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Abstract. Let R be a commutative ring and M be an R-module. A submod-

ule N of M is called a d-submodule (resp., an fd-submodule) if AnnR(m) ⊆
AnnR(m′) (resp., AnnR(F ) ⊆ AnnR(m′)) for some m ∈ N (resp., finite subset

F ⊆ N) and m′ ∈M implies that m′ ∈ N. Many examples, characterizations,

and properties of these submodules are given. Moreover, we use them to char-

acterize modules satisfying Property T, reduced modules, and von Neumann

regular modules.
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1. Introduction

Throughout this paper, all rings are assumed to be commutative with nonzero

identity and all modules are nonzero unitary. Let R be a ring and M be an R-

module. If N is a submodule of M and K is a nonempty subset of M , then the

ideal {x ∈ R | xK ⊆ N} of R is denoted by (N :R K) and the annihilator of N is

the ideal AnnR(N) := (0 :R N). For any ideal I of R and any submodule N of M ,

the submodule {m ∈M | Im ⊆ N} is denoted by (N :M I) and the annihilator of I

in M is the submodule AnnM (I) := (0 :M I). An R-module M is said to be faithful

if AnnR(M) is the zero ideal of R. A proper submodule N of M is said to be a

maximal submodule if it is not properly contained in any other proper submodule

of M . A proper submodule N of M is a prime submodule if for any x ∈ R and

m ∈ M , xm ∈ N implies either m ∈ N or x ∈ (N :R M). For any submodule

N of M , the (prime) radical of N in M , denoted by radM (N), is defined to be

the intersection of all prime submodules of M containing N . If there is no prime

submodule containing N , we define radM (N) = M . A submodule N of M is called

radical if N = radM (N). We shall need the notion of the envelope of a submodule
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introduced by McCasland and Moore in [20]. For a submodule N of M , the envelope

of N in M , denoted by EM (N), is defined to be the collection EM (N) := {rm |
r ∈ R and m ∈ M such that rkm ∈ N for some positive integer k}. Note that, in

general, EM (N) is not an R-module. We use 〈EM (N)〉 to denote the submodule of

M generated by EM (N). Obviously (N :R M)M ⊆ N ⊆ EM (N) ⊆ radM (N) for

every submodule N of M , where the equalities do not hold in general. A submodule

N of M satisfies the radical formula in M if 〈EM (N)〉 = radM (N). Moreover, we

say that an R-module M satisfies the radical formula if every submodule of M

satisfies the radical formula in M (for details, see [15], [18], [20], [22] and [24]). We

say that an R-module M is a multiplication module [4] if every submodule of M

has the form IM for some ideal I of R, i.e., N = (N :R M)M. It is well known that

maximal submodules and prime submodules exist in multiplication modules (for

details, see [7]). Recall from [1], an R-module M satisfies Property T (resp., strong

Property T ) if for every finitely generated submodule N (resp., finite subset F ) of

M with N ⊆ TR(M) (resp., F ⊆ TR(M)), AnnR(N) 6= 0 (resp., AnnR(F ) 6= 0),

where TR(M) := {m ∈ M | rm = 0 for some nonzero r ∈ R}. According to [17],

an R-module M is called reduced if for any m ∈ M and x ∈ R, xm = 0 implies

Rm ∩ xM = 0. An R-module M is called von Neumann regular [12] if for each

m ∈ M , there exists an element r ∈ R such that rM = r2M and Rm = rM .

It is well known that a finitely generated R-module M is von Neumann regular

if and only if for any m ∈ M , there exists a weak idempotent e ∈ R of M (i.e.,

e− e2 ∈ AnnR(M)) such that Rm = eM (see [12, Lemma 5]).

The notion of d-ideals in a commutative ring was introduced by Speed [25] who

called them Baer ideals. These ideals were also put to good use in 1972 by Evans

[8] when characterizing commutative rings that are finite direct sums of integral

domains. In [11], Jayaram introduced fd-ideals (as strongly Baer ideals) and 0-

ideals in reduced rings and characterize quasi regular and von Neumann regular

rings. In [16], Khabazian, Vedadi and Safaeeyan extended the concept of d-ideals

to the category of modules and investigated the modules for which their submodules

are d-submodules (see [17, Theorem 2.1]). In [23], Safaeeyan and Taherifar studied

d-ideals and fd-ideals in general rings, and not just the reduced ones. In [2], the

authors studied rings in which every ideal contained in the set of zero-divisors is

a d-ideal. The authors of [13] recently extended the concepts of d-ideals and 0-

ideals to submodules and they called them Baer submodules and ∗-submodules,

respectively. They used them to characterize quasi regular modules and weak quasi

regular modules.
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Our objective in this study is to investigate the concepts of d-submodules, fd-

submodules, and 0-submodules of a module over a commutative ring. In Section

2, we establish some examples of these submodules (see Example 2.2). Also we

characterize modules which have an element with zero annihilator and satisfies the

Property T (see Proposition 2.9). This result can be applied to produce examples

of modules in which all maximal submodules are fd-submodules. We use these

concepts to characterize reduced modules (see Proposition 2.14). Moreover, we

observe that in any faithful reduced p.p. R-module, the sum of two d-submodules

is a d-submodule (see Theorem 2.16), where an R-module M is called p.p. if for

any m ∈M , AnnR(m) = Re for some idempotent e ∈ R [17]. We also characterize

finitely generated von Neumann regular modules in terms of d-submodules (see

Theorem 2.25).

2. Main results

Let M be an R-module and let S be a multiplicative subset of R, i.e., S satisfies:

1 ∈ S and if s1, s2 ∈ S, then s1s2 ∈ S. If N is a submodule of M , we set

NS(M) := {x ∈ M | sx ∈ N for some s ∈ S}. Then NS(M) is a submodule of

M containing N , which is called the component of N determined by S, or simply

the S-component of N . In particular, the S-component of the zero submodule 0

is ker(φ), where φ : M → S−1M , the localization of M by S, is a canonical map.

Note that NS(M) = M if (N :R M) ∩ S 6= ∅. We shall begin with the following

definitions:

Definition 2.1. Let M be an R-module and N be a submodule of M .

(1) N is said to be a d-submodule (or Baer submodule) 1 if AnnR(m) ⊆ AnnR(m′)

for some m ∈ N and m′ ∈M implies that m′ ∈ N .

(2) N is called an fd-submodule (or a strongly Baer submodule) if AnnR(F ) ⊆
AnnR(m′) for some finite subset F of N and m′ ∈M implies that m′ ∈ N.

(3) N is said to be a 0-submodule if N = 0S(M) for some multiplicative subset

S of R.

It can be easily seen that for a submodule N of an R-module M ,

N is a 0-submodule⇒ N is an fd-submodule⇒ N is a d-submodule.

Example 2.2. Let M be an R-module.

1As Ebrahim Ghashghaei kindly informed the authors, in [9, Definition 1] and [3, Definition 2.3],

d-submodules are also referred to as perpetual submodules.



34 ADAM ANEBRI, HWANKOO KIM AND NAJIB MAHDOU

(a) An ideal I of R is a d-ideal (resp., an fd-ideal or a 0-ideal) if and only if I is

a d-submodule (resp., an fd-submodule or a 0-submodule) of the R-module

R.

(b) IfN is a d-submodule (resp., an fd-submodule) ofM , then (N :M I) is also a

d-submodule (resp., an fd-submodule) for every ideal I of R. In particular,

AnnM (I) = (0 :M I) is an fd-submodule. Also, if S is a multiplicative

subset of R, then AnnM (S) = {0} is trivially a 0-submodule.

(c) Any intersection of d-submodules (resp., fd-submodules) is a d-submodule

(resp., an fd-submodule).

(d) Every submodule N of M contains a 0-submodule. In fact, put S :=

1 + (N :R M). Clearly 0S(M) is a 0-submodule contained in N.

(e) Let N be a d-submodule (resp., an fd-submodule) of M and S be any

multiplicative subset of R such that (N :R M) ∩ S = ∅. Then NS(M), the

S-component of N , is a d-submodule (resp., an fd-submodule).

Let M be an R-module and N be a submodule of M . In [14, Lemma 3.9], it was

shown that the following statements are equivalent:

(1) N is a d-submodule;

(2) AnnM (AnnR(n)) ⊆ N for each n ∈ N ;

(3) N =
⋃

n∈N AnnM (AnnR(n)).

Let M be an R-module. By the trace of a submodule N in M , we mean

Tr(N,M) := {
∑

Im (f) | f ∈ HomR(N,M)}.

Proposition 2.3. Let M be an R-module and N be a submodule of M . If N is a

d-submodule of M , then Tr(N,M) = N .

Proof. Suppose that N is a d-submodule of M . One can see that N ⊆ Tr(N,M).

Now, if f ∈ HomR(N,M), then AnnR(m) ⊆ AnnR(f(m)) for each m ∈ N . It

follows that Im (f) ⊆ N . Thus Tr(N,M) = N . �

The converse of Proposition 2.3 is not true in general. In order to provide a

counterexample, we need some terminology. Let R be an integral domain with

quotient field K. Let F(R) be the set of nonzero fractional ideals of R. For an

I ∈ F(R), define I−1 = {x ∈ K | xI ⊆ R}. The v-operation on R is a mapping on

F(R) defined by I 7→ Iv = (I−1)−1. Recall that an ideal J of R is called a Glaz-

Vasconcelos ideal (GV-ideal) if J is finitely generated and J−1 = R. We denote the

set of GV-ideals by GV(R). The w-operation on R is a mapping on F(R) defined

by I 7→ Iw = {x ∈ K | Jx ⊆ I for some J ∈ GV(R)}. An I ∈ F(R) is said to be a
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v-ideal (resp., w-ideal) if Iv = I (resp., Iw = I). An integral domain R is called a

DW-domain if every ideal of R is a w-ideal.

Example 2.4. Let R be an integral domain which is not DW (for a concrete

example, see [10, Proposition 5.2]). Take a proper GV-ideal J of R. Since R is a

w-ideal, it follows from [26, Theorem 6.1.14] that Ext1R(R/J,R) = {0}. Thus by

[19, Example 3.9 (1)], Tr(J,R) = J . Now take m′ ∈ Jv \J since J ( Jv = R. Then

AnnR(m) = AnnR(m′) = {0} for any 0 6= m ∈ J , but m′ 6∈ J . Therefore, J is not

a d-ideal of R.

Let M be an R-module. We say that an ideal I of R is a dM -ideal if for each

x, y ∈ R, AnnM (x) ⊆ AnnM (y) and x ∈ I implies that y ∈ I. Also, an ideal I of

R is said to be an fdM -ideal if AnnM (S) ⊆ AnnM (y) for some finite subset S of I

and y ∈ R implies that y ∈ I.

Proposition 2.5. Let M be an R-module and N be a submodule of M . Then:

(1) If N is a d-submodule (resp., an fd-submodule) of M , then (N :R K) is a

dM -ideal (resp., an fdM -ideal) for every nonempty subset K of M .

(2) Assume that M is a cyclic R-module. Then N is a d-submodule (resp., an

fd-submodule) if and only if (N :R M) is a dM -ideal (resp., an fdM -ideal).

(3) Suppose that M has an element with zero annihilator. If N is a 0-submodule

of M , then (N :R M) is a 0-ideal of R.

Proof. (1) Assume that N is a d-submodule and let K be a nonempty subset of

M . Let x ∈ (N :R K) and y ∈ R such that AnnM (x) ⊆ AnnM (y). Then for

each m ∈ K, AnnR(xm) ⊆ AnnR(ym), and so y ∈ (N :R K) since N is a d-

submodule. Similarly, we can prove that (N :R K) is an fdM -ideal whenever N is

an fd-submodule.

(2) Assume that M is generated by m and let N be a submodule of M such that

(N :R M) is a d-ideal of R. Let xm ∈ N and ym ∈ M such that AnnR(xm) ⊆
AnnR(ym). Then AnnM (x) ⊆ AnnM (y). It follows that y ∈ (N :R M) and so

ym ∈ N.
(3) This follows from [13, Lemma 2.5]. �

Remark 2.6. (1) The assertion in Proposition 2.5 (2) fails if one deletes the hy-

pothesis that M is cyclic. For example, consider the Z-module M = Z × Z. Let

N = R(4, 0). Then it is clear that (N :R M) = 0 and it is an fdM -ideal of Z since

M is faithful. However, N is not a d-submodule (and so it is not an fd-submodule).
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(2) It is interesting that the final assertion in the statement of Proposition 2.5

would fail if TR(M) = M. Indeed, let R = Z, M = Z/4Z and N = 〈0̄〉. Clearly N

is a 0-submodule, but (N :R M) = 4Z is not a 0-ideal.

(3) Let N be a d-submodule (resp., an fd-submodule) of an R-module M . In

general, (N :R M) need not be a d-ideal (resp., an fd-ideal). For example, let (R,m)

be a quasi-local domain, but not a field, and let M be a nonzero R-module such

that mM = 0. Then the zero submodule of M is an fd-submodule but (0 :R M) = m

is not a d-ideal, because R is a domain.

Proposition 2.7. Let M be a multiplication R-module. Then the following state-

ments hold:

(1) Let N be a submodule and P be a prime submodule of M such that N ∩ P
is a d-submodule (resp., an fd-submodule). Then either N or P is a d-

submodule (resp., an fd-submodule).

(2) Let P and Q be prime submodules of M which do not belong to a chain.

Then P and Q are both d-submodules (resp., fd-submodules) if and only if

P ∩Q is a d-submodule (resp., an fd-submodule).

Proof. (1) If N ⊆ P , then N = N ∩ P is a d-submodule. Now assume that

N 6⊆ P and let m ∈ P and m′ ∈ M such that AnnR(m) ⊆ AnnR(m′). As M is a

multiplication module, we have N = IM for some ideal I of R. This implies that

there exists x ∈ I\(P :R M). Therefore AnnR(xm) ⊆ AnnR(xm′) and xm ∈ N∩P .

By hypothesis, we get xm′ ∈ P and hence m′ ∈ P. Similarly, we can show that N

or P is an fd-submodule whenever N ∩ P is an fd-submodule.

(2) We need only prove the converse. Assume that P 6⊆ Q. Then (P :R M) 6⊆
(Q :R M) since M is a multiplication module. Let m ∈ Q and m′ ∈ M such

that AnnR(m) ⊆ AnnR(m′). It follows that AnnR(xm) ⊆ AnnR(xm′) where x ∈
(P :R M) \ (Q :R M). Since P ∩ Q is a d-submodule and xm ∈ P ∩ Q, we have

xm′ ∈ P ∩Q ⊆ Q and hence either x ∈ (Q :R M) or m′ ∈ Q. But x /∈ (Q :R M),

and thus m′ ∈ Q. Consequently, Q is a d-submodule and so is P via a similar

argument. Similarly, we can prove that P and Q are fd-submodules whenever

P ∩Q is an fd-submodule. �

Lemma 2.8. Let M be an R-module. For every submodule N of M , define

Nfd := {m ∈M | AnnR(F ) ⊆ AnnR(m) for some finite subset F of N}.

Then either Nfd = M or Nfd is the smallest fd-submodule containing N.
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Proof. Let m,m′ ∈ Nfd. Then there exist F1, F2 ⊆ N such that AnnR(F1) ⊆
AnnR(m) and AnnR(F2) ⊆ AnnR(m′). It is obvious that AnnR(F1 ∪ F2) ⊆
AnnR(m + m′), and so m + m′ ∈ Nfd. Clearly rm ∈ Nfd for every r ∈ R and

m ∈ Nfd. Hence, Nfd is a submodule of M. Now, suppose that F = {m1, . . . ,mk}
is a finite subset of Nfd and m ∈ M such that AnnR(F ) ⊆ AnnR(m). By

definition, for each i = 1, . . . , k, there exists a finite subset Fi of N such that

AnnR(Fi) ⊆ AnnR(mi). Thus AnnR(
⋃k

i=1 Fi) ⊆ AnnR(F ) ⊆ AnnR(m), and so

m ∈ Nfd. Therefore Nfd is an fd-submodule of M . Finally it is clear that if Nfd is

a proper submodule, then it is the smallest fd-submodule containing N . �

The following proposition provides a necessary and sufficient condition for an

R-module which has an element with zero annihilator to satisfy the Property T.

Proposition 2.9. Let M be an R-module which has an element with zero anni-

hilator. Then M satisfies Property T if and only if N is contained in a proper

fd-submodule for every submodule N ⊆ TR(M).

Proof. Assume that M satisfies Property T. Let N be a submodule of M such that

N ⊆ TR(M). Then AnnR(S) 6= 0 for every finite subset S of N , which implies that

Nfd is a proper fd-submodule.

Conversely, let N be a finitely generated submodule of M such that N ⊆
TR(M) and let K be a proper fd-submodule containing N . Using the fact that

AnnM (AnnR(N)) ⊆ K, we conclude that AnnR(N) 6= 0. �

Corollary 2.10. Let M be an R-module which has an element with zero annihila-

tor. Then M satisfies strong Property T if and only if TR(M) is an fd-submodule.

Remark 2.11. It is well known from [1, Theorem 3.1] that an R-module M satisfies

strong Property T if and only if M satisfies Property T and TR(M) is a submodule.

Then Corollary 2.10 allows us to construct new original examples of d-submodules

that are not fd-submodules. In fact, let M be an R-module that does not satisfy

Property T with TR(M) is a proper submodule ofM . Then TR(M) is a d-submodule

that is not an fd-submodule.

We next give an example of a torsion module that does not satisfy strong Prop-

erty T, which implies the condition “M has an element with zero annihilator” in

Corollary 2.10 is necessary.

Example 2.12. [1, Example 3.2]. Let R := Z2[X,Y ]/(X,Y )2 = Z2[x, y] and

M := F/K, where F is the free R-module on {e1, e2} and K := 〈xe1, ye2, ye1+xe2〉.
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So M = F/K = Re1 +Re2 = {0, e1, (1 + y)e1, e2, (1 + x)e2, ye1 = xe2, e1 + e2, (1 +

x)(e1 + e2)} is a torsion R-module. Then TR(M) = M is an fd-submodule but M

does not satisfy strong Property T.

We say that an R-module M satisfies the condition (∗) if M \TR(M) = {m ∈M |
Rm = M}. Note that if M satisfies the condition (∗), then every proper submodule

of M is contained in TR(M).

Theorem 2.13. Let M be a multiplication R-module which has an element with

zero annihilator. Then M satisfies Property T and the condition (∗) if and only if

every maximal submodule of M is an fd-submodule.

Proof. Suppose first that M satisfies Property T and the condition (∗) and let P

be a maximal submodule of M . The fact that P is a proper submodule implies

that P ⊆ TR(M). Thus Proposition 2.9 ensures that Pfd is a proper fd-submodule

which contains P and hence P = Pfd.

Conversely, assume that every maximal submodule of M is an fd-submodule.

Note from [7, Theorem 2.5] that every proper submodule is contained in a max-

imal submodule, and so every submodule in TR(M) is contained in a proper fd-

submodule. Then M satisfies Property T by Proposition 2.9. Next, we will prove

that M satisfies the condition (∗). If Rm = M for some m ∈M , then AnnR(m) = 0

since M is faithful. Now, let m ∈M such that AnnR(m) = 0. If Rm is a proper sub-

module of M , then there exists a maximal submodule P of M containing Rm. By

hypothesis, P is an fd-submodule and so AnnM (AnnR(m)) ⊆ P , whence P = M ,

a contradiction. �

Let R be a ring and M be an R-module. We denote by ZR(M) = {x ∈ R | xm =

0 for some nonzero element m ∈ M}, the set of zero divisors of R on M and by

TR(M) = {m ∈ M | xm = 0 for some nonzero x ∈ R}, the set of torsion elements

of M with respect to R. Also QM (R) := S−1M R denotes the total quotient ring of

R with respect to M , where SM := R \ ZR(M) and QR(M) := S−1M M denotes the

total quotient module of M .

Recall from [17] that an R-module M is reduced if and only if for any x ∈ R
and m ∈ M , x2m = 0 implies that xm = 0. The following proposition gives a new

characterization of reduced modules in terms of d-submodules.

Proposition 2.14. Let M be an R-module. Then the following statements are

equivalent.

(1) M is a reduced module.
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(2) QR(M) is a reduced QM (R)-module.

(3) 〈EM (N)〉 = N for every d-submodule N of M .

(4) 〈EM (N)〉 = N for every fd-submodule N of M .

Proof. (1)⇔ (2) This is obvious.

(1) ⇒ (3) Assume that M is a reduced module and let N be a d-submodule of

M . It is obvious that N ⊆ 〈EM (N)〉. For the reverse inclusion let m ∈ 〈EM (N)〉.
Then m = x1m1 + · · · + xkmk for some positive integer k and elements xi ∈ R,

mi ∈ M with xni mi ∈ N for some positive integer n. As M is reduced, we have

AnnR(xni mi) = AnnR(ximi) for each i ∈ {1, . . . , k}. This implies that ximi ∈ N ,

and so m ∈ N .

(3)⇒ (4) This is trivial.

(4)⇒ (1) Suppose that 〈EM (N)〉 = N for every fd-submodule N of M . To show

that M is a reduced module, we must prove that if x ∈ R and m ∈ M such that

x2m = 0, then xm = 0. But this follows from the fact that the zero submodule of

M is an fd-submodule, and so 〈EM (0)〉 = 0 by the hypothesis. �

As an immediate consequence of Proposition 2.14, we give the following corollary.

Corollary 2.15. Let M be an R-module which satisfies the radical formula. Then

the following statements are equivalent.

(1) M is a reduced module.

(2) Every d-submodule of M is radical.

(3) Every fd-submodule of M is radical.

The following theorem gives a class of modules in which the sum of two d-

submodules is a d-submodule.

Theorem 2.16. Let M be a faithful reduced p.p. R-module. Then the sum of two

d-submodules is a d-submodule.

We need the following lemmas in order to prove Theorem 2.16.

Lemma 2.17. Let M be a reduced R-module. Then,

AnnR(AnnM (xy)) = AnnR(AnnM (x)) ∩AnnR(AnnM (y))

for each x, y ∈ R.

Proof. It can be easily shown the inclusion “⊆”. For the reverse, let

r ∈ AnnR(AnnM (x)) ∩AnnR(AnnM (y)) and m ∈ AnnM (xy).
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Then ym ∈ AnnM (x) and so rym = 0. Similarly, we get r2m = 0. As M is a

reduced module, we then have m ∈ AnnR(AnnM (xy)). �

Recall that an element e ∈ R is weak idempotent of an R-module M if e2 − e ∈
AnnR(M).

Lemma 2.18. Let M be an R-module and let e ∈ R be a weak idempotent of M .

Then:

(1) AnnM (Re) = (1− e)M .

(2) If M is faithful, then AnnR(eM) = R(1− e).

Proof. Straightforward. �

Proof of Theorem 2.16 Let N and N ′ be two d-submodules of M . Let m ∈
N + N ′, and pick n ∈ N and n′ ∈ N ′ such that m = n + n′. Then AnnR(n) ∩
AnnR(n′) ⊆ AnnR(m). Let e, f be idempotents of R such that AnnR(n) = Re and

AnnR(n′) = Rf. Thus, Lemma 2.18 gives that AnnR(n) = AnnR(AnnM (e)) and

AnnR(n′) = AnnR(AnnM (f)). Consequently, by Lemma 2.17,

AnnR(AnnM (ef)) = AnnR(AnnM (e)) ∩AnnR(AnnM (f)) ⊆ AnnR(m),

whence AnnM (AnnR(m)) ⊆ AnnM (ef) = (1−ef)M . On the other hand, since N is

a d-submodule, it follows that AnnR(n) = Re implies (1−e)M ⊆ AnnM (AnnR(n)),

and so (1−e)M ⊆ N . Similarly, we have (1−f)M ⊆ N ′ since N ′ is a d-submodule.

Therefore (1 − ef)m = (1 − e)fm + (1 − f)m ∈ N + N ′ for each m ∈ M , and so

AnnM (AnnR(m)) ⊆ N +N ′. Finally N +N ′ is a d-submodule. �

We now characterize finitely generated (resp., cyclic) modules.

Proposition 2.19. Let M be an R-module. Then M is a finitely generated (resp.,

a cyclic) module if and only if AnnR(N) = AnnR(M) for some finitely generated

fd-submodule (resp., cyclic d-submodule) N of M .

Proof. The necessity is obvious. Conversely, let N be a finitely generated fd-

submodule (resp., a cyclic d-submodule) of M such that AnnR(N) = AnnR(M).

This implies that AnnR(N) ⊆ AnnR(m) for each m ∈ M . Since N is an fd-

submodule (resp., a d-submodule), we have m ∈ N . Consequently, M is a finitely

generated (resp., a cyclic) module. �
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An R-module M is called strongly duo provided that Tr(N,M) = N for each

submodule N of M (see [16]). We also recall that M is called principally quasi-

injective (pq-injective for short) if each R-morphism from a principal submodule of

M to M can be extended to an endomorphism of M (see [21]).

Proposition 2.20. Let M be an R-module. Then the following statements are

equivalent.

(1) Every submodule of M is a d-submodule.

(2) Every cyclic submodule of M is a d-submodule.

(3) M satisfies the condition (∗) and every submodule contained in TR(M) is

a d-submodule.

(4) M is a strongly duo module.

(5) M is a pq-injective module.

Proof. (1)⇒ (2) This is clear.

(2) ⇒ (1) Let N be a submodule of M . By hypothesis, every cyclic submodule

contained in N is a d-submodule. In other words, if AnnR(m) ⊆ AnnR(m′) for

some m ∈ N and m′ ∈M , then m′ ∈ Rm ⊆ N .

(2)⇔ (3) This is obvious.

(2)⇔ (4) This follows from [16, Theorem 2.1].

(4)⇔ (5) See [16, Theorem 3.5]. �

Recall that an R-module M is said to be prime if the zero submodule of M is a

prime submodule of M .

Corollary 2.21. Let M be an R-module. Then M is a prime strongly duo module

if and only if M is a simple module.

Proof. The sufficiency is trivial. Note that an R-module M is prime if and only

if AnnR(N) = AnnR(M) for every nonzero submodule N of M . If M is a prime

strongly duo R-module, then by Propositions 2.19 and 2.20, M = Rm for each

nonzero m ∈M . Consequently, M is a simple module, as desired. �

Let M be an R-module. We say that M is perfect if M satisfies the descending

chain condition (DCC) on cyclic submodules (see [5]). Now we consider the set

AM := {AnnR(m) | m ∈M}.

Proposition 2.22. Let M be a strongly duo module satisfying ACC on AM . Then

M is a perfect module.
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Proof. Let Rm1 ⊇ Rm2 ⊇ · · · be a descending chain of cyclic submodules of M .

By hypothesis, AnnR(mk) = AnnR(mk+1) for some positive integer k. As M is a

strongly duo module, we have Rmk = Rmk+1. This implies that M is a prefect

module, as desired. �

Corollary 2.23. Let R be a Noetherian ring. Then every finitely generated strongly

duo module over R is an Artinian module.

Proof. If M is a finitely generated strongly duo module over a Noetherian ring R,

then M is a Noetherian perfect module and hence M is Artinian by [6, Proposition

4.12]. �

The following example shows that the converse of the previous corollary is not

true in general.

Example 2.24. Consider the Z-module M = Zp∞ , where p is a prime number.

Then, M is an Artinian module which is not Noetherian.

We now characterize finitely generated von Neumann regular modules.

Theorem 2.25. Let M be a finitely generated R-module. Consider the following

conditions:

(1) M is a reduced multiplication module and every submodule is a 0-submodule.

(2) M is a reduced multiplication module and every submodule is an fd-submodule.

(3) M is a reduced multiplication module and satisfies any one of the conditions

of Proposition 2.20.

(4) M is a von Neumann regular module.

Then:

(i) (1)⇒ (2)⇔ (3)⇔ (4).

(ii) If M is a cyclic module, then the above conditions are equivalent.

Proof. (i) (1)⇒ (2) and (2)⇒ (3) are clear.

(3)⇒ (4) This follows from [14, Theorem 3.10].

(4) ⇒ (2) Assume that M is a von Neumann regular module. Let N be a

submodule of M and let F be a finite subset of N . By hypothesis, there exists a

weak idempotent e ∈ R of M such that 〈F 〉 = eM . Then R(1 − e) ⊆ AnnR(F )

by Lemma 2.18. Thus AnnM (AnnR(F )) ⊆ AnnM (1− e) = eM which implies that

AnnM (AnnR(F )) ⊆ N. So N is an fd-submodule.

(ii) (4) ⇒ (1) Suppose that M is a cyclic von Neumann regular module. Let

N be a submodule of M . It will first be shown that S := {r ∈ R | AnnR(m) ⊆
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AnnR(AnnM (r)) for some m ∈ N} is a multiplicative subset of R. If r, s ∈ S, then

there exist m,m′ ∈ N such that AnnR(m) ⊆ AnnR(AnnM (r)) and AnnR(m′) ⊆
AnnR(AnnM (s)). It follows by Lemma 2.17 that

AnnR(m) ∩AnnR(m′) ⊆ AnnR(AnnM (rs)).

By hypothesis, there exists a weak idempotent e ∈ R such that Rm + Rm′ = eM

and so Rm+Rm′ is a cyclic submodule of M . Thus AnnR(m′′) ⊆ AnnR(AnnM (rs))

for some m′′ ∈ N. We complete the proof by showing that N = 0S(M). Since N

is a d-submodule, we have 0S(M) ⊆ N. In fact, if m ∈ 0S(M), then sm = 0 for

some s ∈ S. Consequently, AnnR(n) ⊆ AnnR(m) for some n ∈ N , and so m ∈ N.
Now, let m ∈ N . By assumption, we get Rm = eM for some weak idempotent

e ∈ R. Then (1 − e) ∈ AnnR(m). Also, it is clear to see that (1 − e) ∈ S, and so

m ∈ 0S(M). �

We remark that finitely generated von Neumann regular modules are character-

ized in [14, Theorem 3.10]. In particular, it was shown that for a finitely generated

module M , M is von Neumann regular if and only if M is a reduced multiplication

module in which every submodule is a d-submodule.

Corollary 2.26. Let M be a finitely generated von Neumann regular R-module.

Then EndR(M) is a von Neumann regular ring.

Proof. By Theorem 2.25 and [16, Theorem 5.5]. �

Corollary 2.27. If R is a PID which is not a field, then finitely generated von

Neumann regular R-modules are precisely non-faithful cyclic reduced R-modules.

Proof. Combining Theorem 2.25 with [16, Corollary 3.8]. �

Example 2.28. Finitely generated von Neumann regular Z-modules are precisely

Z/nZ, where n > 1 is square-free.

Let Mi be an Ri-module for each i = 1, 2. Set M := M1 × M2 and R :=

R1 ×R2. Then M is clearly an R-module with componentwise addition and scalar

multiplication. Also every submodule N of M is of the form N = N1 ×N2, where

Ni is a submodule of Mi.

Proposition 2.29. Let Mi be an Ri-module for each i = 1, 2. Set M := M1×M2,

R := R1 ×R2, and N := N1 ×N2 be a submodule of M . Then:

(1) N is a d-submodule (resp., an fd-submodule) of M if and only if Ni is a

d-submodule (resp., an fd-submodule) for each i.



44 ADAM ANEBRI, HWANKOO KIM AND NAJIB MAHDOU

(2) N is a 0-submodule of M if and only if Ni is a 0-submodule of Mi for each

i.

Proof. (1) It suffices to see that AnnR(m1,m2) = AnnR1
(m1)×AnnR2

(m2).

(2) Assume that N is a 0-submodule of M . Then N = 0S(M) for some multi-

plicative subset S of R. Put S1 := {s1 ∈ R1 | (s1, s2) ∈ S for some s2 ∈ R2} and

S2 := {s2 ∈ R2 | (s1, s2) ∈ S for some s1 ∈ R1}. It is clear that S1 and S2 are

multiplicative subsets of R1 and R2, respectively. Also one can easily check that

0S(M) = 0S1(M1) × 0S2(M2). This implies that N is a 0-submodule of M if and

only if N1 and N2 are 0-submodules, as desired. �

Proposition 2.30. Let X be an indeterminate over R and let M be an R-module.

Then N is an fd-submodule if and only if N [X] is an fd-submodule of M [X] as an

R[X]-module.

Proof. Let N be an fd-submodule of M and let F = {f1, . . . , fn} ⊆ N [X] and

f ∈ M [X] such that AnnR[X](F ) ⊆ AnnR[X](f). Now put f :=
∑p

j=0m
′
jX

j .

Then it follows easily that AnnR(C(F )) ⊆ AnnR(m′1, . . . ,m
′
p) where C(F ) is the

set of all coefficients of elements of F . Hence AnnR(C(F )) ⊆ AnnR(m′j) for each

j = 0, . . . , p, and therefore C(F ) ⊆ N implies that m′i ∈ N for each j = 0, . . . , p.

This shows that f ∈ N [X].

Conversely, suppose that N [X] is an fd-submodule. Let {m1, . . . ,mn} ⊆ N and

m′ ∈M such that
⋂n

i=1 AnnR(mi) ⊆ AnnR(m′). Then

n⋂
i=1

AnnR[X](miX) ⊆ AnnR[X](m
′X)

in M [X] and {m1X, . . . ,mnX} ⊆ N [X] implies that m′X ∈ N [X], and so m′ ∈
N. �

Let f : M → M ′ be an R-module homomorphism. By the extension of a

submodule N of M , we mean Ne = f(N) and by the contraction of a submodule

K of M ′, we mean Kc = f−1(K).

Proposition 2.31. Let f : M →M ′ be an R-morphism. Then every d-submodule

(resp., fd-submodule) of M ′ contracts to a d-submodule (resp., an fd-submodule) of

M if and only if ker(f) is a d-submodule (resp., an fd-submodule) of M .

Proof. The necessity is obvious. Conversely, suppose that ker(f) is a d-submodule

and let K be a d-submodule of M ′. If AnnR(m) ⊆ AnnR(m′) for some m ∈ Kc

and m′ ∈M , then AnnR(rm) ⊆ AnnR(rm′) for each r ∈ AnnR(f(m)). By hypoth-

esis, we then have rm′ ∈ ker(f) for each r ∈ AnnR(f(m)) and so AnnR(f(m)) ⊆
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AnnR(f(m′)). As K is a d-submodule, it follows that f(m′) ∈ K. Similarly, we can

prove that every fd-submodule of M ′ contracts to an fd-submodule of M whenever

ker(f) is an fd-submodule of M . �

Corollary 2.32. Let R be a commutative ring, M be an R-module, and N be

a d-submodule (resp., an fd-submodule) of M . Then every d-submodule (resp.,

fd-submodule) of the R-module M/N contracts to a d-submodule (resp., an fd-

submodule) of M.

Corollary 2.33. Let R be a commutative ring, S be a multiplicative subset of R,

M be an R-module, and f : M → S−1M be the natural morphism of R-modules.

Then every d-submodule (resp., fd-submodule) of S−1M contracts to a d-submodule

(resp., an fd-submodule) of M .

Proposition 2.34. Let R be a commutative ring, S be a multiplicative subset of

R, M be an R-module, and f : M → S−1M be the natural morphism of R-modules.

If N is a d-submodule (resp., an fd-submodule) of M with S ∩ (N :R M) = ∅, then

Nec is also a d-submodule (resp., an fd-submodule) containing N .

Proof. We just observe that Nec = NM (S), see Example 2.2. �
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