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Abstract. The primary objective of this study is to advance Sanchez’s method for medical diagnosis by incorpo-
rating fuzzy arithmetic operations. To achieve this, we generalize the existing approach through the application of
bipolar fuzzy soft set theory, which enables the identification of two distinct types of medical knowledge within a
unified framework. Additionally, we propose a novel decision-making algorithm tailored to this enhanced approach.
The application of this algorithm in the medical field is illustrated through practical examples, demonstrating its
potential to improve diagnostic processes and decision-making in medical practice.
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1. Introduction

Uncertainty is involved in most fields like engineering, economic and social disciplines, etc. All uncertainty prob-
lems that a person encounters in his life cannot be solved by using ancient mathematical skills. Because; information
may be incomplete, not entirely reliable, vague, contradictory, or deficient in some other way. These various informa-
tion deficiencies may result in fuzziness or vagueness. One of the first studies on the solution to uncertainty problems
was the fuzzy set theory given by Zadeh [26] in 1965. In the following years, in 1994, Zhang [27] initiated the con-
cept of bipolar fuzzy sets. In addition, many set theories such as rough sets [21] (this theory is based on equivalence
relations), bipolar valued fuzzy sets [15], bipolar-valued hesitant fuzzy sets [16, 25], soft sets [20], bipolar fuzzy soft
sets [1] have been proposed to solve the uncertainty problem in the most ideal way. Bipolar fuzzy sets, one of these
cluster theories, are an extension of fuzzy sets whose membership degree range is [−1, 1]. In recent years bipolar fuzzy
sets seem to have been studied and applied a bit enthusiastically and a bit increasingly. Abdullah et al. [1] introduced
the notion of the bipolar fuzzy soft set which is a combination of bipolar fuzzy set and soft set. In addition, we can
easily say that the studies for the solution to uncertainty problems are increasing day by day. Especially; works on soft
set theory [20] are making progress rapidly [4–7, 10, 11, 14].

Although many studies have been conducted in the fuzzy medical diagnostic model, few of these studies have estab-
lished a consistent relationship between symptoms and diseases. In one of these studies, Sanchez [24] formulated the
diagnostic models involving fuzzy matrices representing the medical knowledge between the symptoms and diseases.
This approach is grounded in fuzzy set theory, which was initially introduced by Zadeh [26] in 1965 to handle un-
certainties and imprecision inherent in many real-world problems, including medical diagnosis. The Sanchez method
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N. Demirtaş, O. Dalkılıç, Turk. J. Math. Comput. Sci., 16(2)(2024), 314–324 315

leverages fuzzy relations to encapsulate the uncertain and imprecise nature of medical information. By constructing
fuzzy matrices, Sanchez’s models can depict the degrees of association between symptoms (inputs) and diseases (out-
puts). These degrees of association are represented by values in the interval [0, 1], where 0 indicates no association
and 1 indicates a full association. One of the beneficiaries of this method, De et al. [8] have studied Sanchez’s [23, 24]
method of medical diagnosis using an intuitionistic fuzzy set. Apart from that, the method developed by Sanchez [24]
has been used in many studies [2, 19, 22].

Despite its innovative use of fuzzy logic, the Sanchez approach has several limitations:
• Limited Handling of Bipolar Information: The original Sanchez method does not adequately handle bipolar

information, which consists of both positive (supporting) and negative (contradicting) evidence. In medical diagnosis,
it is crucial to consider both aspects to make accurate decisions.
• Single-Type Knowledge Representation: The approach primarily deals with a single type of medical knowledge

at a time. However, medical diagnoses often require integrating multiple types of information, such as symptoms, test
results, and patient history.
• Complexity and Scalability: As the number of symptoms and diseases increases, the fuzzy relation matrices be-

come larger and more complex to handle. This scalability issue can pose challenges in practical applications involving
large datasets.

In this study, we applied bipolar fuzzy soft sets to the medical diagnostic approach developed by Sanchez [24],
demonstrating its application with a hypothetical case. The existing algorithm by Çelik and Yamak [3] has been found
inadequate in certain situations. To overcome these limitations, we have proposed a new algorithm. Specifically, we
addressed these limitations by generalizing the Sanchez approach using bipolar fuzzy soft set theory. This enhancement
allows us to:
• Integrate Bipolar Information: By using bipolar fuzzy soft sets, we can simultaneously handle positive and nega-

tive information, providing a more comprehensive diagnostic model.
•Multi-Type Knowledge Representation: Our approach enables the integration of various types of medical knowl-

edge within a single framework, improving the robustness and accuracy of diagnoses.
• Improved Decision-Making Algorithm: We propose an advanced decision-making algorithm that efficiently pro-

cesses the complex relationships captured by bipolar fuzzy soft sets, making it scalable and applicable to larger datasets.
By extending the Sanchez approach in these ways, our method offers a more powerful tool for medical diagnosis,

capable of addressing the nuanced and multifaceted nature of medical information.

2. Preliminaries

In this section, we introduce the fundamental ideas behind fuzzy sets, fuzzy numbers, soft sets, bipolar fuzzy sets
and bipolar fuzzy soft sets.

Throughout the paper, U is an initial universe, P(U) is the power set of U and A, B, C are non-empty subsets of the
parameter set E.

Definition 2.1 ( [26]). Let U be a collection of objects denoted by u. Then, a fuzzy set X in U is defined as

X = {µX(u)/u : u ∈ U},

where µX : U → [0, 1] is called the membership function of X. The value µX(u) denotes the degree of membership of
the element u ∈ U into the set X.

Definition 2.2 ( [13]). A bipolar fuzzy set A in a universe U is an object having the form, A = {(u, µ+A(u), µ−A(u)) :
u ∈ U}, where µ+A : U → [0, 1], µ−A : U → [−1, 0]. So µ+A denote for positive information and µ−A denote for negative
information.

Definition 2.3 ( [20]). Let U be an initial universe, E be the set of parameters, A ⊂ E and P(U) is the power set of U.
Then, (F, A) is called a soft set, where F : A→ P(U).

Definition 2.4 ( [26]). A fuzzy subset µ of U is defined as a map from U to [0, 1]. The family of all fuzzy subsets
of U is denoted by F(U). Let µ, ν ∈ F(U) and u ∈ U. Then, the union and intersection of µ and ν are defined in the
following way:

(µ ∨ ν)(x) = µ(x) ∨ ν(x),
(µ ∧ ν)(x) = µ(x) ∧ ν(x),
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µ ≤ ν if and only if µ(x) ≤ ν(x) for all u ∈ U.

Definition 2.5 ( [1]). Let U be a universe, E a set of parameters and A ⊂ E. Define F : A → BFU , where BFU is the
collection of all bipolar fuzzy subsets of U. Then, (F, A) is said to be a bipolar fuzzy soft set over a universe U. It is
defined by

(F, A) = {(u, µ+e (u), µ−e (u)) : ∀u ∈ U, e ∈ A}.

Example 2.6. Let U = {u1, u2, u3} be the set of three houses under consideration and E = {e1 = scenic, e2 =

expensive, e3 = large and com f ortable, e4 = garden, e5 = traditional} be the set of parameters and A = e1, e3, e4 ⊂ E.
Then,

(F, A) =
{(

e1,
({

u1, (0.45,−0, 30)
}
,
{
u2, (0.75,−0, 23)

}
,
{
u3, (0.61,−0, 45)

}))
,(

e3,
({

u1, (0.25,−0, 68)
}
,
{
u2, (0.36,−0, 13)

}
,
{
u3, (0.24,−0, 67)

}))
,(

e4,
({

u1, (0.95,−0, 18)
}
,
{
u2, (0.65,−0, 32)

}
,
{
u3, (0.58,−0, 15)

}))}
.

Definition 2.7 ( [1]). Let U be a universe and E a set of attributes.Then, (U, E) is the collection of all bipolar fuzzy
soft sets on U with attributes from E and is said to be bipolar fuzzy soft class.

Definition 2.8 ( [1]). Let (F, A) and (G, B) be two bipolar fuzzy soft sets over a common universe U. We say that (F, A)
is a bipolar fuzzy soft subset of (G, B), if
(i) A ⊆ B and
(ii) For all e ∈ A, F(e) is a bipolar fuzzy subset of G(e). We write (F, A)⊆̃(G, B).

Moreover, we say that (F, A) and (G, B) are bipolar fuzzy soft equal sets if (F, A) is a bipolar fuzzy soft subset of
(G, B) and (G, B) is a bipolar fuzzy soft subset of (F, A).

Definition 2.9 ( [1]). (i) A bipolar fuzzy soft set (F, A) is said to be the absolute bipolar fuzzy soft set over U, if
F(e) = BFU for all e ∈ A.
(ii) A bipolar fuzzy soft set (F, A) is said to be the null bipolar fuzzy soft set over U, if F(e) = ∅ for all e ∈ A.

Definition 2.10 ( [1]). The complement of a bipolar fuzzy soft set (F, A) is denoted (F, A)c and is defined by (F, A)c =

{(u, 1 − µ+A(u),−1 − µ−A(u)) : u ∈ U}.

It should be noted that 1 − F(e) denotes the fuzzy complement of F(e) for e ∈ A.

Definition 2.11 ( [1]). Let (F, A) and (G, B) be two bipolar fuzzy soft sets over a common universe U. Then,
(i) The union of bipolar fuzzy soft sets (F, A) and (G, B) is defined as the bipolar fuzzy soft set (H,C) = (F, A)∪ (G, B)
over U, where C = A ∪ B, H : C → BFU and

H(e) =


F(e), if e ∈ A \ B
G(e), if e ∈ B \ A
F(e) ∪G(e), if e ∈ A ∩ B

for all e ∈ C.
(ii) The restricted union of bipolar fuzzy soft sets (F, A) and (G, B) is defined as the bipolar fuzzy soft set (H,C) =
(F, A) ∪R (G, B) over U, where C = A ∩ B , ∅, H : C → BFU and H(e) = F(e) ∪G(e) for all e ∈ C.
(iii) The extended intersection of bipolar fuzzy soft sets (F, A) and (G, B) is defined as the bipolar fuzzy soft set
(H,C) = (F, A) ∩ (G, B) over U, where C = A ∪ B, H : C → BFU and

H(e) =


F(e), if e ∈ A \ B
G(e), if e ∈ B \ A
F(e) ∩G(e), if e ∈ A ∩ B

for all e ∈ C.
(iv) The restricted intersection of bipolar fuzzy soft sets (F, A) and (G, B) is defined as the bipolar fuzzy soft set
(H,C) = (F, A) ∩R (G, B) over U, where C = A ∩ B , ∅, H : C → BFU and H(e) = F(e) ∩G(e) for all e ∈ C.
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Definition 2.12 ( [12]). (i) A fuzzy subset µ on the universe of discourse R (the set of all real numbers) is convex if
and only if for a, b ∈ U µ(αa + βb) ≥ µ(a) ∧ µ(b), where α + β = 1.
(ii) A fuzzy subset µ on the universe of discourse U is called a normal fuzzy subset if there exist ai ∈ U such that
µ(ai) = 1.
(iii) A fuzzy number is a fuzzy subset defined on the universe of discourse R which is both convex and normal.

A fuzzy number µ on the universe of discourse R may be characterized by a triangular distribution function param-
eterized by a triplet (a, b, c). The membership function of the fuzzy number µ is defined as

µ(u) =


0, if u < a
u−a
b−a , if a ≤ u ≤ b
c−u
c−b , if b ≤ u ≤ c
0, if u > c.

If the membership function µ(u) is piecewise linear, then µ is said to be a trapezoidal fuzzy number.
Let µ and β be two triangular fuzzy numbers parameterized by the triplet ỹ1 = (x1, y1, z1) and ỹ2 = (x2, y2, z2)

respectively. Then, addition and multiplication of µ and β as given in [12] are

µ ⊕ β = ỹ1 ⊕ ỹ2 = (x1, y1, z1) ⊕ (x2, y2, z2) = (x1 + x2, y1 + y2, z1 + z2)

and
µ ⊗ β = ỹ1 ⊗ ỹ2 = (x1, y1, z1) ⊗ (x2, y2, z2) = (x1 × x2, y1 × y2, z1 × z2).

Next, we give the defuzzification method of a trapezoidal fuzzy number. Take a trapezoidal fuzzy number parame-
terized by a quadruplet (p, q, r, s) as shown in Figure 1.

Then, the defuzzification value t of the fuzzy number is calculated from the figure as follows:

(t − q)(l) +
1
2

(q − p)(l) = (r − t)(l) +
1
2

(s − r)(l)

⇒ (t − q) +
1
2

(q − p) = (r − t) +
1
2

(s − r)

⇒ 2t =
s − r − q + p

2
+ q + r

⇒ t =
p + q + r + s

4
.

Similarly, the defuzzification value e of a triangular fuzzy number (a, b, c) is equal to

e =
a + b + b + c

4

3. Technical Details of theMethodWe Developed

In this section, an application in the field of medicine given by Çelik and Yamak [3] is reconsidered for bipolar
fuzzy soft sets. In addition, the algorithm given by [3] has been developed here and results are obtained that are closer
to more ideal, a related study example is given in the next section. The data obtained for patients will be subjected to
fuzzy arithmetic operations and an algorithm for the detection of the disease will be shown. Assume that, there is a
set of m patients, P = {p1, p2, p3, ..., pm} with a set of n symptoms S = {s1, s2, s3, ..., sn} related to a set of k diseases
D = {d1, d2, d3, ..., dk}.

We apply bipolar fuzzy soft set theory to develop a technique through Sanchez’s method to diagnose which pa-
tient is suffering from what disease. For this, construct a bipolar fuzzy soft set (F, P) over S where F is a mapping
F : P → BFS . This bipolar fuzzy soft set gives a relation matrix Q, called patient-symptom matrix, where the entries
are fuzzy numbers p parameterized by a triplet (p − 1, p, p + 1).

Then construct another bipolar fuzzy soft set (G, S ) over D, where G is amapping G : S → BFD. This bipolar fuzzy
soft set gives a relation matrix (weighted matrix) R, called symptom-disease matrix, where each element denotes the
weight of the symptoms for a certain disease. These elements are also taken as triangular fuzzy numbers.
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Figure 1. A trapezoidal fuzzy number parameterized by a quadruplet (p, q, r, s).

Thus, the general form of Q is

s1 s2 s3 · · · sn

Q =

p1
p2
p3
·

·

·

pm



(x̃+11, x̃
−
11) (x̃+12, x̃

−
12) (x̃+13, x̃

−
13) · · · (x̃+1n, x̃

−
1n)

(x̃+21, x̃
−
21) (x̃+22, x̃

−
22) (x̃+23, x̃

−
23) · · · (x̃+2n, x̃

−
2n)

(x̃+31, x̃
−
31) (x̃+32, x̃

−
32) (x̃+33, x̃

−
33) · · · (ã+3n, ã

−
3n)

· · · · · · ·

· · · · · · ·

· · · · · · ·

(x̃+m1, x̃
−
m1) (x̃+m2, x̃

−
m2) (x̃+m3, x̃

−
m3) · · · (x̃+mn, x̃−mn)


,

where
(
µ̃+pi

(s j), µ̃−pi
(s j)

)
= (x̃+i j, x̃

−
i j) for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

In addition, the general form of R is

d1 d2 d3 · · · dk

R =

s1
s2
s3
·

·

·

sn



(ỹ+11, ỹ
−
11) (ỹ+12, ỹ

−
12) (ỹ+13, ỹ

−
13) · · · (ỹ+1k, ỹ

−
1k)

(ỹ+21, ỹ
−
21) (ỹ+22, ỹ

−
22) (ỹ+23, ỹ

−
23) · · · (ỹ+2k, ỹ

−
2k)

(ỹ+31, ỹ
−
31) (ỹ+32, ỹ

−
32) (ỹ+33, ỹ

−
33) · · · (ỹ+3k, ỹ

−
3k)

· · · · · · ·

· · · · · · ·

· · · · · · ·

(ỹ+n1, ỹ
−
n1) (ỹ+n2, ỹ

−
n2) (ỹ+n3, ỹ

−
n3) · · · (ỹ+nk, ỹ

−
nk)


,
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where
(
µ̃+sl

(dt), µ̃−sl
(dt)

)
= (ỹ+lt , ỹ

−
lt ) for all 1 ≤ l ≤ n and 1 ≤ t ≤ k.

Now, performing the transformation operation Q ⊗ R, we get the patient-diagnosis matrix D∗ as follows:

d1 d2 d3 · · · dk

D∗ =

p1
p2
p3
·

·

·

pm



(z̃+11, z̃
−
11) (z̃+12, z̃

−
12) (z̃+13, z̃

−
13) · · · (z̃+1k, z̃

−
1k)

(z̃+21, z̃
−
21) (z̃+22, z̃

−
22) (z̃+23, z̃

−
23) · · · (z̃+2k, z̃

−
2k)

(z̃+31, z̃
−
31) (z̃+32, z̃

−
32) (z̃+33, z̃

−
33) · · · (z̃+3k, z̃

−
3k)

· · · · · · ·

· · · · · · ·

· · · · · · ·

(z̃+m1, z̃
−
m1) (z̃+m2, z̃

−
m2) (z̃+m3, z̃

−
m3) · · · (z̃+mk, z̃

−
mk)


,

where

z̃+il =
( n∑

j=1

(x+i j − 1)(y+jl − 1),
n∑

j=1

x+i jy
+
jl,

n∑
j=1

(x+i j + 1)(y+jl + 1)
)

and

z̃−il =
( n∑

j=1

(x−i j − 1)(y−jl − 1),
n∑

j=1

x−i jy
−
jl,

n∑
j=1

(x−i j + 1)(y−jl + 1)
)
.

Then, defuzzifying each element of the above matrix by [26], we get the crisp diagnosis matrix as

d1 d2 d3 · · · dk

D∗∗ =

p1
p2
p3
·

·

·

pm



(ṽ+11, ṽ
−
11) (ṽ+12, ṽ

−
12) (ṽ+13, ṽ

−
13) · · · (ṽ+1k, ṽ

−
1k)

(ṽ+21, ṽ
−
21) (ṽ+22, ṽ

−
22) (ṽ+23, ṽ

−
23) · · · (ṽ+2k, ṽ

−
2k)

(ṽ+31, ṽ
−
31) (ṽ+32, ṽ

−
32) (ṽ+33, ṽ

−
33) · · · (ṽ+3k, ṽ

−
3k)

· · · · · · ·

· · · · · · ·

· · · · · · ·

(ṽ+m1, ṽ
−
m1) (ṽ+m2, ṽ

−
m2) (ṽ+m3, ṽ

−
m3) · · · (ṽ+mk, ṽ

−
mk)


.

Now, let’s calculate the coefficients to express what disease each patient suffering from. A coefficient is defined to
determine the ranking order of all patients once the (ṽ+i j, ṽ

−
i j) of each patient pi (i = 1, 2, ...,m) which suffering from

disease d j ( j = 1, 2, ..., k) has been calculated. The coefficient of each patient suffering from any disease is calculated
as:

c̃i j = −
ṽ−i j

ṽ+i j − ṽ−i j

, i = 1, 2, ...,m, j = 1, 2, ..., k

and, we get the patient-diagnosis coefficient matrix D∗∗∗ as follows:

d1 d2 d3 · · · dk

D∗∗∗ =

p1
p2
p3
·

·

·

pm



c̃11 c̃12 c̃13 · · · c̃1k

c̃21 c̃22 c̃23 · · · c̃2k

c̃31 c̃32 c̃33 · · · c̃3k

· · · · · · ·

· · · · · · ·

· · · · · · ·

c̃m1 c̃m2 c̃m3 · · · c̃mk


.
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Obviously, the patient pi is suffering from disease d j as c̃i j approaches to 1. In case maxci j occurs for more than one
value of l, 1 ≤ j ≤ k, then we can reassess the symptoms.

Algorithm 1. .
Step 1: Construct the bipolar soft set (F, P) to obtain the patient-symptom matrix Q.
Step 2: Construct the bipolar soft set (G, S ) to obtain the symptom-disease matrix R.
Step 3: Perform the transformation operation Q ⊗ R to get the patient diagnosis matrix D∗.
Step 4: Defuzzify all the elements of the matrix D∗ by [26] to obtain the matrix D∗∗.
Step 5: Calculate the coefficients c̃i j of each patient pi (i = 1, 2, ...,m) which suffering from disease d j ( j = 1, 2, ..., k)
to obtain the patient-symptom coefficient matrix D∗∗∗ using the data in the matrix D∗∗.
Step 6: Find s for which cis = maxci j. In other words, make decision against highest value involved in the row.

Then, we conclude that the patient pi is suffering from disease ds.

4. An Application in the Field ofMedicine

Suppose there are four patients Ahmet, Ali, Fatma, Ayşe in a hospital with symptoms suprapubic pain, sweating,
chills, renal ultrasound findings and weakness. Let the possible diseases related to the above symptoms be urinary
tract infection (UTI), acute pyelonephritis (AP), nonspecific urethritis (NU). In this case, take P = {p1 = Ahmet, p2 =

Ali, p3 = Fatma, p4 = Ayşe} as the set of patients, D = {d1 = UT I, d2 = AP, d3 = NU} as the set of diseases and
S = {s1 = suprapubic pain, s2 = sweating, s3 = chills, s4 = renal ultrasound f indings, s5 = weakness} as the set of
symptoms.

Suppose
F(p1) = {s1/[̃5, −̃2], s2/[̃7, −̃1], s3/[̃2, −̃6], s4/[̃8, −̃3], s5/[̃4, −̃5]},

F(p2) = {s1/[̃1, −̃3], s2/[̃4, −̃6], s3/[̃7, −̃2], s4/[̃5, −̃1], s5/[̃9, −̃4]},

F(p3) = {s1/[̃4, −̃5], s2/[̃2, −̃3], s3/[̃1, −̃6], s4/[̃7, −̃2], s5/[̃8, −̃1]},

F(p4) = {s1/[̃7, −̃2], s2/[̃8, −̃1], s3/[̃5, −̃3], s4/[̃1, −̃9], s5/[̃2, −̃7]}.
Now, using the bipolar fuzzy soft set (F, P) given over S , the patient-symptom matrix Q is given by

s1 s2 s3 s4 s5

Q =

p1
p2
p3
p4


(̃5, −̃2) (̃7, −̃1) (̃2, −̃6) (̃8, −̃3) (̃4, −̃5)
(̃1, −̃3) (̃4, −̃6) (̃7, −̃2) (̃5, −̃1) (̃9, −̃4)
(̃4, −̃5) (̃2, −̃3) (̃1, −̃6) (̃7, −̃2) (̃8, −̃1)
(̃7, −̃2) (̃8, −̃1) (̃5, −̃3) (̃1, −̃9) (̃2, −̃7)

 .
Then; suppose

G(s1) = {d1/[̃1, −̃2], d2/[̃2, −̃3], d3/[̃8, −̃1]},

G(s2) = {d1/[̃4, −̃8], d2/[̃9, −̃5], d3/[̃5, −̃6]},

G(s3) = {d1/[̃6, −̃6], d2/[̃8, −̃4], d3/[̃7, −̃4]},

G(s4) = {d1/[̃9, −̃4], d2/[̃5, −̃3], d3/[̃2, −̃2]},

G(s5) = {d1/[̃3, −̃1], d2/[̃1, −̃5], d3/[̃1, −̃1]}.

Now, let’s express the bipolar fuzzy soft set (G, S ) given above as matrix R:

d1 d2 d3

R =

s1
s2
s3
s4
s5


(̃1, −̃2) (̃2, −̃3) (̃8, −̃1)
(̃4, −̃8) (̃9, −̃5) (̃5, −̃6)
(̃6, −̃6) (̃8, −̃4) (̃7, −̃4)
(̃9, −̃4) (̃5, −̃3) (̃2, −̃2)
(̃3, −̃1) (̃1, −̃5) (̃1, −̃1)


.
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Then, performing the transformation operation Q ⊕ R, we get the patient-diagnosis matrix D∗ as

d1 d2 d3

D∗ =

p1
p2
p3
p4


(1̃29, −̃65) (1̃33, −̃69) (1̃09, −̃43)
(1̃31, −̃74) (1̃28, −̃70) (9̃6, −̃53)
(1̃05, −̃79) (7̃7, −̃65) (7̃1, −̃52)
(8̃4, −̃73) (1̃33, −̃85) (1̃35, −̃45)

 ,
where

(1̃29, −̃65) = [(85,−108), (129,−65), (183,−32)], (1̃33, −̃69) = [(87,−111), (133,−69), (189,−37)],

(1̃09, −̃43) = [(65,−79), (109,−43), (163,−17)], (1̃31, −̃74) = [(87,−116), (131,−74), (185,−42)],

(1̃28, −̃70) = [(82,−111), (128,−70), (184,−39)], (9̃6, −̃53) = [(52,−88), (96,−53), (150,−28)],

(1̃05, −̃79) = [(65,−122), (105,−79), (155,−46)], (7̃7, −̃65) = [(35,−107), (77,−65), (129,−33)],

(7̃1, −̃52) = [(31,−88), (71,−52), (121,−26)], (8̃4, −̃73) = [(43,−121), (84,−73), (135,−35)],

(1̃33, −̃85) = [(90,−132), (133,−85), (186,−48)], (1̃35, −̃45) = [(94,−86), (135,−45), (186,−14)].

Now, defuzzifying the above matrix, we get

d1 d2 d3

D∗∗ =

p1
p2
p3
p4


(131.5,−67.5) (135.5,−71.5) (111.5,−45.5)
(133.5,−76.5) (130.5,−72.5) (98.5,−55.5)
(107.5,−81.5) (79.5,−67.5) (73.5,−54.5)
(86.5,−75.5) (135.5,−87.5) (137.5,−47.5)

 .
Finally, we get the patient-diagnosis coefficient matrix D∗∗∗ as:

d1 d2 d3

D∗∗∗ =

p1
p2
p3
p4


0.3392 0.3454 0.2898
0.3643 0.3571 0.3604
0.4312 0.4592 0.4258
0.4660 0.3924 0.2568

 .
The analysis of the results presented in the matrices reveals distinct patterns in the disease profiles of the patients.

Specifically:

• Patients Affected by Disease d2 = AP:
– Patient p1 = Ahmet: Ahmet exhibits high scores in the AP category. This suggests that Ahmet is

significantly affected by disease AP, showing considerable impairment in this area compared to other
patients.

– Patient p3 = Fatma: Similarly, Fatma’s performance in the AP category is notably high in our study’s
normalized results, reflecting a substantial impact from disease AP.

• Patients Affected by Disease d1 = UTI:
– Patient p2 = Ali: Ali shows elevated scores in the UTI category across the normalized results. His

consistently high scores suggest that Ali is prominently suffering from UTI.
– Patient p4 = Ayşe: Similarly, Ayşe’s results in the UTI category are significant in the normalized results.

Despite some variation, the high normalized scores indicate a notable level of suffering from UTI.
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Person UTI (Our Study) AP (Our Study) NU (Our Study)
Ahmet 0.3392 0.3454 0.2898
Ali 0.3643 0.3571 0.3604
Fatma 0.4312 0.4592 0.4258
Ayşe 0.4660 0.3924 0.2568

Table 1. Results from This Study

Person UTI (Sanchez’s Method) AP (Sanchez’s Method) NU (Sanchez’s Method)
Ahmet 182.625 187.125 160.125
Ali 184.875 181.500 145.500
Fatma 155.625 124.125 117.375
Ayşe 132.000 187.125 189.375

Table 2. Results from Sanchez’s Method

5. Discussion

The comparative analysis of the results derived from our study and those obtained using Sanchez’s method provides
insightful contrasts in the performance metrics evaluated. Our study’s results, which are presented in terms of normal-
ized scores for the variables UTI, AP, and NU, reveal notable differences when juxtaposed with the outcomes from
Sanchez’s methodology.

Our method yields varied scores across different individuals, with Fatma and Ayşe showing the highest and lowest
normalized values respectively in the UTI metric, while Ali demonstrates the most balanced performance across all
variables. In contrast, Sanchez’s method presents absolute scores that are generally higher or more disparate across
individuals. For instance, Fatma’s scores in Sanchez’s method are significantly lower compared to her normalized
values, suggesting a discrepancy that might be attributable to methodological differences or scaling effects.

The results obtained from our study indicate that Fatma consistently performs better in the normalized metrics
compared to other individuals. Her normalized UTI, AP, and NU scores (0.431216931, 0.459183673, and 0.42578125
respectively) reflect superior performance relative to the others. This trend is not mirrored in Sancezin’s method,
where Fatma’s scores (155.625, 124.125, and 117.375) are notably lower, particularly in the AP and NU metrics. This
discrepancy suggests that Sancezin’s method may emphasize different performance aspects or introduce biases that
affect the comparative results.

The observed differences highlight the impact of methodological choice on performance evaluation. Our normalized
scores, being dimensionless, provide a comparative perspective that might be more reflective of relative performance.
In contrast, Sanchez’s method absolute scoring system may be more sensitive to the scale and distribution of data.
The higher scores for individuals like Ahmet and Ali in Sancezin’s method, compared to our study, could suggest a
methodological bias or differing benchmarks for performance assessment.

The variance between the results from our study and Sanchez’s method underscores the importance of methodolog-
ical transparency and the potential influence of chosen metrics on outcome interpretation. Future work should explore
these methodological differences further to understand their implications on performance evaluation and to potentially
harmonize the results for more robust comparisons. Additionally, cross-validation with other methods could offer a
more comprehensive view of the performance metrics assessed.

6. Conclusion and Future Studies

In this study, we have extended Sanchez’s method of medical diagnosis by incorporating bipolar fuzzy soft sets,
offering a refined approach to handling the complexity of medical information. Our proposed algorithm addresses
some of the limitations found in previous methods, such as those described in [3], particularly in cases where the
symptoms are closely related. The primary advantage of our proposed method is its ability to model both positive
and negative aspects of medical information simultaneously, providing a more nuanced and accurate diagnosis. This
dual approach enhances the decision-making process by offering a comprehensive analysis of complex and ambiguous
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data, potentially leading to improved diagnostic accuracy and better patient outcomes. This enhancement aims to aid
in timely diagnosis and prompt treatment, which is crucial in emergency medical settings.

While our method presents advancements, it also has limitations. The computational complexity introduced by bipo-
lar fuzzy soft sets may require more extensive processing power, especially for large datasets or real-time applications.
Additionally, the algorithm’s effectiveness may vary based on the quality and completeness of the input data.

The integration of bipolar fuzzy soft sets into our approach aligns with recent advancements in the field. Mahmood
[17] provides foundational insights into bipolar soft sets, demonstrating their potential applications and enhancing our
method’s framework. Building on this, Mahmood and Ur Rehman [18] explore bipolar complex fuzzy sets and their
use in generalized similarity measures, which supports the broader applicability of our method. Additionally, Jaleel [9]
illustrates the practical use of bipolar complex fuzzy soft sets in agricultural robotics, showcasing how these concepts
can be effectively applied in various complex systems. These references collectively suggest that our approach could
be further developed and adapted for a range of complex decision-making scenarios beyond medical diagnosis.

We believe that further exploration of bipolar soft sets, bipolar complex fuzzy sets, and bipolar complex fuzzy soft
sets could yield valuable insights and improvements in various fields, including medical diagnostics and beyond.
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