part (4). Suppose that d = 2k, k ∈ N∗. Set

hk,m :=
k(k − 1) · · · (k −m+ 1)

(k + 1)(k + 2) · · · (k +m)
, so

(
2k

k −m

)
=

(
2k

k

)
hk,m .

For k fixed, the sequence hk,m is decreasing in m; one has hk,0 = 1. The sum
∑d

c=0

(
d
c

)2
of all

compatible couples equals b̃ :=
(
2k
k

)2
(1 + 2

∑k
m=1 h

2
k,m). The number ν(d) = ν(2k) is bounded

by

k∑
c=0

(
2k

c

)
T c
2k =

k∑
m=0

(
2k

k −m

)
T k−m
2k =

(
2k

k

)2 k∑
m=0

2m+ 1

k +m+ 1
h2k,m

(we remind that the orders satisfying condition (2.4) are defined under the assumption that
c ≤ p). Fix s ∈ (0, 1). Then

g1 :=

[sk]∑
m=0

2m+ 1

k +m+ 1
h2k,m ≤

2[sk] + 1

k + [sk] + 1

[sk]∑
m=0

h2k,m .

It is clear that g1 <
2[sk]+1
k+[sk]+1

∑k
m=0 h

2
k,m, so

(2.7)
(

2k

k

)2

g1 <
2[sk] + 1

k + [sk] + 1
b̃ .
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For large values of k and for m ≥ [sk] + 1, the quantity hk,m is majorized by

(k − [sk/2]) · · · (k −m+ 1)

(k + [sk/2] + 1) · · · (k +m)
≤
(

k − [sk/2]

k + [sk/2] + 1

)[sk]−[sk/2](
k − [sk] + 1

k + [sk]

)m−[sk]−1

.

Set u := k−[sk/2]
k+[sk/2]+1 and v := k−[sk]+1

k+[sk] . Hence

g2 :=
∑k

m=[sk]+1 h
2
k,m < u[sk]−[sk/2]

∑∞
m=[sk]+1 v

m−[sk]−1

= u[sk]−[sk/2]

1−v = u[sk]−[sk/2] k+[sk]
2[sk]+1 .

The latter quantity tends to 0 as k →∞, therefore

lim
k→∞

(
2k

k

)2

g2/b̃ = 0.

As

g3 :=

k∑
m=[sk]+1

2m+ 1

k +m+ 1
h2k,m < g2,

one obtains

(2.8) lim
k→∞

(
2k

k

)2

g3/b̃ = 0 .

One has ν(d) ≤
(
2k
k

)2
(g1+g3). The coefficient of b̃ in (2.7) can be made smaller than any positive

number by choosing s small enough. Therefore inequality (2.7) and equality (2.8) imply part
(4) of Theorem 2.3 for d even.

If d = 2k + 1, k ∈ N∗, then one can prove part (4) in much the same way, so we point out
only some technical differences. One sets

hk,m :=
k(k − 1) · · · (k −m+ 1)

(k + 2)(k + 3) · · · (k +m+ 1)
, so

(
2k + 1

k −m

)
=

(
2k + 1

k

)
hk,m ,

and b̃ = 2
(
2k+1

k

)2
(1 +

∑k
m=1 h

2
k,m). The definitions of the quantities g1, g2 and g3 are the same,

but with respect to the new formula for hk,m. One sets u := k−[sk/2]
k+[sk/2]+2 and v := k−[sk]+1

k+[sk]+1 .
Inequality (2.7) and equality (2.8) remain the same. �

3. REALIZABLE COUPLES FOR d = 3, 4 AND 5

We give the exhaustive answer to Question 1.2 for d = 3, 4 and 5; for d = 1 and 2, this answer
is given by Example 1.1; one finds that r̃∗(1) = 1 and r̃∗(2) = 2/3, see Notation 1.2. It is clear
from part (1) of Theorem 1.1 that r̃∗(1) < 1 for d > 1. We make use of the involution im, see
Remark 1.2, to consider only the cases with ad−1 > 0. For d = 3, we give the list of sign patterns



136 Vladimir Petrov Kostov

and (non)-realizable orders in the following table:

sign pattern realizable orders non− realizable orders

(+,+,+,−) PNN NPN , NNP

(+,+,−,−) PNN , NPN , NNP

(+,+,+,+) NNN

(+,+,−,+) PPN NPP , PNP .

Thus r̃∗(3) = 3/5. The (non)-realizability of these cases can be justified using the results in [11].
For d = 4, we list the sign patterns by the value of c:

c sign pattern realizable orders non− realizable orders

0 (+,+,+,+,+) NNNN

1 (+,+,+,+,−) PNNN NPNN, NNPN, NNNP

(+,+,+,−,−) PNNN, NPNN, NNPN NNNP

(+,+,−,−,−) NPNN, NNPN, NNNP PNNN

2 (+,+,−,+,+) NPPN NNPP, NPNP, PNNP
PNPN , PPNN

(+,+,−,−,+) PNPN, NPPN, NPNP, NNPP
PPNN, PNNP

(+,+,+,−,+) PPNN PNPN, NPPN, NPNP
PNNP, NNPP

3 (+,+,−,+,−) PPPN NPPP, PNPP, PPNP

Hence r̃∗(4) = 3/7. The (non)-realizability of the cases can be proved using the results in [11].
The involution im transforms the sign pattern with c = 3 into (+,−,−,−,−). We illustrate the
realizability of the cases with the sign pattern (+,+,−,−,+) by examples:

PNPN (x+ 1.3)(x− 1.2)(x+ 1.1)(x− 1) =
x4 + 0.2x3 − 2.65x2 − 0.266x+ 1.716

NPPN (x+ 2)(x− 1)(x− 0.9)(x+ 0.8) =
x4 + 0.9x3 − 2.82x2 − 0.52x+ 1.44

PPNN (x+ 2)(x+ 1.1)(x− 1)(x− 0.1) =
x4 + 2x3 − 1.11x2 − 2.11x+ 0.22

PNNP (x− 2)(x+ 1.9)(x+ 1)(x− 0.8) =
x4 + 0.1x3 − 4.62x2 − 0.68x+ 3.04 .
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For d = 5, we show for each sign pattern only the number of realizable and the total number
of orders compatible with the sign pattern and in some cases the realizable orders. To justify
the tables below, one can use the results in [11] and [13]. There are the following canonical sign
patterns:

c = 0 (+,+,+,+,+,+) 1/1 c = 1 (+,+,+,+,+,−) 1/5

c = 2 (+,+,−,+,+,+) 1/10 c = 3 (+,+,−,+,−,−) 1/10
(+,+,+,−,+,+) 1/10 (+,+,+,−,+,−) 1/10
(+,+,+,+,−,+) 1/10

c = 4 (+,+,−,+,−,+) 1/5.

The remaining sign patterns are:

c = 1 (+,+,+,+,−,−) PNNNN , 3/5
NPNNN , NNPNN

(+,+,+,−,−,−) 5/5
(+,+,−,−,−,−) NNPNN , 3/5

NNNPN , NNNNP

c = 2 (+,+,−,−,−,+) PPNNN , 5/10
PNPNN , PNNPN ,
PNNNP , NPPNN

(+,+,+,−,−,+) PPNNN , PNPNN , 4/10
PNNPN , NPPNN

(+,+,−,−,+,+) 10/10

c = 3 (+,+,−,+,+,−) 5/10
(+,+,−,−,+,−) 4/10.

Therefore r̃∗(5) = 47/126. The two latter sign patterns (with c = 3) are obtained from two of
the sign patterns with c = 2 via the involution imir.

The realizability of the sign pattern (+,+,−,−,+,+) with all possible orders results from

(x+ 1)3(x− 1)2 = x5 + x4 − 2x3 − 2x2 + x+ 1 .

Indeed, by perturbing the triple root at −1 and the double root at 1, one obtains polynomials
with the same sign pattern and with any order of the moduli of the roots, see the proof of part
(2) of Theorem 1.1.

Remark 3.9. We obtained the following sequence for the values of the quantity r̃∗(d): 1, 2/3, 3/5, 3/7,
47/126, . . .. One could conjecture that the sequence is decreasing. For the sequence of the ratios of two
consecutive terms, one gets

2/3 = 0.66 . . . , 9/10 = 0.9 , 5/7 = 0.71 . . . , 47/54 = 0.87 . . . .

It seems that the even and the odd terms form two adjacent sequences and that limd→∞ r̃∗(d) = 0+.

4. PROOF OF THEOREM 1.1

Part (1). As already mentioned, for the orders PP . . . P and NN . . .N , the only change-
preservation patterns compatible with them are cc . . . c and pp . . . p respectively and the corre-
sponding couples are realizable.
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Suppose that for given c > 0 and p > 0, the order of moduli Ω is realizable with all compat-
ible change-preservation patterns. Then, in particular, it is realizable with the sign patterns σ′

and σ′′, where σ′ has all its c sign changes at the beginning followed by its p sign preservations
and vice-versa for σ′′. However, the sign patterns σ′ and σ′′ are canonical hence realizable only
with their respective canonical orders Ω′ and Ω′′, see Definition 2.2. As Ω′ 6= Ω′′, the order Ω is
not realizable with both σ′ and σ′′.

Part (2). For d ≥ 1, the all-pluses sign pattern is realizable with its only compatible order
N . . .N . To prove the rest of part (2) for d ≥ 5, we construct sign patterns with c = 2 which are
realizable with all compatible orders. Consider the polynomial

(x+ 1)d−2(x− 1)2 =
(∑d−2

k=0

(
d−2
k

)
xk
)

(x2 − 2x+ 1)

=
∑d

k=0 hkx
k , hk :=

(
d−2
k

)
− 2
(
d−2
k−1
)

+
(
d−2
k−2
)
.

It has two sign changes (so its sign pattern is of the form Σi1,i2,i3 ). To understand in which
positions they are, one observes that

hk =
(d− 2)!

k!(d− k)!
(4k2 − 4dk + d(d− 1)) ,

so hk = 0 if and only if k = k± := (d±
√
d)/2. If d is not an exact square, then the sign changes

occur between the powers xs± and xs±+1, where s± < k± < s±+1. If d is an exact square, then
the coefficients of xk± are 0.

Suppose that d is not an exact square. One can perturb the roots of the polynomial by keep-
ing the sign pattern the same. If d is an exact square, then one can perturb them so that all
coefficients become non-zero. One can choose such a perturbation for any possible order of
the moduli of roots which proves part (2). One can observe that as k+ − k− =

√
d, for d ≥ 5,

there are at least two consecutive negative coefficients (i. e. i2 ≥ 2) and the sign pattern is not
canonical.

We prove part (3) of the theorem by induction on d. For d = 1, 2 and 3, the claim is to
be checked straightforwardly, see Example 1.1 and Section 3. Suppose that d ≥ 4 and that
σ is not canonical. Represent σ in the form (σd, σ

†, σ0), where σd and σ0 are its first and last
components. Then at least one of the sign patterns (σd, σ

†) and (σ†, σ0) contains an isolated
sign change or an isolated sign preservation. Suppose that this is (σd, σ

†). Then (σd, σ
†) is not

canonical and hence is realizable by at least three orders by polynomials Pj . This means that σ
is also realizable by at least three orders defined by the roots of the polynomials Pj(x)(x ± ε),
where ε > 0 is small enough and the sign is + (resp. −) if the last two components of σ are
equal (resp. are different).

Part (4) is also proved by induction on d. For d ≤ 4, it is to be checked directly. Suppose that
d ≥ 5. If neither of the sign patterns (σd, σ

†) and (σ†, σ0) contains an isolated sign change or
sign preservation, then this is the case of σ as well, so σ is canonical and k∗(σ) = 1 – a contra-
diction. Hence at least one of these sign patterns is not canonical. Without loss of generality, we
suppose that this is (σd, σ

†) (otherwise we apply the involution ir). Hence k∗((σd, σ†)) ≥ 3, so
k∗((σd, σ

†)) = 3, otherwise similarly to the proof of part (3) we obtain that k∗(σ) > 3. Applying
if necessary the involution im, we assume that (σd, σ

†) = Σ2,d−2 or Σd−2,2. In the first case,
one has σ = Σ2,d−1. Indeed, if σ = Σ2,d−2,1, then k∗(σ) > 3, see [11, Theorems 3 and 4]. In
the second case, either σ = Σd−2,3 and k∗(σ) = 5 (see [11, Theorem 1]) or σ = Σd−2,2,1 and
k∗(σ) = 4 (see [11, Theorems 3 and 4]).

Part (5). For d even, the order Ω := PNN . . .N is realizable exactly with the sign patterns
Σm,n, m+ n = d+ 1, n < m, see [11, Theorem 1], so `∗(Ω) = d/2.
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5. PROOF OF THEOREM 1.2

Proof of part (1). A) For a vector-row v of length 2d, we denote by v` the vector-row obtained
from v by shifting v by ` positions to the right (the rightmost ` positions are then lost and
the leftmost ` positions are filled with zeros). We represent R as determinant of the Sylvester
2d × 2d-matrix of the polynomials Q(x) and (−1)dQ(−x) whose first and (d + 1)st row equal
respectively

u := ( 1 ad−1 ad−2 ad−3 ad−4 . . . a1 a0 0 . . . 0 )

and

w := ( 1 −ad−1 ad−2 −ad−3 ad−4 . . . (−1)d−1a1 (−1)da0 0 . . . 0 ) ;

its second and (d+ 2)nd rows equal u1 and w1, its third and (d+ 3)rd rows equal u2 and w2 etc.
For d = 2 and d = 3, we obtain the determinants

∣∣∣∣∣∣∣∣
1 a1 a0 0
0 1 a1 a0
1 −a1 a0 0
0 1 −a1 a0

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣∣∣∣∣

1 a2 a1 a0 0 0
0 1 a2 a1 a0 0
0 0 1 a2 a1 a0
1 −a2 a1 −a0 0 0
0 1 −a2 a1 −a0 0
0 0 1 −a2 a1 −a0

∣∣∣∣∣∣∣∣∣∣∣∣
.

B) For j = 1, . . ., d, we add the (j + d)th row to the jth row. Hence the first row of the
determinant is now

g := ( 2 0 2ad−2 0 2ad−4 . . . 2ad−2[d/2] 0 0 . . . 0 )

and the next d−1 rows equal gj , j = 1, . . ., d−1. After this one subtracts the kth row multiplied
by 1/2 from the (d+ k)th one, k = 1, . . ., d. Hence, the (d+ 1)st row equals

h := ( 0 −ad−1 0 −ad−3 0 . . . −ad−2[(d+1)/2]+1 0 0 . . . 0 )

and the next d− 1 rows are of the form hj , j = 1, . . ., d− 1. For d = 2 and d = 3, this gives

∣∣∣∣∣∣∣∣
2 0 2a0 0
0 2 0 a0
0 −a1 0 0
0 0 −a1 0

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣∣∣∣∣

2 0 2a1 0 0 0
0 2 0 2a1 0 0
0 0 2 0 2a1 0
0 −a2 0 −a0 0 0
0 0 −a2 0 −a0 0
0 0 0 −a2 0 −a0

∣∣∣∣∣∣∣∣∣∣∣∣
.

C) We permute the rows of the determinant (which does not change the determinant up to
a sign). In the first d − [d/2] positions we place the first, third, fifth etc. rows, in the next [d/2]
positions the (d + 2)nd, (d + 4)th, (d + 6)th etc. rows, in the next [d/2] positions the second,
fourth, sixth etc. rows and in the last d − [d/2] positions the (d + 1)st, (d + 3)rd, (d + 5)th etc.
rows. After this permutation the first d rows have non-zero entries only in the odd and the last
d rows have non-zero entries only in the even columns.

Then we permute the columns of the determinant placing the odd columns in the first d
positions and the even columns in the last d positions by preserving the relative order of the
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even and odd columns. For d = 2 and d = 3, the result is

∣∣∣∣∣∣∣∣
2 2a0 0 0
0 −a1 0 0
0 0 2 2a0
0 0 −a1 0

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣∣∣∣∣

2 2a1 0 0 0 0
0 2 2a1 0 0 0
0 −a2 −a0 0 0 0
0 0 0 2 2a1 0
0 0 0 −a2 −a0 0
0 0 0 0 −a2 −a0

∣∣∣∣∣∣∣∣∣∣∣∣
.

For any d ≥ 2, the determinant is now block-diagonal, with two diagonal blocks d × d. For
d = 4, these blocks are∣∣∣∣∣∣∣∣

2 2a2 2a0 0
0 2 2a2 2a0
0 −a3 −a1 0
0 0 −a3 −a1

∣∣∣∣∣∣∣∣ and

∣∣∣∣∣∣∣∣
2 2a2 2a0 0
0 2 2a2 2a0

−a3 −a1 0 0
0 −a3 −a1 0

∣∣∣∣∣∣∣∣ .
The first and the (d+ 1)st rows equal respectively

g̃ := ( 2 2ad−2 2ad−4 . . . 2ad−2[d/2] 0 0 . . . 0 )

and g̃d. The first d− [d/2] rows equal g̃, g̃1, g̃2, . . ., g̃d−[d/2]−1 while the rows with indices d+ 1,
d+ 2, . . ., d+ [d/2] are g̃d, g̃d+1, . . ., g̃d+[d/2]−1. The (d− [d/2] + 1)st row equals

h̃ := ( 0 −ad−1 −ad−3 −ad−5 . . . −ad−2[(d+1)/2]+1 0 0 . . . 0 ) .

The next [d/2]− 1 rows are h̃j , j = 1, . . ., [d/2]− 1. The last d− [d/2] rows equal h̃k, k = d− 1,
. . ., 2d− [d/2]− 2.

The total number of transpositions of rows and columns is even, so the sign of the determi-
nant does not change.

D) One develops the determinant thus obtained w.r.t. its first and then w.r.t. its last column.
For d even (resp. for d odd), this yields −4a0∆ (resp. −2a0∆), where the (2d − 2) × (2d − 2)-
determinant ∆ is block-diagonal, with two diagonal blocks (d − 1) × (d − 1) each of which is
the Sylvester matrix of the polynomials 2Q1 and −Q2. This implies part (1) of the theorem. �

Proof of part (2). One can assign quasi-homogeneous weights to the variables aj as follows: 0
to ad−1, 1 to ad−2 and ad−3, 2 to ad−4 and ad−5, 3 to ad−6 and ad−7 etc., in accordance with the
fact that ad−2, ad−4, . . . and ad−3/ad−1, ad−5/ad−1, . . . are up to a sign elementary symmetric
polynomials of the roots ofQ1 andQ2. HenceR0 is a quasi-homogeneous polynomial of weight
d0 := [(d − 1)/2][d/2]. For d even (resp. for d odd), it contains monomials αa[(d−1)/2]0 a

[d/2]
d−1 and

βa
[d/2]
1 , α 6= 0 6= β (resp. γa[(d−1)/2]1 a

[d/2]
d−1 and δa[d/2]0 , γ 6= 0 6= δ), all other monomials containing

factors ak0 and as1 only with k < [(d−1)/2] and s < [d/2] (resp. with k < [d/2] and s < [(d−1)/2]).
Hence R0 cannot be the product of two quasi-homogeneous polynomials of weights b1 and b2,
0 < b1, b2 < d0. �
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