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Introduction 

A pair of inverted pendulum systems on a cart is one of 

the systems that have been tested and validated by the 

methods proposed in control studies due to their 

incompletely driven and non-linear structure. The usage 

areas of these systems are quite wide, from human walking 

to satellite and rocket modeling, from aircraft landing and 

take-off to ship balancing modeling, etc.[1-5]. The double-

inverted pendulum is based on the principle of balancing the 

arms with the movement of the cart. This balancing problem 

is quite difficult since it is driven by a single motor, and the 

continuous movement of the arms leads to the instability of 

the system. 

In the literature, double-inverted pendulum systems on 

a cart (DIPSC) have been tried to be controlled by using 

different control types at different times. Furuta et al., [6] 

performed the control of a double inverted pendulum on a 

cart (DIPSC) system in a simulation and experimental 

environment with a computer program called CADOS. 

Ceheng et al., [7] performed the control of a real-time 

DIPSC system obtained by combining composition 

coefficient fuzzy control theory with LQR optimal control 

theory. The method was tested on a DIPSC system with a 

sampling interval of 4 ms. Zhong and Rock [8] proposed a 

method of energy and passivity-based control of a DIPSCs 

system. It has been demonstrated in simulation studies that 

it can stabilize the system steadily from any initial position. 

Bogdanov [9] proposed and simulated controller 

approaches for optimal control of a DIPSC system, 

consisting of LQR, situational Riccati equation, optimal 

neural network control, and their combinations. The 

simulations revealed the superior performance of the 

controller designed with the situational Ricatti Equation 

over LQR and the improvements provided by the neural 

networks that compensate for the model deficiencies in 

LQR. Cheng-jun et al., [10] performed the control of a 

DIPSC and cart system whose boundaries of fuzzy logic 

membership functions were determined by a genetic 

algorithm optimization method. The method has been 

applied in the simulation environment, and it has been 

observed that the performance of the system has increased. 

Xiong and Wan [11] proposed the optimal LQR control 

method for the DIPSC system in numerical simulation. Q 

and R matrices, which are the weight matrices of the LQR 

method, were obtained using the particle swarm 

optimization (PSO) method. Tao et al., [12] proposed an 

adaptive fuzzy switch swing-up and sliding control method 

for a DIPSC. The efficacy of the suggested method was 

demonstrated through simulation studies. In addition, the 

effect of chatter is significantly reduced in the method. 
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Adeli et al., [13] modeled a DIPSC, an overhead crane, 

constructed a Takagi - Sugeno fuzzy model, and designed a 

parallel distributed fuzzy LQR controller. The method was 

supported by simulation studies. Hassanzadeh et al. [14] 

suggested a model-reference adaptive controller approach 

for the stabilization of a DIPSC and performed it in an 

experimental setting. In the proposed method, an LQR 

controller was initially used; however, in the next step, an 

LQG controller, which combines Kalman-Bucy filter 

estimation and LQR feedback control, is used to achieve 

better steady-state performance. LQR and PD control 

methods have been suggested to stably control a DIPSC 

[15]. The simulation studies revealed that the PD controller 

outperforms the LQR controller in terms of performance. 

Zhang and Zhang [16] proposed the self-adaptive LQR 

controller method for a planar DIPSC system and applied it 

in simulation and an experimental environment. According 

to the results obtained, the authors concluded that the 

method provides fast response and stability.  LQR and 

LQR-based fuzzy controller design and control in a 

simulation environment for a DIPSC system were carried 

out in another study [17]. The LQR-based fuzzy controller 

has been found to perform better than the LQR method in 

controlling the DIPSC system, according to the results. 

Wang et al. [18] proposed a Pareto-based Multi-

Objective Binary Probability Optimization Algorithm 

(MBPOA)-based LQR controller and this method has been 

implemented in the DIPSC in simulation and experimental 

environments. A hybrid type-2 fuzzy logic control method 

obtained with the help of an RNA genetic algorithm is 

proposed for the control of a DIPSC. The parameters of 

Type 1 and Type 2 fuzzy logic methods are optimized by 

RNA genetic algorithm and compared. Better performance 

for DIPSC is achieved by using an optimized type-2 fuzzy 

logic control with RNA genetic algorithm [19]. Sultan and 

Farej [20] modeled a DIPSC system and simulated it using 

the LQR control method. According to the simulation 

results obtained, they saw a 57% and 79% decrease in peak 

amplitude for the lower arm and upper arm, respectively. 

Bandari et al., [21] proposed the LQR control method for 

real-time control of a DIPSC system. The successful 

demonstration of the controller's ability to restore stability 

after imparting impact distortion to both the first and second 

pendulums was made by the testing results. 

Banerjee et al., [22] proposed the LQR method for the 

control of a DIPSC system. The traditional PID method was 

also used in the study to compare the performance of the 

method. Simulation of the DIPSC system was performed 

using the optimal LQR controller method [23]. In this study, 

the Q and R parameters of the controller are updated, and 

the G gain matrix is optimized using five different 

configurations of three different optimization algorithms 

(Particle Swarm Optimization (PSO), Artificial Bee Colony 

Algorithm (ABC), and Genetic Algorithm (GA)).  

Response time and response smoothness were measured for 

the outcomes produced by each algorithm, both alone and 

in combination. The controller optimized with the GA 

algorithm produced the quickest control response, while the 

controller optimized with the ABC method had the 

smoothest response, according to the results. 

The results obtained by using each algorithm were 

evaluated in terms of response speed and response 

smoothness, in itself and with each other. According to the 

results, the controller optimized with GA gave the fastest 

control response, while the smoothest response was 

provided by the controller optimized with the ABC 

algorithm. He et al. [24] have conducted a literature study 

on underdrive robotic systems. The challenges in current 

research are summarized, and information is provided for 

future research. Tijani and Jimoh [25] presented a 

comparative study of a DIPSC system, the optimal control 

open model predictive control (eMPC), and the linear 

quadratic control (LQR) method. The open model 

predictive control (the eMPC) method showed an effective 

performance compared to the LQR control method, 

especially in terms of reducing the peak values. Maraslidis 

et al., [26] proposed a fuzzy logic controller (FLC) for the 

control of a DIPSC system in a simulation environment. An 

LQR is used in the article to compare the results of the 

proposed method. According to the results obtained, it has 

been seen that the FLC method significantly reduced the 

stability and peak levels. Gil et al. [27] implemented 

reinforcement learning-based PD control for a DIPSC in a 

simulation environment. A DIPSC is simulated using a 

passive control method based on operator theory [28]. The 

chaotic dynamics of a DIPSC with a large angle of 

oscillation are studied based on Hamilton's canonical 

equation. It is found that the pendulum can maintain the 

equilibrium state as long as one of the coils has an 

oscillation angle of 0 degrees [29]. The oscillation and 

constant-time stabilization control of an incompletely 

driven DIPSC is carried out in a simulation environment 

[30]. 

This study aimed to model and optimally control a 

double-inverted pendulum system on a cart (DIPSC). A 

double inverted pendulum system on a cart (DIPSC) was 

modeled using the Lagrange-Euler method, and classical 

and optimal LQR control methods were designed for the 

control of the system. The purpose of the designed 

controllers is to keep the arms of the double inverted 

pendulum on the moving cart vertically in balance and to 

bring the cart to the determined balance position. The 

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), and Grey Wolf Optimization (GWO) algorithms 

were used to determine the vitally essential Q and R 

parameters of the LQR control method, one of the optimal 

control methods. The DIPSC system was checked using 

classical LQR and optimal LQR methods. All obtained 

results are given graphically. The proposed methods are 

presented and analyzed in tabular form using the settling 

time and the Mean-Square-Error (MSE) performance 

criteria. The rest of this article is structured as follows. In 

Chapter 2, the model of the DIPSC system is presented. 

Recommended controllers for the system are shown in 

Chapter 3. GA, PSO, and GWO algorithms are given for the 

optimization of the parameters of the LQR control method. 

The simulation results obtained by applying the methods 
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suggested in Chapter 4 are given numerically and 

graphically. Chapter 5 summarizes the entire article and 

provides information on the development of this article and 

future work. 

Modeling of Double Inverted Pendulum System on a 

Cart (DIPSC) System 

Model equations, which have an important place in the 

control of systems in computer environments, are given 

below. The DIPSC was modeled using the Lagrange–Euler 

method. The free-body diagram of the DIPSC system is 

shown in Figure 1. 
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Figure 1. The physical representation of the DIPSC system 

 

In the DIPSC system given in Figure 1, the variable 

parameters x , 
1  and 

2  represent the position of the cart, 

the angular position of the first pendulum, and the angle 

position of the second pendulum, respectively. L1 is the 

length of the first pendulum, L2 is the length of the second 

pendulum, mc is the mass of the cart, m1 is the mass of the 

first pendulum, and m2 is the mass of the second pendulum. 

F represents the force acting on the cart. I1 is the moment of 

inertia of the first pendulum, and I2 is the moment of inertia 

of the second pendulum. The total kinetic and potential 

energies in the system consist of the kinetic and potential 

energies of the car and each bar separately. Since the car 

moves linearly on the horizontal axis, it has a kinetic energy 

originating from the translational movement only in this 

axis. Since the rods make both translational and rotational 

movements, their total kinetic energies constitute the 

translational and rotational kinetic energy originating from 

these movements. These Equations are given below. 

 

          𝑥𝑝1
= 𝑥 − 𝑙1𝑠𝑖𝑛𝜃1   →  𝑥̇𝑝1

= 𝑥̇ − 𝑙1𝜃̇1𝑐𝑜𝑠𝜃1   (1a) 

           𝑦𝑝1
= 𝑙1𝑐𝑜𝑠𝜃1    →  𝑦̇𝑝1

= −𝑙1𝜃̇1𝑠𝑖𝑛𝜃1                (1b) 

                  𝑥𝑝2
= 𝑥 − 𝑙1𝑠𝑖𝑛𝜃1 − 𝑙1sin (𝜃1 + 𝜃2)       (2a) 

                𝑦𝑝2
= 𝑙1𝑐𝑜𝑠𝜃1 + 𝑙1𝑐𝑜𝑠(𝜃1 + 𝜃2)                   (2b)           

𝑥̇𝑝2
= 𝑥̇ − 𝑙1𝜃̇1𝑐𝑜𝑠𝜃1  − 𝑙1(𝜃̇1 + 𝜃̇2)𝑐𝑜𝑠(𝜃1 + 𝜃2)       (3a) 

     𝑦̇𝑝2
= −𝑙1𝜃̇1𝑠𝑖𝑛𝜃1 − 𝑙1(𝜃̇1 + 𝜃̇2)𝑠𝑖𝑛(𝜃1 + 𝜃2)     (3b) 

 

                                 𝑇𝑐 =
1

2
𝑚𝑐𝑥

2                                    (4) 

𝑇𝑝1
=

1

2
𝑚𝑝1

(𝑥̇ − 𝑙1𝜃̇1𝑠𝑖𝑛𝜃1)
2 −

1

2
𝑚𝑝1

(−𝑙1𝜃̇1𝑠𝑖𝑛𝜃1)
2 +

 
1

2
𝐼𝑝𝜃̇1

2
                                                                            (5) 

𝑇𝑝2
=

1

2
𝑚𝑝2

(𝑥̇ − 𝑙1𝜃̇1𝑐𝑜𝑠𝜃1 − 𝑙1(𝜃̇1 + 𝜃̇2)𝑐𝑜𝑠(𝜃1 +

𝜃2))
2 +

1

2
𝑚𝑝2

(−𝑙1𝜃̇1𝑠𝑖𝑛𝜃1 − 𝑙1(𝜃̇1 + 𝜃̇2)𝑠𝑖𝑛(𝜃1 +

  𝜃2))
2 + 

1

2
𝐼𝑝(𝜃̇1 + 𝜃̇2)

2
                                                (6) 

                     𝑉𝑝1
= 𝑚𝑝1

𝑔𝑙1𝑐𝑜𝑠𝜃1                                    (7) 

                     𝑉𝑝2
= 𝑚𝑝2

𝑔𝑙1𝑐𝑜𝑠𝜃1 + 𝑚𝑝2
𝑔𝑙1𝑐𝑜𝑠𝜃1       (8) 

The equations of motion of the DIPSC are obtained by 

taking the following assumptions in the state-space form as 

follows: 

                               𝜃1, 𝜃2 ≈ 0                                         (9a) 

                    𝑠𝑖𝑛𝜃1, 𝑠𝑖𝑛𝜃2, 𝑠𝑖𝑛(𝜃1 + 𝜃2) = 0         (9b) 

                     𝑐𝑜𝑠𝜃1, 𝑐𝑜𝑠𝜃2, 𝑐𝑜𝑠(𝜃1 + 𝜃2) = 1       (9c) 

                          𝜃̇1

2
, 𝜃̇1

2
, 𝜃̇1 + 𝜃̇2

2
= 0                    (9d) 

The equation of motion of a DIPCS is created in the state 

space model; 𝑥̇ = 𝐴𝑥 + 𝐵𝑢 and 𝑦 = 𝐶𝑥 + 𝐷𝑢 form as 

follows. The state variables of the DIPCS with trolley are 

trolley position - velocity and angular position - velocity of 

each pendulum. The output variables are the car position 

and the angular position of the pendulums. These variables 

are given in Equation (10). 

    𝑥 =

⌈
⌈
⌈
⌈
⌈
 
𝑥1

𝑥2
𝑥3

𝑥4
𝑥5

𝑥6⌉
⌉
⌉
⌉
⌉
 

=

⌈
⌈
⌈
⌈
⌈
 
𝑥
𝜃1

𝜃2

𝑥̇
𝜃̇1

𝜃̇2⌉
⌉
⌉
⌉
⌉
 

        𝑦 = ⌈𝑥 𝜃1 𝜃2⌉             (10) 

       

𝑥̇1

𝑥̇3

𝑥̇5

=

𝑥2

𝑥4

𝑥6

                                                                (11) 

 𝐴

=    

[
⌈
⌈
⌈
⌈
 
0 0 0
0 0 0
0
0
0
0

0
4.87
76.6

−84.3

0
−0.16
−31.9
123.77

  

1 0 0
0 1 0
0

−35.55
−185.1
203.7

0
−0.02
−0.37
0.72

1
0.02
0.72

−2.06

 

]
⌉
⌉
⌉
⌉
 

 

(12a)  
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𝐵 =

⌈
⌈
⌈
⌈
⌈
 

0
0
0

4.16
21.7

−23.89⌉
⌉
⌉
⌉
⌉
 

,   𝐶 = [
1 0 0
0 1 0
0 0 1

    
0 0 0
0 0 0
0 0 0

 ],   (12b) 

                                       𝐷 = ⌈
0
0
0
⌉                          (12c) 

 

Controller Design 

While designing the controller, it was aimed to keep the 

arms of the double inverted pendulum with the linear 

moving cart vertically balanced and to bring the cart in a 

balanced position. This chapter describes the controller 

methods designed for the DIPSC. The control of the DIPSC 

aims to design a controller with minimum error to move the 

cart so that the actual position of the cart reaches the desired 

position. The DIPCS was controlled using the Linear 

Quadratic Regulator (LQR) control method. Here, how 

parameters of LQR control methods are obtained by using 

Genetic Algorithm (GA), Particle Swarm Optimization 

(PSO), and Grey Wolf Optimization (GWO) algorithms are 

given. 

Linear Quadratic Regulator (LQR) Control Design 

The Linear Quadratic Regulator (LQR) control method is a 

modern optimal control method based on state-space 

representation [32]. LQR is a full-state feedback controller. 

The primary goal of optimum control is to meet physical 

constraints to the best possible extent, while at the same 

time extreme (maximizing or minimizing) an appropriate 

performance index or cost function. LQR is widely used 

since it is an optimal and robust control method [33-34]. 

Below is a performance index for the control strategy that 

was obtained using state-space equations. 

𝐽 =
1

2
∫ (𝑥𝑇(𝑡)𝑄𝑥 + 𝑢𝑇𝑅𝑢)𝑑𝑡

𝑡

0

                                 

(13) 

The control system is optimal when the parameters of the 

performance index are chosen to make the function either 

minimal or maximal. In classical linear optimal control, the 

control vector u(t) is chosen so that the performance index 

is minimized. The performance indicator selected for 

system control is typically quadratic concerning both x(t) 

and u(t). It is desired that the integral of the sum of the 

expression containing Q and R matrices be minimum. This 

means minimizing Equation 13. Here, Q is a positive semi-

definite symmetric matrix, and R is a positive definite 

number. Q and R are the weight matrices ( 𝑄 ≥ 0, 𝑅 > 0). 

Then, the linear state feedback rule provides the best control 

that minimizes J. The control system is optimal when the 

parameters of the performance index are chosen to make the 

function either minimal or maximal. The control vector u(t) 

is chosen in classical linear optimum control so that the 

performance index is minimized. The performance index 

chosen for system control is typically quadratic concerning 

both x(t) and u(t). The integral of the sum of the expression 

including the Q and R matrices should be as small as 

possible. In this case, equation 13 must be reduced. Here, Q 

is a positive semi-definite symmetric matrix, and R is a 

positive definite number (𝑄 ≥ 0, 𝑅 > 0 ). Q and R are the 

weight matrices. Then, the linear state feedback law is given 

the optimal control that minimizes J. 

                  𝑢 = −𝐾 ∗ 𝑥                                                  (14) 

The control strategy in this case aims to reduce the integral 

of the quadratic performance indicator. The function's value 

demonstrates how closely the system's real performance 

matches its intended performance. The given Equation (15) 

yields the K optimal feedback gain matrix.  

       𝐾 = 𝑇−1(𝑇𝑇)−1𝐵𝑇 = 𝑅−1𝐵𝑇𝑃                               (15) 

The value of the P positive definite matrix is obtained with 

the help of Riccati's Equation. 

     𝐴𝑇𝑃 + 𝑃𝐴 − 𝑃𝐵𝑅−1𝐵𝑇𝑃 + 𝑄 = 0                            (16) 

In this study, metaheuristic algorithms GA, PSO, and GWO 

methods were used. These algorithms are frequently used in 

the literature [35-40]. When using GA, PSO, and GWO to 

set the Q and R matrices, the first step is to start the 

chromosome in the GA method, swarm particle in the PSO 

method, and wolf population in the GWO method. Each 

chromosome, particle, and wolf population element is 

represented by a vector n representing the Q and R matrices. 

n(1) Q(1,1), n(2) Q(3,3), n(3) Q(5,5) and n(4) represent the 

R-value. Then, parameters such as the population and limits 

of the algorithms are described. An objective function based 

on the control input and the Mean Absolute Squared Error 

is suggested to determine the best control settings. All three 

algorithms search iteratively until it reaches any of the 

stopping criteria such as generation or the number of 

iterations, function tolerance, and time limit to minimize 

this objective function and find the optimal solution. Figure 

2 illustrates the block schema of the LQR control method. 

 

Figure 2. Block diagram of LQR control method 

Numerical Results 

This chapter provides simulation studies employing a 

DIPSC's model equations. In the control of the system, 

optimal LQR control methods were obtained by using 

classical LQR and GA, and PSO and GWO algorithms were 

used. The control variables of the system are the position of 

the cart and the angles of the pendulum. The results were 

obtained numerically according to the settling time and the 

MSE criteria, which are the performance criteria of the 

applied control methods. The physical parameters of 
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DIPSC were taken as mc=1.2 kg, mp1=0.097 kg, 

mp2=0.0127 kg, Lp1= 0.2 m, lp1=0.16 m, Lp2=0.34 m, lp2= 

0.18 m, bc=0.001 Ns/m, and bp1=bp2=0.024 Ns/rad. The 

simulation time was set to 10 seconds. It was obtained from 

the classical LQR control parameters as 𝑅 = ⌈1⌉ and 𝑄 =
𝑑𝑖𝑎𝑔 {43 50 50 11.25 1.50}.  In all optimization 

algorithms (GA, PSO, and GWO), the number of 

populations was taken as 40 and the number of iterations as 

100. However, since sufficient convergence could not be 

achieved with the GA optimization algorithm, the number 

of populations was taken as 50. In addition, the maximum 

number of generations in GA was taken as 200, and the 

crossover and mutation probability as 0.8 and 0.4. The 

lower and upper limit values for the optimized Q and R 

parameters are taken as lb= [1 1 1 0.01] and ub= [1000 1000 

1000 100]. The LQR control parameters obtained using the 

GA optimization method are    𝑅 = ⌈0.021⌉ and 𝑄 =
𝑑𝑖𝑎𝑔 {60.3 0.05 0.03 5.06 0.01}.  The LQR control 

parameters obtained using the PSO optimization method are 

𝑅 = ⌈0.001⌉   and 𝑄 = 𝑑𝑖𝑎𝑔 {100 0.1 0.09 190.6 0.15}.  
The LQR control parameters obtained using the GWO 

optimization method are 𝑅 = ⌈0.1⌉   and 𝑄 =
𝑑𝑖𝑎𝑔 {20 20 600  0 0.15}.  In Figure 3, a) The linear and 

angular positions, and b) the error graphs obtained using the 

classical LQR control method of DIPSC are given. 

 

a) 

 

b) 

Figure 3. a) The linear and angular positions and b) the 

error graphs obtained using the classical LQR control 

method of DIPSC 

As shown in Figure 3, the graph obtained as a result of the 

use of the classical LQR control method shows that the 

maximum overshoot occurred in the system. It is also seen 

that the cart reaches a settling time of approximately 5 

seconds.  In Figure 4, a) linear and angular positions and b) 

error graphs obtained using the GA-based optimal LQR 

control method of DIPSC are given. 

 

 

a) 
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b) 

Figure 4. a) The linear and angular positions and b) the 

error graphs obtained using the GA-based optimal LQR 

control method of DIPSC 

As seen in Figure 4, the graph obtained as a result of the use 

of the GA-based optimal LQR control method shows that 

the maximum overshoot in the system is increased 

compared to the classical LQR method. However, it is seen 

that the cart reaches a settling time of approximately 4 

seconds.  In Figure 5, a) linear and angular positions and b) 

error graphs obtained using the PSO-based optimal LQR 

control method of DIPSC are given. 

 

 

a) 

 

b) 

Figure 5. a) The linear and angular positions and b) the 

error graphs obtained using DIPSC's PSO-based optimal 

LQR control method 

When Figure 5 is examined, it is seen in the graph obtained 

as a result of the use of the PSO-based optimal LQR control 

method, that the maximum overshoot in the system 

decreased slightly compared to the GA-based LQR method, 

but increased compared to the classical LQR method. 

However, it is seen that the cart reaches a settling time of 

approximately 2 seconds. In Figure 6, a) The linear and 

angular positions and b) error graphs obtained using the 

GWO-based optimal LQR control method of DIPSC are 

given. 

 

 

a) 
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b) 

Figure 6. a) The linear and angular positions and b) the 

error graphs obtained using DIPSC's GWO-based optimal 

LQR control method 

When Figure 6 is examined, it is seen in the graph obtained 

as a result of the use of the GWO-based optimal LQR 

control method that the maximum overshoot occurs in a 

very small amount in the system and that it is considerably 

reduced compared to all previous methods. It is seen that 

the cart reaches a settling time of approximately 1.4 

seconds. Figure 7 is given the convergence graph. 

 

Figure 7. The convergence graph of optimization 

algorithms 

When the convergence graph is examined, it is seen that 

the best convergence is achieved with the GWO algorithm 

and this is achieved in approximately 30 iterations. 

Similarly, it is seen that PSO reaches approximately 40 

iterations and GA reaches approximately 75 iterations. 

Error results will be compared using the performance 

criteria given below. 

21
( )

j j

N

d

j

MSE y y
N

= −                                               (17) 

If the desired ydj robot's j. value is yj then it represents the j. 

actual value of the robot.  y represents the position of the 

cart or the angular positions of the pendulums.  

j=1,2,3,4….N’ is.  Tables 1 a and b show the error results 

obtained by using MSE, which is the performance criterion 

of classical LQR, GA-based LQR, PSO-based LQR, and 

GWO-based LQR control methods. 

Table 1. The performance comparisons of the linear and 

angular position tracking error (mm) using a) settling time 

and b) MSE 

a)  Settling time                                                                         

Control 

type/ 

Criteria 

LQR GA-

LQR 

PSO-

LQR 

GWO-

LQR 

x 5 4 2 1.4 

θ1 2 2.5 1.8 1.5 

θ2 1.9 1.6 1.4 1.2 

 

b)  MSE                                                                         

Control 

type/ 

Criteria 

LQR GA-LQR PSO-

LQR 

GWO-

LQR 

x 1.82*10-3 1.65*10-4 1.52*10-4 1.41*10-4 

θ1 1.18*10-4 2.14*10-4 9.12*10-5 9.56*10-5 

θ2 5.58*10-5 4.98*10-5 3.75*10-5 2.58*10-5 

 

According to the results of the performance error criteria 

(settling time and MSE-linear/angular position) obtained 

using the performance criteria in Tables 1a and b, the 

settling error performance for the classical LQR control 

method is 5 seconds. The Linear and angular position error 

values are 1.82*10-3 mm, 1.18*10-4 degrees, and 5.58*10-5 

degrees, respectively. According to the performance error 

criteria given in the table, the settling error performance 

obtained by using the GA-based LQR control method is 4 

seconds. The linear and angular position error values are 

1.65*10-4 mm, 2.14*10-4 degrees, and 4.98*10-5 degrees, 

respectively. According to the performance error criteria 

given in the table, the settling error performance obtained 

by using the PSO-based LQR control method is 2 seconds. 

The linear and angular position error values are 1.52*10-4 

mm, 9.12*10-5 degrees, and 3.75*10-5 degrees, respectively. 

According to the performance error criteria given in the 

table, the settling error performance obtained by using the 

GWO-based LQR control method, which is the last method 

recommended, is 1.4 seconds. The Linear and angular 

position error values are 1.41*10-4 mm, 9.56*10-5 degrees, 

and 2.58*10-5 degrees, respectively. Considering all the 

results obtained, the GWO-based LQR control method 

outperformed other methods in point of both settling time 

and MSE error criteria. 

Conclusions  

In this study, modeling and optimal control of a double-

inverted pendulum system on a cart (DIPSC) were 

performed. The system was modeled using the Lagrange-
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Euler method, and classical and optimal Linear Quadratic 

Regulator (LQR) control methods were utilized for the 

system's control. The Genetic Algorithm (GA), Particle 

Swarm Optimization (PSO), and Grey Wolf Optimization 

(GWO) algorithms were used to determine the vitally 

essential Q and R parameters of the LQR control method, 

one of the optimal control methods. The DIPSC system was 

controlled in the simulation environment by using classical 

LQR and optimal LQR methods. The results obtained by 

using the proposed methods the settling time and the Mean-

Square-Error (MSE) performance criteria were compared 

and examined. Considering all the results obtained, the 

GWO-based LQR control method outperformed other 

methods in terms of both settling time and MSE error 

criteria.  The physical parameters used in the method are the 

real parameters of real-time DIPSC systems. It will be of 

great advantage to use these real parameters during the 

experimental implementation of the method. In addition, in 

the simulation environment, the noise in the real 

environment is added to the control of the system. A 2nd 

order low pass filter is used to filter this noise. Also, the 

method can be developed using different optimization 

techniques and objective functions. In addition, the method 

can be developed and applications can be made in a real-

time laboratory environment. 
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