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1. Introduction

In this paper all groups are assumed to be finite. It is known that every maximal

subgroup of a group G is normal if and only if G is a nilpotent group. As a

generalization, Li and Shi [1] gave a proof to show that the following result holds.

Theorem 1.1. [1, Theorem 1.1] A group G with all non-nilpotent maximal sub-

groups being normal is solvable.

Moreover, based on the solvability of the group G in [1, Theorem 1.1], Shi [3,

Theorem 5] proved that such a group G has a Sylow tower.

In this paper, our main goal is to provide a new and simpler proof of [1, Theorem

1.1], see Section 2.

2. New proof of [1, Theorem 1.1]

Proof. We first claim that G has a normal subgroup of prime-power order.

Suppose not. We divide the following discussions into three cases.

Case 1: Assume that every maximal subgroup of G is nilpotent. It follows that

G is either a nilpotent group or a minimal non-nilpotent group. Then one can

easily get that G has a normal Sylow subgroup that has prime-power order by the

structure of minimal non-nilpotent group [2, Theorem 9.1.9], a contradiction.
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Case 2: Assume that every maximal subgroup of G is non-nilpotent. It follows

that every maximal subgroup of G is normal by the hypothesis and then G is

nilpotent, this contradicts that every maximal subgroup of G is non-nilpotent.

Case 3: Assume that G not only has nilpotent maximal subgroups but also

has non-nilpotent maximal subgroups. Since G has no normal subgroup of prime-

power order, every Sylow p-subgroup P of G is not normal in G for any prime

divisor p of |G|, that is NG(P ) < G. Then there exists a maximal subgroup M of

G such that NG(P ) ≤ M . Note that every non-nilpotent maximal subgroup of G

is normal and P is not normal in G, one has that M is nilpotent by the Frattini-

argument. Therefore, every Sylow subgroup of G is contained in some nilpotent

maximal subgroup of G.

For any nilpotent maximal subgroup M of G, if there exists a prime divisor q of

|M | such that the Sylow q-subgroup QM of M is not a Sylow q-subgroup of G, then

NG(QM ) > M as M being nilpotent. It follows that QM is a normal subgroup of

G of prime-power order since M is maximal in G, a contradiction.

Next assume that every Sylow subgroup of M is also a Sylow subgroup of G for

any nilpotent maximal subgroup M of G.

For the case when G has exactly one nilpotent maximal subgroup M , then M is

normal in G, which implies that G has a normal Sylow subgroup, a contradiction.

For another case when G has at least two nilpotent maximal subgroups. Let M1

and M2 be any two distinct nilpotent maximal subgroups of G.

(i) Suppose (|M1|, |M2|) = 1. Let N be a non-nilpotent maximal subgroup of

G, then G = M1N = M2N . One has |G| = |M1||N |
|M1∩N | = |M2||N |

|M2∩N | and then |M1|
|M1∩N | =

|M2|
|M2∩N | . Note that ( |M1|

|M1∩N | ,
|M2|
|M2∩N | ) = 1 by the hypothesis. It follows that |M1| =

|M1 ∩ N | and then M1 ≤ N . One has M1 = N since M1 is maximal in G, a

contradiction.

(ii) Suppose (|M1|, |M2|) > 1 and |M1| 6= |M2|. Then there exists a prime r

such that r | (|M1|, |M2|). Let R1 be a Sylow r-subgroup of M1 and R2 be a

Sylow r-subgroup of M2. Since both R1 and R2 are also Sylow r-subgroups of

G, there exists an x ∈ G such that R2 = R1
x. That is R1

x ∈ Sylr(M2). It

follows that R1 ∈ Sylr(M2
x−1

). Since |M1| 6= |M2|, one has M1 6= M2
x−1

. Then

NG(R1) ≥ 〈M1, M2
x−1

〉 > M1. Thus NG(R1) = G since M1 is maximal in G,

which implies that R1 is a normal Sylow subgroup of G, a contradiction.

(iii) Suppose that all nilpotent maximal subgroups of G have the same order.

Let M be any nilpotent maximal subgroup of G. Since every Sylow subgroup of G

is contained in some nilpotent maximal subgroup of G and all nilpotent maximal

subgroups of G have the same order, one has |G| = |M |, a contradiction.
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All above arguments imply that our assumption is not true. Hence G has a

normal subgroup of prime-power order.

In the following let G1 be a normal subgroup of G of prime-power order. Consider

the quotient group G/G1. It is clear that every non-nilpotent maximal subgroup of

G/G1 is also normal, arguing as above, one has that G/G1 has a normal subgroup

G2/G1 of prime-power order. We go on considering the quotient group G/G2, one

by one, we can obtain a normal subgroups series: 1 = G0 C G1 C G2 C · · · C
Gi C · · · C Gs−1 C Gs = G, where s > 1 and every quotient group Gi/Gi−1 has

prime-power order for each 1 ≤ i ≤ s. Therefore, one has that G is solvable. �
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