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Abstract
A graph G is k list equitably colorable, if for any given k-uniform list assignment L, G

is L-colorable and each color appears on at most ⌈ |V (G)|
k ⌉ vertices. In 2009, Li and Bu

obtained that for planar graph G, if ∆(G) ≥ 6 and without 4- and 6-cycles, then G is
∆(G) list equitably colorable. In order to further prove the conjecture of list equitable
coloring, in this paper, we focus on planar graph with ∆(G) = 5, and prove that if G is a
planar graph without 4- and 6-cycles, then G is ∆(G) list equitably colorable.
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1. Introduction
The terminology and notation used but undefined in this paper can be found in [1]. Let

G = (V, E) be a graph. Let dG(x) or simply d(x), denote the number of edges incident
with the vertex (face) x in G. We use V (G), E(G), ∆(G) and δ(G) to denote the vertex
set, edge set, maximum degree, and minimum degree of G, respectively. Particularly, we
use F (G) to denote the face set of G when G is a plane graph. A vertex (resp. face) x is
called a k-vertex (resp. k-face), k+-vertex (resp. k+-face), k−-vertex (resp. k−-face),
if d(x) = k, k ≤ d(x) ≤ ∆(G), k − 1 ≤ d(x) ≤ k. A (d1, d2, · · · , dn)-face f is such that
d1, d2, · · · , dn are the degrees of vertices incident with the face f , respectively. In the
following, let fi(v) denote the number of i-faces incident with v for each v ∈ V (G). Let
ni(f) denote the number of i-vertices which are incident with f . We use ni(v) to denote
the number of i-vertices which are adjacent to v. A graph G is 3-degenerate if every
subgraph has a vertex of degree at most 3.

A proper k-coloring of a graph G is a mapping π from the vertex set V (G) to the set of
colors {1, 2, · · · , k} such that π(x) ̸= π(y) for every edge xy ∈ E(G). For a graph G and
a list assignment L assigned to each vertex v ∈ V (G) a set L(v) of acceptable colors, an
L-coloring of G is a proper vertex coloring such that for every v ∈ V (G) the color on v
belongs to L(v). If G has an L-coloring, we call G is L-colorable. A list assignment L for
G is k-uniform if |L(v)| = k for all v ∈ V (G). A graph G is k list equitably colorable if,
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for any k-uniform list assignment L, G is L-colorable and each color appears on at most
⌈ |V (G)|

k ⌉ vertices.
In 2003, Kostochka, Pelsmajer and West investigated the list equitable coloring of

graphs. They proposed the following conjectures [7].

Corollary 1.1. Every graph G is k list equitably colorable whenever k > ∆(G).

Corollary 1.2. If G is a connected graph with maximum degree at least 3, then G is ∆(G)
list equitably colorable, unless G is a complete graph or is Kk,k for some odd k.

It has been proved that Conjecture 1.1 holds for graphs with ∆(G) ≤ 3 in [10, 11]
and graphs with ∆(G) ≤ 7 in [6]. Kostochka, Pelsmajer and West proved that a graph
G is k list equitably colorable if either G ̸= Kk+1, Kk,k (with k odd in Kk,k) and k ≥
max{∆(G), |V (G)|

2 }, or G is a connected interval graph and k ≥ ∆(G) or G is a 2-degenerate
graph and k ≥ max{∆(G), 5} in [7]. Pelsmajer proved that every graph is k list equitably
colorable for any k ≥ ∆(G)(∆(G)−1)

2 +2 in [10]. Zhang and Wu [12] confirmed Conjecture 1.2
for series-parallel graphs. Dong et. [3] verified Conjecture 1.2 for graphs with bounded
maximum average degree. In recent years, several groups of authors provided partial
affirmative answers to Conjecture 1.2 for some planar graphs without some short cycles
in [2, 4, 9, 13–15]. More results can be seen in [8].

In the present paper, we focus on the planar graphs without 4- and 6-cycles. In 2009, Li
and Bu proved that if G is a planar graph without 4- and 6-cycles and k ≥ max{6, ∆(G)},
then G is k list equitably colorable. In particular, every planar graph G with ∆(G) ≥ 6
and without 4- and 6-cycles is ∆(G) list equitably colorable. We improve the above results
and obtain that the condition k ≥ max{6, ∆(G)} could be changed into a weaker condition
k ≥ max{5, ∆(G)}. In particular, we prove that every planar graph G with ∆(G) ≥ 5 and
without 4- and 6-cycles are ∆(G) list equitably colorable.

2. Preliminary
First let us introduce some lemmas.

Lemma 2.1 ([5]). Every planar graph without 6-cycles is 3-degenerate.

Let G be a planar graph without 4- and 6-cycles. Then G has the following property.

Lemma 2.2. Any 3-cycle is not adjacent to any other 3-cycle. Any 3-cycle is not adjacent
to any other 5-cycle. Two 5-cycles which have common 2-vertices are not adjacent, i.e.,
the configurations F1 (in which two 5-cycles have a common 2-vertex) and F2 (in which
two 5-cycles have two common 2-vertices) in Figure 1 don’t exist in G.

Figure 1

Lemma 2.3. Let G be a connected planar graph without 4- and 6-cycles. If ∆(G) ≤ 5
and |V (G)| ≥ 5, then G has at least one of the structures isomorphic to the configurations
in Figure 2.

Proof. Suppose to the contrary that G does not contain the structures isomorphic to the
configurations H1, H2, . . ., H13 in Figure 2.
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Figure 2

Each configuration depicted in Figure 2 is such that : (1)the vertices labelled xk, xk−1, xk−2
are separate and other vertices in one configuration may overlap if they have the same de-
gree and multiple edges can not be resulted in, (2)the solid vertices have no incident edges
other than the ones shown, and (3) except for being specially pointed, the degree of each
hollow vertex may be any integer from [d, 5], where d is the number of edges incident with
the hollow vertex shown in the configuration, (4) the order of the vertices on the boundary
of H5 can be rearranged.

Since G contains no structure isomorphic to the configuration H1, G has the following
property.

Fact 2.4. Each 3-face in G is a (3−, 3−, 5)-, (3−, 4+, 4+)- or (4+, 4+, 4+)-face.

Since G contains no structure isomorphic to the configuration H2, G has the following
property.

Fact 2.5. Each 5-face in G is a (3−, 3−, 3−, 4+, 4+)-, (3−, 3−, 4+, 4+, 4+)-, (3−, 4+, 4+, 4+, 4+)-
or (4+, 4+, 4+, 4+, 4+)-face.

Since G contains no configuration H3, G has the following property.

Fact 2.6. For each v ∈ V (G), if d(v) = 4 and v is incident with two 3-faces, then each of
the two 3-faces is not a (3−, 4, 4)-face.

Since G contains no configuration H4, G has the following property.

Fact 2.7. For each 5-vertex v ∈ V (G), if v is incident with a (3−, 3−, 5)-face, then n5(v) =
3.

Since G contains no configuration H5, G has the following property.

Fact 2.8. Let f be a 5-face. If f is incident with a 2-vertex, then f is a (2, 3−, 5, 5, 5)- or
(2, 4+, 4+, 4+, 4+)-face.
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In the following, we divide the proof into the following four cases by Lemma 2.1. In
each case, we will use discharging method to get a contradiction. By Euler’s formula
|V | − |E| + |F | = 2 and

∑
v∈V (G) d(v) =

∑
f∈F (G) d(f) = 2|E|, we have∑

v∈V (G)
(2d(v) − 6) +

∑
f∈F (G)

(d(f) − 6) = −6(|V | − |E| + |F |) = −12.

Define an initial charge function w on V (G) ∪ F (G) by setting w(v) = 2d(v) − 6 if
v ∈ V (G) and w(f) = d(f) − 6 if f ∈ F (G), so that

∑
x∈V (G)∪F (G) w(x) = −12.

Now redistribute the charge according to the following discharging rules.
• R1. Suppose f is a 3-face. Then for a face f containing a 4-vertex v, let

v gives 3
2 to f if f is a (3−, 4, 4)-face; let v gives 0 to f if f is a (4, 5, 5)-face;

otherwise, let v gives 1 to f .
For a face f containing a 5-vertex v, let v gives 3 to f if f is a (3−, 3−, 5)-
face; let v gives 2 to f if f is a (3−, 4, 5)-face; let v gives 3

2 to f if f is a
(3−, 5, 5)-face or a (4, 4+, 5)-face; let v gives 1 to f if f is a (5, 5, 5)-face.

• R2. Suppose f is a 5-face. Then for a face f containing a 4-vertex v, let
v gives 1

2 to f if f is a (3, 3, 3, 4, 4)-face; otherwise, let v gives 1
3 to f .

For a face f containing a 5-vertex v, let v gives 1
3 to f if f is a (5, 5, 5, 2+, 2+)-

face; otherwise, let v gives 3
4 to f .

In the following, let us check the new charge of each element x for x ∈ V (G) ∪ F (G).
Let the new charge of each element x be w′(x) for each x ∈ V (G) ∪ F (G).

Case 1 δ(G) = 3.

Let v be a vertex in V (G). Suppose d(v) = 3. Then w′(v) = w(v) = 0.
Suppose d(v) = 4. Then w(v) = 2 and f3(v) ≤ 2 by Lemma 2.2. If f3(v) = 2, then

f5(v) = 0 for the reason that G contains no 6-cycles. By Fact 2.6, any of the two 3-faces
which are incident with v is not a (3−, 4, 4)-face. We have w′(v) ≥ 2 − 1 × 2 = 0 by
R1. If f3(v) = 1, then f5(v) ≤ 1 for the reason that G contains no 6-cycles. We have
w′(v) ≥ 2 − 3

2 − 1
2 = 0 by R1 and R2. Otherwise, i.e. f3(v) = 0, then f5(v) ≤ 4. We have

w′(v) ≥ 2 − 1
2 × 4 = 0 by R2.

Suppose d(v) = 5. Then w(v) = 4 and f3(v) ≤ 2 by Lemma 2.2.
Subcase 1-1 f3(v) = 2. Then f5(v) = 0. If one of the 3-faces which are incident

with v is a (3−, 3−, 5)-face, then the other 3-face is a (5, 5, 5)-face by Fact 2.7. We have
w′(v) ≥ 4 − 3 − 1 = 0 by R1. Otherwise, we have w′(v) ≥ 4 − 2 × 2 = 0 by R1.

Subcase 1-2 f3(v) = 1. Then f5(v) ≤ 2 by Lemma 2.2. If the 3-face which is incident
with v is a (3−, 3−, 5)-face, then each 5-face which is incident with v is a (5, 5, 5, 2+, 2+)-
face by Fact 2.7. We have w′(v) ≥ 4 − 3 − 1

3 × 2 = 1
3 > 0 by R1 and R2. Otherwise, We

have w′(v) ≥ 4 − 2 − 3
4 × 2 = 1

2 > 0 by R1 and R2.
Subcase 1-3 f3(v) = 0. Then f5(v) ≤ 5. We have w′(v) ≥ 4 − 3

4 × 5 = 1
4 > 0 by R2.

Let f be a face in F (G). Suppose d(f) = 3. Then w(f) = −3, n3(f) ≤ 2 by Fact 2.4.
If f is a (3−, 3−, 5)-face, then w′(f) ≥ −3 + 3 = 0 by R1. If f is a (3−, 4, 4)-face, then

w′(f) = −3+ 3
2 ×2 = 0 by R1. If f is a (3−, 4, 5)-face, then w′(f) = −3+1+2 = 0 by R1.

If f is a (3−, 5, 5)-face, then w′(f) = −3 + 3
2 × 2 = 0 by R1. If f is a (4, 4, 4)-face, then

w′(f) = −3 + 1 × 3 = 0 by R1. If f is a (4, 4, 5)-face, then w′(f) = −3 + 1 × 2 + 3
2 = 1

2 > 0
by R1. If f is a (4, 5, 5)-face, then w′(f) = −3 + 3

2 × 2 = 0 by R1. If f is a (5, 5, 5)-face,
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then w′(f) = −3 + 1 × 3 = 0 by R1.

Suppose d(f) = 5. Then w(f) = −1 and n3(f) ≤ 3 by Fact 2.5.
If f is a (3, 3, 3, 4, 4)-face, then w′(f) = −1 + 1

2 × 2 = 0 by R2. Otherwise, w′(f) ≥
−1 + 1

3 × 3 = 0 by R2.

Suppose d(f) > 6. Then w′(f) = w(f) = d(f) − 6 > 0.
From the above discussion, we have that w′(x) ≥ 0 for each x ∈ V (G) ∪ F (G). Thus∑
x∈V (G)∪F (G) w′(x) ≥ 0, a contradiction to

∑
x∈V (G)∪F (G) w(x) = −12.

Case 2 δ(G) = 2 and there are at most two 2-vertices in G.

By Fact 2.4, the 3-faces which are incident with 2-vertices may be (2, 3−, 5)- or (2, 4+, 4+)-
faces. By Fact 2.8, the 5-faces which are incident with 2-vertices may be (2, 3−, 5, 5, 5)- or
(2, 4+, 4+, 4+, 4+)-faces.

For each v ∈ V (G) (f ∈ F (G), resp.), if d(v) ̸= 2 (d(f) ̸= 5, resp.), then the discus-
sion on the discharging is the same as that in Case 1. Let v be a vertex with d(v) = 2.
Then w′(v) = w(v) = −2. Let f be a face with d(f) = 5. If f is a (2, 3−, 5, 5, 5)-
face, then w′(f) = −1 + 1

3 × 3 = 0 by R2. If f is a (2, 4+, 4+, 4+, 4+)-face, then
w′(f) = −1 + 1

3 × 4 = 1
3 > 0 by R2. Otherwise, the discussion on the discharging is

the same as that in Case 1.

Clearly, we can guarantee the new charge of each element x ∈ V (G) ∪ F (G) is larger
than or equal to zero except for the 2-vertices. Thus

∑
x∈V (G)∪F (G) w′(x) ≥ −2 × 2 = −4,

a contradiction to
∑

x∈V (G)∪F (G) w(x) = −12.

Case 3 δ(G) = 2 and there are at least three 2-vertices in G.

Since G contains no structures isomorphic to the configurations H6, H7, . . ., H12, G has
the following properties.

Fact 2.9. Any vertex v is adjacent to at most one 2-vertex.

Fact 2.10. Any 2-vertex v is adjacent to at most one 3−-vertex.

Fact 2.11. For each v ∈ V (G) with d(v) = 4, if v is adjacent to a 2-vertex, then the
3-face which is incident with v is a (4, 5, 5)-face.

Fact 2.12. For each v ∈ V (G) with d(v) = 5, if v is adjacent to a 2-vertex u, then any
3-face which is incident with v and not incident with u does not contain a 3-vertex.

Fact 2.13. Every 3-face in G which is incident with a 2-vertex is a (2, 5, 5)-face.

Fact 2.14. There is at most one 2-vertex which is adjacent to a 3−-vertex in G except
that two 2-vertices are adjacent to each other.

Fact 2.15. For each v ∈ V (G) with d(v) = 4, if v is adjacent to a 2-vertex, then it
is adjacent to at most one 3-vertex. Furthermore, if v is adjacent to a 2-vertex and a
3-vertex, then the other neighbors of v are 5-vertices.

We call a 2-vertex a special 2-vertex if it is adjacent to a 3−-vertex, otherwise a simple
2-vertex. Clearly, there are at most two special 2-vertices in G by Fact 2.14.

Now redistribute the charge according to the following discharging rules.

• R1′, R2′ are the same as R1, R2, respectively.
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• R3′. Suppose v is a 2-vertex incident with a vertex u. Then u gives v charge 1 if
d(u) = 4 or 5.

Let v ∈ V (G). Suppose d(v) = 2. Then w(v) = −2. If v is a special 2-vertex,
then we have w′(v) = w(v) + 1 = −1 by Fact 2.10 and R3′. Otherwise, we have
w′(v) = −2 + 1 × 2 = 0 by R3′.

In the following discussion, if v is not adjacent to any 2-vertex, then the discussion is
similar to the corresponding situation in Case 2. Thus we only focus on the situation in
which v is adjacent to a 2-vertex by Fact 2.9.

Suppose d(v) = 3. Then w′(v) = w(v) = 0.

Suppose d(v) = 4. Then w(v) = 2 and f3(v) ≤ 1 by Fact 2.13 and Lemma 2.2.
Subcase 3-1 f3(v) = 1. Then f5(v) ≤ 1 and the 3-face which is incident with v is a

(4, 5, 5)-face by Fact 2.11. We have w′(v) ≥ 2 − 1
2 − 1 = 1

2 > 0 by R1′, R2′ and R3′.
Subcase 3-2 f3(v) = 0. Then f5(v) ≤ 3 for the reason that G contains no 6-cycle.
Subcase 3-2.1 f5(v) = 3. By Fact 2.15, we have n3(v) ≤ 1. If n3(v) = 1, then n5(v) = 2

by Fact 2.15. We have that the 5-faces which are incident with v are not (3, 3, 3, 4, 4)-faces.
Thus we have that w′(v) = 2 − 1

3 × 3 − 1 = 0 by R2′ and R3′. Otherwise, i.e., n3(v) = 0.
Clearly, the 5-faces which are incident with v are not (3, 3, 3, 4, 4)-faces. We have that
w′(v) = 2 − 1

3 × 3 − 1 = 0 by R2′ and R3′.
Subcase 3-2.2 f5(v) ≤ 2. By R2′ and R3′, we have that w′(v) ≥ 2 − 1

2 × 2 − 1 = 0.

Suppose d(v) = 5. Then w(v) = 4 and f3(v) ≤ 2.
If f3(v) = 2, then f5(v) = 0. We have w′(v) ≥ 4 − 3

2 × 2 − 1 = 0 by R1′, R3′ and
Fact 2.12.

If f3(v) = 1, then f5(v) ≤ 2. We have w′(v) ≥ 4 − 3
2 − 3

4 × 2 − 1 = 0 by R1′, R2′, R3′

and Fact 2.12.
If f3(v) = 0, then f5(v) ≤ 4 for the reason that G contains no 6-cycle. We have

w′(v) ≥ 4 − 3
4 × 4 − 1 = 0 by R2′ and R3′.

Let f ∈ F (G). Suppose d(f) = 3. Then w(f) = −3. If n2(f) ̸= 0, then f is a
(2, 5, 5)-face by Fact 2.13. We have that w′(f) ≥ −3 + 2 × 3

2 = 0 by R1′. Otherwise, the
discussion is the same as the corresponding situation when d(f) = 3 in Case 2.

Suppose d(f) = 5. Then w(f) = −1. By Fact 2.8, we have n2(f) ≤ 2. Furthermore, if
n2(f) = 2, then f is a (2, 2, 5, 5, 5)-face. We have that w′(f) ≥ −1 + 1

3 × 3 = 0 by R2′. If
n2(f) = 1, then f is a (2, 3, 5, 5, 5)- or (2, 4+, 4+, 4+, 4+)-face. Thus w′(f) = −1+ 1

3 ×3 = 0
or w′(f) ≥ −1 + 1

3 × 4 = 1
3 > 0 by R2′. If n2(f) = 0, then the discussion is the same as

the situation when d(f) = 5 in Case 2.

Suppose d(f) > 6. Then w′(f) = w(f) = d(f) − 6 > 0.
From the above discussion, It is clear that for each x ∈ V (G)∪F (G) if x is not a special

2-vertex, then w′(x) ≥ 0. Thus we have

∑
x∈V (G)∪F (G)

w′(x) ≥ −1 × 2 = −2, (2.1)

a contradiction to
∑

x∈V (G)∪F (G) w(x) = −12.
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Case 4 δ(G) = 1.

Suppose that there is one 1-vertex in G.
First, we assume that there is at most two 2-vertices in G. The discussion on the

discharging is the same as that in Case 2. Clearly, we can guarantee the new charge of
each element x ∈ V (G) ∪ F (G) is larger than or equal to zero except for the 1-vertex and
2-vertices. For each v ∈ V (G), if d(v) = 1, then w′(v) = w(v) = −4. If d(v) = 2, then
w′(v) = w(v) = −2. Thus

∑
x∈V (G)∪F (G) w′(x) ≥ −4 + (−2) × 2 = −8, a contradiction to∑

x∈V (G)∪F (G) w(x) = −12.

Now we assume that there are at least three 2-vertices in G. The discussion is the same
as that in Case 3. Clearly, we have

∑
x∈V (G)∪F (G) w′(x) ≥ −4−2 = −6 by Equation (2.1),

a contradiction to
∑

x∈V (G)∪F (G) w(x) = −12.

Suppose that there are at least two 1-vertices in G.
If there are two 1-vertices in G, then there is neither 2-vertex nor other 1-vertex in G for

the reason that G contains no structure isomorphic to the configuration H13. The discus-
sion on the discharging is the same as that in Case 1. Now, we have

∑
x∈V (G)∪F (G) w′(x) ≥

−4 × 2 = −8, a contradiction to
∑

x∈V (G)∪F (G) w(x) = −12. □

Lemma 2.16 ([9]). If G is a planar graph without 4- and 6-cycles and k ≥ max{6, ∆(G)},
then G is k list equitably colorable.

Lemma 2.17 ([10,11]). Every graph G with maximum degree ∆(G) ≤ 3 is k list equitably
colorable whenever k ≥ ∆(G) + 1.

Lemma 2.18 ([7]). Let G be a graph with a k-uniform list assignment L. Let S =
{v1, v2, . . . , vk}, where {v1, v2, . . . , vk} are distinct vertices in G. If G − S has an equitable
L-coloring and |NG(vi) − S| ≤ k − i for 1 ≤ i ≤ k, then G has an equitable L-coloring.

3. Proof of the main result
First, we prove an important lemma.

Lemma 3.1. If G is a planar graph without 4- and 6-cycles and k ≥ max{5, ∆(G)}, then
G is k list equitably colorable.

Proof. By Lemma 2.16, we only need to focus on the situation where ∆(G) ≤ 5. Let G
be a counterexample with the fewest vertices. If each component of G has at most four
vertices, then ∆(G) ≤ 3. So G is k list equitably colorable by Lemma 2.17. Otherwise,
there is at least one component with at least five vertices. By Lemma 2.3, G has one
of the structures H1, H2, . . ., H13. In the following, we show how to find the set S in
Lemma 2.18. For convenience, let S′ be the set of the labelled vertices of the configuration
contained in G in which the vertices are labelled as they are in Figure 2. If G has H1,
H7 and H13, then let S′ = {xk, xk−1, xk−2, x1}. If G has H2, H4, H11 and H12, then
let S′ = {xk, xk−1, xk−2, xk−3, x1}. If G has H3, H5, H6, H8, H9 and H10, then let
S′ = {xk, xk−1, xk−2, x2, x1}. We use xi in S′ to denote vi in S in which i ∈ {1, 2, . . . , k}.
Next, we go to find the remaining unspecified vertices in the set S of Lemma 2.18, i.e.,
adding the vertices between x1 and xk−2 if S′ = {xk, xk−1, xk−2, x1}, adding the vertices
between x1 and xk−3 if S′ = {xk, xk−1, xk−2, xk−3, x1}, adding the vertices between x2
and xk−2 if S′ = {xk, xk−1, xk−2, x2, x1}. By Lemma 2.1, G is 3-degenerate. Starting from
the set S′, we choose a vertex with the minimum degree in the graph obtained from G
by deleting the vertices in the collection S′ as the vertex with the maximum subscript in
S \ S′ and put it into set S′. Repeating the above steps, until all of the vertices of S \ S′
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are found, i.e. S′ = S. By the minimality of G, we have G−S is k list equitably colorable.
By Lemma 2.18, it follows that G is k list equitably colorable, a contradiction. □

By Lemma 3.1, we have our main theorem.

Theorem 3.2. Let G be a planar graph without 4- and 6-cycles. If ∆(G) ≥ 5, then G is
∆(G) list equitably colorable.
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