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Abstract
In this study, some properties for the pencils of singular Sturm-Liouville operators are
investigated. Firstly, the behaviors of eigenvalues were learned, then the solutions of the
inverse problem were given to determine the potential function and parameters of the
boundary condition with the help of a dense set of nodal points and lastly we obtain a
constructive solution to the inverse problems of this class.
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1. Introduction
Solvable models of quantum mechanics are investigated in detail in the paper [1]. As

can be seen, these models are generally expressed with Hamilton operators or Schrödinger
operators with singular coefficients. Many of the problems expressed by these models are
related to the solution of spectral inverse problems for differential operators with singular
coefficients. However, many problems in mathematical physics are reduced to the study
of differential operators whose coefficients are generalized functions.

For example, the stationary vibrations of a spring-tied homogeneous wire fixed at both
ends, density R

′ (x) = aδ (x − x0) (δ (x)-Dirac function) and stiffness R(x) at point x0,
whose domain set is

D (Lo) =
{

y (x) ∈ W 2
2 [0, 1] : y

′ (x0 + 0) − y
′ (x0 − 0) = ay (x0) , x0 ∈ (0, 1) ; y(0) = 0 = y(1)

}
and is expressed by the differential operator given as Lo = − d2

dx2 in Hilbert space L2 [0, 1].
There is detailed information about the correct ( regular) definition of such operators and
the examination of their spectral properties in [2, 7, 11] studies.

We consider the following quadratic pencils of Sturm-Liouville equation of the form

`y := −y
′′ + [λp (x) + q(x)] y = λ2y, x ∈ [0, π] r {a} , (1.1)

with the boundary conditions
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U (y) := y
′ (0) − hy(0) = 0, (1.2)

V (y) := y
′ (π) + Hy(π) = 0, (1.3)

where q(x) is a real function belonging to the space L2 [0, π] , λ is a spectral parameter,
p (x) = βδ (x − a) , h, a, H and β are real numbers.

Definition 1.1. Any function y(x) ∈ W 2
2 (Ω) (Ω = [0, π] r {a}), satisfying the Sturm-

Liouville equation
−y

′′ + q(x)y (x) = λ2y, (1.4)
and the discontinuity condition at the point a:

y
′ (a + 0) − y

′ (a − 0) = λβy (a) , (1.5)
is called the solution of the equation (1.1).

Next, suppose that for all functions y(x) ∈ W 2
2 (Ω) , y(x) 6= 0, satisfying conditions

(1.2),(1.3) and (1.5), we have

h |y(0)|2 + H |y(π)|2 +
π∫

0

{∣∣∣y′(x)
∣∣∣2 + q(x) |y(x)|2

}
dx > 0. (1.6)

Here we denote by W n
2 (Ω) the space of functions f(x),x ∈ Ω, such that the derivatives

f (m) (x),
(
m = 1, n − 1

)
are absolute continuous and f (n) (x) ∈ L2 (Ω) .

Quadratic pencils of Sturm-Liouville equations with singular coefficient appear fre-
quently in various models of classical and quantum mechanics.

In studies [13–15], the spectral properties of the operator produced by the regular
differential equation given with non-separated boundary conditions containing the spectral
parameter were examined and the uniqueness theorems related to the solution of the
spectral inverse problem were proved. In studies [10], [16–19], the spectral properties of
the operator produced by the Schrödinger equation with the singular coefficient given
with the boundary conditions depending on the spectral parameter were examined and
the solution of the inverse spectral problems according to different spectral data was given.

2. Preliminaries
Let y(x, λ) and z (x, λ) be continuously differentiable solutions on (0, a)∪ (a, π) of equa-

tion (1.4), satisfying the discontinuity condition (1.5), then
〈y, z〉x=a−0 = 〈y, z〉x=a+0 , (2.1)

i.e. the function 〈y, z〉 is continuous on (0, π) .
Let ϕ (x, λ) be solution of equation (1.4), satisfying the initial conditions

ϕ (0, λ) = 1, ϕ′ (0, λ) = h (2.2)
and the discontinuity condition (1.5).

The characteristic function of the problem (1.1)-(1.3) is in the form

∆ (λ) = ϕ
′(π, λ) + Hϕ (π, λ)

with the function ϕ(x, λ) being the solution of equation (1.1) satisfying the initial condi-
tions (2.2).

It is also clear that this is an entire function [4], so this problem has a countable number
of eigenvalues. We can also prove the following propositions from the methods used in [6],
[8].

In addition, using the methods used in papers [5], [7], the following propositions are
proved:
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Lemma 2.1. The eigenvalues of the problem (1.1)-(1.3) are real and not equal to zero.

Lemma 2.2. The eigenvalues of problem (1.1) are simple.

Let ∆0 (λ) be the characteristic function of the problem corresponding to the case is
q(x) ≡ 0 problem (1.1)-(1.3). In this case, it becomes

∆0 (λ) = ϕ
′
0(π, λ) + Hϕ0 (π, λ) , (2.3)

where ϕ0 (x, λ) is the solution of the equation (1.4), satisfying initial conditions (1.2) and
discontinuity condition (1.5).

Lemma 2.3. Let Gδ =
{
λ :
∣∣λ − λ0

n

∣∣ ≥ δ, n = 1, 2, ...
}

be a small enough number δ <
r

2 .

The zeros of the ∆0 (λ) function λ0
n are discrete, so

inf
n6=k

∣∣∣λ0
n − λ0

k

∣∣∣ = r > 0.

Lemma 2.4. There is a constant Cδ > 0 so that the inequality

|∆0 (λ)| ≥ Cδ |λ| e|Im λ|π, λ ∈ Gδ, (2.4)

is satisfied.

Theorem 2.5. When λn, n = 1, 2, ... eigenvalues of problem (1.1)-(1.3) are n → ∞,

λn = λ0
n + dn

λ0
n

+ o

( 1
λ0

n

)
, (2.5)

has behavior, where,

dn = 1
•
∆ (λ0

n)

{
(ω0 (π) + H) sin λ0

nπ +
(

H

2 β − ω1 (π)
)

cos λ0
nπ+

+
(

ω2 (π) − H

2 β

)
cos λ0

n(2a − π) + ω3 (π) sin λ0
n(2a − π)

}

is the bounded sequence. Where
•
∆
(
λ0

n

)
=
[

d

dλ
∆o (λ)

]
λ=λ0

n

.

Proof. It is clear from the definition given above that the problem (1.1)-(1.3) is equivalent
to the problem (1.4)-(1.5), (1.2)-(1.3), that is, each solution of the problem (1.1)-(1.3) is
equivalent to the solution of the problem (1.4) satisfying the (1.2),(1.3) boundary and
(1.5) discontinuity conditions. Let us denote the problem of seeking the solution of (1.4)
equation satisfying (1.2)-(1.3) boundary conditions and (1.5) discontinuity condition with
L. By applying the method in the paper [9], we obtain the solution of the problem L that
satisfies the initial conditions for (2.2), while |λ| → ∞, according to the x variable,

ϕ (x, λ) = cos λx +

h + 1
2

x∫
0

q(t)dt

 sin λx

λ
+ o

(exp (|τ | x)
|λ|

)
, (2.6)

ϕ′ (x, λ) = −λ sin λx +

h + 1
2

x∫
0

q(t)dt

 cos λx + o (exp (|τ | x)) , (2.7)
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in the case of x < a and

ϕ (x, λ) = cos λx + 1
2β (sin λx − sin λ (2a − x)) + ω0 (x) sin λx

λ
+ ω1 (x) cos λx

λ
(2.8)

+
(
1 − 2β2

) a∫
0

q(t)dt
sin λ(2a − x)

4λ
+ ω2 (x) cos λ(2a − x)

2λ

+ o

(exp (|τ | x)
|λ|

)
,

ϕ′ (x, λ) = λ

[
− sin λx + 1

2β (cos λx + cos λ (2a − x))
]

+ ω0 (x) cos λx − ω1 (x) sin λx

(2.9)

+ ω2 (x) sin λ(2a − x) − 1
4
(
1 − 2β2

) a∫
0

q(t)dt cos λ(2a − x)

+ o (exp (|τ | x))

in the case of x > a are valid. Here

ω0 (x) = h − 1
4β

a∫
0

q(t)dt + 1
2

x∫
0

q(t)dt, ω1 (x) = −1
2β

h − 1
2

a∫
0

q(t)dt +
x∫

0

q(t)dt


ω2 (x) = 1

2β

h − 3
2

a∫
0

q(t)dt +
x∫

0

q(t)dt

 , ω3(x) = 1
4(1 − β2)

a∫
0

q(t)dt.

In this case,

∆ (λ) = λ

[
− sin λπ + 1

2β (cos λπ + cos λ (2a − π))
]

+ (H + ω0 (π)) cos λπ (2.10)

+
(

H

2 β − ω1 (π)
)

sin λπ +
(

−H

2 β + ω2 (π)
)

sin λ (2a − π) − ω3 (π) cos λ (2a − π)

+ o (exp (|τ | π))

is for |λ| → ∞.
Let

∆0 (λ) = λ

[
− sin λπ + 1

2β (cos λπ + cos λ (2a − π))
]

(2.11)

be a function. Using [6], for the roots of the equation ∆0 (λ) = 0,

λ0
n = n + hn, sup

n
|hn| = h < +∞ (2.12)

we obtain the following equality.
If we use the method given in the paper [6] for the characteristic equation ∆ (λ) = 0, it

is obtained from (2.10) that
λn = λ0

n + o(1) (2.13)
according to Rouche’s theorem.

Denote Gn :=
{
λ : |λ| =

∣∣λ0
n

∣∣+ δ�2
}

. On the other hand [8], since

∆ (λ) − ∆0 (λ) = O (exp (|Im λ| π)) , |λ| → ∞,
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for sufficiently large values of hand λ ∈ Gn, we get

|∆ (λ) − ∆0 (λ)| <
1
2Cδ exp (|Im λ| π) .

Thus, for λ ∈ Gn,

|∆0 (λ)| ≥ Cδ |λ| exp (|Im λ| π) >
1
2Cδ |λ| exp (|Im λ| π) > |∆ (λ) − ∆0 (λ)|

such that n is sufficiently large natural number. It follows from that for sufficiently large
values n,functions ∆0 (λ) and ∆0 (λ) + (∆ (λ) − ∆0 (λ)) = ∆ (λ) have the same number
of zeros counting multiplicities inside contour Gn according to Rouches theorem. So, they
have the (n + 1) number of zeros λ0, λ1, ..., λn. Analogously, it is shown by Rouche’s teorem
that for sufficiently large values of n, function ∆ (λ) has a unique of zero λn inside each
circle C(δ) =

{
λ :
∣∣λ − λ0

n

∣∣ ≤ δ
}

. Since δ is orbitrary sufficiently small number, we must
have

λn = λ0
n + εn, εn = o(1), n → ∞. (2.14)

Since function ∆0 (λ) is type of ”sine” [6], p.119, the number γδ > 0 exsists such that
for all n,

∣∣∣∣ •
∆
(
λ0

n

)∣∣∣∣ ≥ γδ > 0. Since λn are zeros of ∆ (λ), from (2.10) we get

εn = − 1

λ0
n

•
∆ (λ0

n)

{
(ω0 (π) + H) sin λ0

nπ +
(

H

2 β − ω1 (π)
)

cos λ0
nπ+ (2.15)

+
(

ω2 (π) − H

2 β

)
cos λ0

n(2a − π) + ω3 (π) sin λ0
n(2a − π)

}
+ o

( 1
λ0

n

)
.

Substituting (2.15) into (2.14), we get (2.5). �

3. Inverse Nodal Problems
In this section, the solution of the nodal inverse problem for the diffusion operator with

p(x) = βδ (x − a)-Dirac delta potential and any of the set of nodal points dense in the
interval (0, π) of the constants β, h, H and q(x) function, an algorithm for determining
with the help of subsequence will be given. Such problems have been studied in studies of
[3, 12,20–22] for the regular diffusion operator.

In the [20] investigate inverse nodal problems for energy-dependant p-Laplacian equa-
tions and of the study applies the Tikhonov regularization method to reconstruct po-
tential functions by only using zeros of one eigenfunction and show that the space of the
p-Laplacian operator is homeomorphic to the partition set of the space of nodal sequences.

Now, we examine the case of a = π

2 and H = +∞ for the sake of simplicity. In this case,
the (1.2), (1.3) boundary value conditions are written as y

′ (0) − hy(0) = 0 and y(π) = 0,
respectively. Then (1.5) a discontinuity condition, y

′
(

π

2 + 0
)

− y
′
(

π

2 − 0
)

= λβy

(
π

2

)
.

In this case, since ∆ (λ) = ϕ (π, λ), from the expression (2.8),

∆ (λ) = cos λπ + 1
2β sin λπ + ω0 (π) sin λπ

λ
+ ω1 (π) cos λπ

λ

+ ω2 (π)
λ

+ o

( 1
|λ|

exp (|τ | π)
)

,

is obtained.
If we take

∆0 (λ) = cos λπ + 1
2β sin λπ,
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we get λ0
n = n − α

π
, n ∈ Z, α = arctan

( 2
β

)
from the equation ∆0 (λ) = 0 . Therefore,

according to Theorem 2.5, the behavior of

λn = λ0
n + cn

λ0
n

+ o

( 1
n

)
(3.1)

is obtained when n → ∞ for the roots of the equation ∆ (λ) = 0, that is, for the eigenvalues
of the problem (1.4), (1.2), (1.3) and (1.5). Where

cn = (−1)n

•
∆ (λ0

n)
{ω1 (π) cos α − ω0 (π) sin α + (−1)n ω2 (π)}

= 1

π

√
1 +

(1
2β

)2

ω1 (π) β

2
√

1 +
(1

2β

)2
− ω0 (π)√

1 +
(1

2β

)2
+ (−1)n ω2 (π)

 .

The eigenfunctions of the boundary value problem (1.1)- (1.3) or (1.4), (1.2), (1.3) and
(1.5) have the form yn (x) = ϕ (x, λn) . We note that yn (x) are real-valued functions.
Substituting (3.1) into (2.6)-(2.9) we obtain the following asimptotic formulae for n → ∞
uniformly in x:

yn (x) = cos λ0
nx +

−cnx + h + 1
2

x∫
0

q(t)dt

 sin λ0
nx

λ0
n

+ o

( 1
n

)
, x <

π

2 (3.2)

yn (x) =

1 + (−1)n β

2
√

1 +
(1

2β

)2

 cos λ0
nx + 1

2β

1 + (−1)n β

2
√

1 +
(1

2β

)2

 sin λ0
nx

+

ω0 (x) − xcn − (−1)n√
1 +

(1
2β

)2

(
ω2 (x) − π − x

2 βcn

)
− (−1)n βω3 (x)

2
√

1 +
(

1
2β
)2

 sin λ0
nx

λ0
n

+

ω1 (x) + x

2 βcn + (−1)n β

2
√

1 +
(1

2β

)2

(
ω2 (x) − π − x

2 βcn

)
− (−1)n ω3 (x)√

1 +
(1

2β

)2

 cos λ0
nx

λ0
n

+o

( 1
n

)
, x >

π

2 .

(3.3)
From oscillation theorem it is easy to see the eigenfunction yn (x) has exactly n (simple)

zeros inside in the interval (0, π) , namely:

0 < x1
n < x2

n < ... < xn
n < π.

The set is X :=
{
xj

n

}
n≥1 , j = 1, n, called the set of nodal points of the problem

(1.1)-(1.3) or (1.4), (1.2), (1.3) and (1.5). Denote X(t) :=
{

xj
2m−t

}
, t = 0, 1. Clearly,

X(0) ∪ X(1) = X(t) and the set X(t) is dense in (0, π) .
Inverse problem: Given a set X =

{
xj

n : n ∈ N, j = 1, n
}

nodal points or subset
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Xs =
{

xj
nk

: nk ∈ N, j = 1, nk, k ∈ N
}

of a set X, where Xs is dens in (0, π) , find the data h, β and potential q(x).
Taking (3.2) and (3.3) into account, we obtain the following asimptotic formulae for

nodal points as n → ∞ uniformly in j ∈ Z :

xj
n =

(
j − 1

2

)
π

n
+ α

πn

(
j − 1

2

)
π

n

+

−c0xj
n + h + 1

2

xj
n∫

0

q(t)dt

 1
n2 + o

( 1
n2

)
, xj

n ∈
(

0,
π

2

)
, n = 2m,

(3.4)

xj
n =

(
j − 1

2

)
π

n
+ α

πn

(
j − 1

2

)
π

n

+

−c1xj
n + h + 1

2

xj
n∫

0

q(t)dt

 1
n2 + o

( 1
n2

)
, xj

n ∈
(

0,
π

2

)
, n = 2m − 1,

(3.5)

xj
n =

(
j − 1

2

)
π

n
+

α

(
j − 1

2

)
π

πn2 + 1
n

arctan
(1

2β

)
+

α arctan
(1

2β

)
πn2

−

1
2βB0 (xj

n

)
− A0 (xj

n

)
n2 + o

( 1
n2

)
, xj

n ∈
(

π

2 , π

)
, n = 2m,

(3.6)

xj
n =

(
j − 1

2

)
π

n
+

α

(
j − 1

2

)
π

πn2 + 1
n

arctan
(1

2β

)
+

α arctan
(1

2β

)
πn2

−

1
2βB1 (xj

n

)
− A1 (xj

n

)
n2 + o

( 1
n2

)
, xj

n ∈
(

π

2 , π

)
, n = 2m − 1,

(3.7)

where,

A(t) (x) = 1
At

{
ω0 (x) − xct − (−1)t sin α

(
ω2 (x) − π − x

2 βct

)
− (−1)t ω3 cos α

}
, (3.8)

B(t) (x) = 1
At

{
ω1 (x) − x

2 βct + (−1)t cos α

(
ω2 (x) − π − x

2 βct

)
− (−1)t ω3 sin α

}
(3.9)

ct = 1

π

√
1 +

(1
2β

)2


βω1 (π) − 2ω0 (π)

2
√

1 +
(1

2β

)2
+ (−1)t ω2 (π)

 , (3.10)

A(t) = 1 + (−1)t cos α = 1 + (−1)t β

2
√

1 +
(1

2β

)2
, t = 0, 1. (3.11)

The equality (3.4)-(3.7) for the sufficilutly large gives
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xj+1
n − xj

n = π

n
+ o

( 1
n

)
uniformly with respect to j. Cousequently, for sufficiently large n, we have xj

n < xj+1
n .

On the other hand, from equality (3.4)-(3.7) it follows that the set
{
xj

n

}
is dense in

[0, π] . Therefore, for all x ∈ [0, π] , there exists
{
xj

n

}
such that lim

n→∞
xj

n = x. Moreover,
note that

lim
n→∞

(
j − 1

2

)
π

n
= x.

Theorem 3.1. Fix t = 0, 1 and x ∈ [0, π] . Suppose that
{
xj

n

}
∈ X(t), be chosen such that

lim
n→∞

xj
n = x. Then the following finite limits exist and the corresponding equalities hold

for x <
π

2
lim

n→∞

(
nxj

n −
(

j − 1
2

)
π

)
def= f1 (x) , (3.12)

lim
n→∞

nxj
n −

(
j − 1

2

)
π − α

π

(
j − 1

2

)
π

n

 def= gt
1 (x) , (3.13)

for x >
π

2
lim

n→∞

(
nxj

n −
(

j − 1
2

)
π

)
def= f2 (x) , (3.14)

lim
n→∞

nxj
n −

(
j − 1

2

)
π −

α
(
j − 1

2

)
π

πn
− arctan

(1
2β

)n
def= gt

2 (x) , (3.15)

and
f1 (x) = α

π
x, x ∈

[
0,

π

2

)
, (3.16)

gt
1 (x) = −ctx + h + 1

2

x∫
0

q(t)dt, x ∈
[
0,

π

2

)
, (3.17)

f2 (x) = α

π
x + arctan

(1
2β

)
, x ∈

(
π

2 , π

]
, (3.18)

gt
2 (x) = α

π
arctan

(1
2β

)
+ A(t) (x) − 1

2βBt (x) , x ∈
(

π

2 , π

]
. (3.19)

Proof. If we use the asymptotical formulaes (3.4)-(3.7), we get that:
for xj

n ∈
(

0,
π

2

)

nxj
n −

(
j − 1

2

)
π = α

π

(
j − 1

2

)
π

n
+

−ctx
j
n + h + 1

2

xj
n∫

0

q(t)dt

 1
n

+ o

( 1
n

)
, (3.20)

nxj
n −

(
j − 1

2

)
π − α

π

(
j − 1

2

)
π

n

n = −ctx
j
n + h + 1

2

xj
n∫

0

q(t)dt + o(1), (3.21)
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for xj
n ∈

(
π

2 , π

)

nxj
n −

(
j − 1

2

)
π = α

π

(
j − 1

2

)
π

n
+ arctan

(1
2β

)
+ α

πn
arctan

(1
2β

)
(3.22)

+
A(t) (xj

n

)
− 1

2βB(t) (xj
n

)
n

+ o

( 1
n

)
,

nxj
n −

(
j − 1

2

)
π − α

π

(
j − 1

2

)
π

n
− arctan

(1
2β

)n = α

π
arctan

(1
2β

)
(3.23)

+ A(t)
(
xj

n

)
− 1

2βB(t)
(
xj

n

)
+ o(1).

Since, lim
n→∞

xj
n = x, lim

n→∞

(
j − 1

2

)
π

n
= x and

lim
n→∞

A(t)(xj
n) = A(t)(x), lim

n→∞
B(t)(xj

n) = B(t)(x)

from this and (3.20)-(3.23), we conclude that as n → ∞ the limits of left hand side of
(3.20)-(3.23) holds. Theorem 3.1 is proved. �

Remark 3.2. We get from Theorem 3.1 that the regularity orders of the functions gt (x)

and
x∫

0

q(t)dt are the same.

We now state a uniqueness theorem and present a constructive prosedure for solving
inverse nodal problem.

Theorem 3.3. Fix t = 0, 1. Let Xs ⊂ X(t) be a subset of nodes which is dense (0, π).
Then, the specification of Xs uniquely determines the potential q(x) − 〈q〉 a.e. on (0, π)
and the coefficient h of the boundary condition and coefficient β. The potential q(x) − 〈q〉
and the numbers h and β, can be constructed via the following algoritm:

1. For each x ∈ [0, π], we choose a sequence
{
xj

n

}
⊂ X0 such that lim

n→∞
xj

n = x.

2. From (3.13), we find the function gt
1 (x) and calculate value for gt

1 (x) at x = 0, i.e.

h = gt
1 (0) (3.24)

3. From (3.12), we find the function f1 (x) and calculate value for f1 (x) at x = 1, i.e.

β = 2
tan (πf1 (1)) (3.25)

4. The function q(x) −
〈
qt
〉

can be determined as

q(x) −
〈
qt
〉

= 2
(
gt

1 (x)
)′

+ gt
1 (0)

π

[
1 + 2

(1
2β

)2
]
(−1)t β −

√
1 +

(1
2β

)2
 , x ∈

[
0,

π

2

]
,

(3.26)
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where

〈
qt
〉

= − 2

π

[
1 + 2

(1
2β

)2
]
1

2β

(β − 1) − 3 (−1)t

√
1 +

(1
2β

)2
 a∫

0

q(t)dt+

1
2 +

(1
2β

)2
− (−1)t β

√
1 +

(1
2β

)2
 π∫

0

q(t)dt

 .

q(x) −
〈
qt
〉

=

2
√

1 +
(1

2β

)2
+ (−1)t β

(gt
2 (x)

)′

√
1 +

(1
2β

)2
(

1 + 2
(1

2β

)2
)

− (−1)t β

(
1 +

(1
2β

)2
)+

gt
1 (0)

π

[
1 + 2

(1
2β

)2
]
(−1)t β −

√
1 +

(1
2β

)2
 , x ∈

[
π

2 , π

]
,

(3.27)

where

〈
qt
〉

= − 2

π

[
1 + 2

(1
2β

)2
] 2

[
1 +

(1
2β

)2
]

+ (−1)t β

√
1 +

(1
2β

)2

1 + 2
(1

2β

)2
− (−1)t β

√
1 +

(1
2β

)2
 .

1
2β

(β − 1) − 3 (−1)t

√
1 +

(1
2β

)2
 a∫

0

q(t)dt+1
2 +

(1
2β

)2
− (−1)t β

√
1 +

(1
2β

)2
 π∫

0

q(t)dt

 .

Proof. Formulas (3.24), (3.25) and (3.27) can be derived from, (3.16), (3.17) and (3.19)
step by step. We obtain the following reconstruction prosedure:

i) Taking value for gt
1 (x) at x = 0, then it yields h = gt

1 (0) .

ii) Taking value for f1 (x) at x = 1, then it yield β = 2
tan (πf1 (1)) .

iii) After hand β are reconstructed, on take derivatives of the functions gt
i (x) , (i = 1, 2)

we have (3.27) and (3.26). �
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