A NOTE ON THE SOLVABILITY OF A FINITE GROUP IN WHICH EVERY NON-NILPOTENT MAXIMAL SUBGROUP IS NORMAL

Wenjing Liu, Jiangtao Shi and Yunfeng Tian

Received: 17 October 2022; Accepted: 13 December 2022
Communicated by Abdullah Harmanci

Abstract. We provide a new and simple proof to show that a finite group in which every non-nilpotent maximal subgroup is normal is solvable.

Mathematics Subject Classification (2020): 20D10
Keywords: Non-nilpotent maximal subgroup, solvable group, normal subgroup of prime-power order

1. Introduction

In this paper all groups are assumed to be finite. It is known that every maximal subgroup of a group G is normal if and only if G is a nilpotent group. As a generalization, Li and Shi [1] gave a proof to show that the following result holds.

Theorem 1.1. [1, Theorem 1.1] A group G with all non-nilpotent maximal subgroups being normal is solvable.

Moreover, based on the solvability of the group G in [1, Theorem 1.1], Shi [3, Theorem 5] proved that such a group G has a Sylow tower.

In this paper, our main goal is to provide a new and simpler proof of [1, Theorem 1.1], see Section 2.

2. New proof of [1, Theorem 1.1]

Proof. We first claim that G has a normal subgroup of prime-power order.

Suppose not. We divide the following discussions into three cases.

Case 1: Assume that every maximal subgroup of G is nilpotent. It follows that G is either a nilpotent group or a minimal non-nilpotent group. Then one can easily get that G has a normal Sylow subgroup that has prime-power order by the structure of minimal non-nilpotent group [2, Theorem 9.1.9], a contradiction.

This research was supported in part by Shandong Provincial Natural Science Foundation, China (ZR2017MA022 and ZR2020MA044) and NSFC (11761079).
Case 2: Assume that every maximal subgroup of G is non-nilpotent. It follows that every maximal subgroup of G is normal by the hypothesis and then G is nilpotent, this contradicts that every maximal subgroup of G is non-nilpotent.

Case 3: Assume that G not only has nilpotent maximal subgroups but also has non-nilpotent maximal subgroups. Since G has no normal subgroup of prime-power order, every Sylow p-subgroup P of G is not normal in G for any prime divisor p of $|G|$, that is $N_G(P) < G$. Then there exists a maximal subgroup M of G such that $N_G(P) \leq M$. Note that every non-nilpotent maximal subgroup of G is normal and P is not normal in G, one has that M is nilpotent by the Frattini-argument. Therefore, every Sylow subgroup of G is contained in some nilpotent maximal subgroup of G.

For any nilpotent maximal subgroup M of G, if there exists a prime divisor q of $|M|$ such that the Sylow q-subgroup Q_M of M is not a Sylow q-subgroup of G, then $N_G(Q_M) > M$ as M being nilpotent. It follows that Q_M is a normal subgroup of G of prime-power order since M is maximal in G, a contradiction.

Next assume that every Sylow subgroup of G is also a Sylow subgroup of G for any nilpotent maximal subgroup M of G.

For the case when G has exactly one nilpotent maximal subgroup M, then M is normal in G, which implies that G has a normal Sylow subgroup, a contradiction.

For another case when G has at least two nilpotent maximal subgroups. Let M_1 and M_2 be any two distinct nilpotent maximal subgroups of G.

(i) Suppose $([M_1], [M_2]) = 1$. Let N be a non-nilpotent maximal subgroup of G, then $G = M_1N = M_2N$. One has $|G| = \frac{|M_1||N|}{|M_1 \cap N|} = \frac{|M_2||N|}{|M_2 \cap N|}$ and then $|M_1| = \frac{|M_2|}{|M_2 \cap N|}$. Note that $(\frac{|M_1|}{|M_1 \cap N|}, \frac{|M_2|}{|M_2 \cap N|}) = 1$ by the hypothesis. It follows that $|M_1| = |M_1 \cap N|$ and then $M_1 \leq N$. One has $M_1 = N$ since M_1 is maximal in G, a contradiction.

(ii) Suppose $([M_1], [M_2]) > 1$ and $|M_1| \neq |M_2|$. Then there exists a prime r such that $r \mid ([M_1], [M_2])$. Let R_1 be a Sylow r-subgroup of M_1 and R_2 be a Sylow r-subgroup of M_2. Since both R_1 and R_2 are also Sylow r-subgroups of G, there exists an $x \in G$ such that $R_2 = R_1^x$. That is $R_1x \in \text{Syl}_r(M_2)$. It follows that $R_1 \in \text{Syl}_r(M_2^{x^{-1}})$. Since $|M_1| \neq |M_2|$, one has $M_1 \neq M_2^{x^{-1}}$. Then $N_G(R_1) \geq \langle M_1, M_2^{x^{-1}} \rangle > M_1$. Thus $N_G(R_1) = G$ since M_1 is maximal in G, which implies that R_1 is a normal Sylow subgroup of G, a contradiction.

(iii) Suppose that all nilpotent maximal subgroups of G have the same order. Let M be any nilpotent maximal subgroup of G. Since every Sylow subgroup of G is contained in some nilpotent maximal subgroup of G and all nilpotent maximal subgroups of G have the same order, one has $|G| = |M|$, a contradiction.
All above arguments imply that our assumption is not true. Hence G has a normal subgroup of prime-power order.

In the following let G_1 be a normal subgroup of G of prime-power order. Consider the quotient group G/G_1. It is clear that every non-nilpotent maximal subgroup of G/G_1 is also normal, arguing as above, one has that G/G_1 has a normal subgroup G_2/G_1 of prime-power order. We go on considering the quotient group G/G_2, one by one, we can obtain a normal subgroups series: $1 = G_0 \triangleleft G_1 \triangleleft G_2 \triangleleft \cdots \triangleleft G_i \triangleleft \cdots \triangleleft G_{s-1} \triangleleft G_s = G$, where $s > 1$ and every quotient group G_i/G_{i-1} has prime-power order for each $1 \leq i \leq s$. Therefore, one has that G is solvable. □

Acknowledgement. The authors are very thankful to the referee who provides valuable comments for our paper.

References

Wenjing Liu, Jiangtao Shi (Corresponding Author) and Yunfeng Tian

School of Mathematics and Information Sciences
Yantai University
Yantai 264005, China
e-mails: lwjytu@qq.com (W. Liu)
shijt2005@163.com (J. Shi)
m18863093906@163.com (Y. Tian)