Molecular Oncologic Imaging https://dergipark.org.tr/tr/pub/moi # The Effect of Portable Gamma Camera in Radioguided Lesion Localization and The Patient Management Zehra Pınar KOÇ¹ Pınar Pelin ÖZCAN² Yüksel BALCI³ Mustafa BERKEŞOĞLU⁴ Ferah TUNCEL⁵ Cite this study: Koc, Z. P., Ozcan, P. P, Balci, Y., Berkesoglu, M. & Tuncel, F. (2022). The Effect of Portable Gamma Camera in Radioguided Lesion Localization and The Patient Management. Molecular Oncologic Imaging, 2(1), 3-6 ## Keywords Radioguided, Occult, Breast, Portable Gamma Camera ## Research Article Received: 06.03.2022 Accepted: 17.03.2022 Published: 15.04.2022 #### **ABSTRACT** Aim: The objective of this retrospective study is to analyze the efficiency additional portable gamma camera imaging in the evaluation of radioguided occult lesion localization (Roll). Materials and Methods: Four female patients (44,75±13,25 years old) with occult breast lesions were included in the study. Roll by means of both gamma probe and portable gamma camera was performed during surgery. The pathological characteristics were analyzed and compared with the literature data. Results: All of the patients had benign lesions according to the pathology results except for one patient who was indicated to excise additional tissue by the portable gamma camera which bearing microscopic intraductal papilloma focus. Conclusion: In our series in one patient the portable gamma camera imaging revealed important additional information which changed patient management. We suggest additional portable gamma camera imaging during Roll procedures according to the results of this small case series. #### 1. Introduction Radioguided occult lesion localization (Roll) procedures became routine in breast surgery recently (1) which includes injection of radiopharmaceuticals into the breast lesion by ultrasonography (US) guidance. These procedures might include simultaneous sentinel lymph node dissection procedures also which is called SNOLL. Especially when it is combined with sentinel lymph node imaging the method brought complete surgical removal in single surgery thus has benefits over the previous wire guided lesion localization method (2). Radioguidance is performed by gamma probes which are portable devices for intraoperative applications. However, lack of image information in gamma probe guidance might have some handicaps. A novel advancement in the Roll procedures is portable gamma cameras which has been used in different surgical procedures including sentinel lymph node imaging and parathyroid adenoma imaging successfully previously (3, 4). This method provides scintigraphy image during surgery and complete removal of activity at the surgery site after excision of the radiolabelled tissues. There was only one study about the performance of portable gamma camera imaging in Roll procedures which showed benefits and feasibility of this method in a large series of patient group (5). We aimed to analyze the significance of the portable gamma camera imaging in the management of these patients in this study. ¹Mersin University, Faculty of Medicine, Department of Nuclear Medicine, Mersin, Turkey, zehrapinarkoc@gmail.com ²Mersin University, Faculty of Medicine, Department of Nuclear Medicine, Mersin, Turkey, ppelinozcan@gmail.com ³Mersin University, Faculty of Medicine, Department of Radiology, Mersin, Turkey, yukselbalci@yahoo.com ⁴Mersin University, Faculty of Medicine, Department of General Surgery, Mersin, Turkey, berkesoglu@mersin.edu.tr ⁵Mersin University, Faculty of Medicine, Department of Pathology, Mersin, Turkey, ferahdaloglu@mersin.edu.tr #### 2. Materials and Methods Four women (44,75±13,25 years old) with diagnosis of nonpalpable breast tumor were included in the study. The patients were considered to have T1-2 lesions according to TNM classification. Breast feeding and pregnant patients were excluded from the study. ## 3. Imaging procedure The patients were informed about the procedure and informed consents of the patients were obtained. Intratumoral injection of approximately 5 mCi (185 MBq) Tc99m nanocolloid was performed by US guidance approximately one hour before the surgical procedure. Additional standard gamma camera imaging was not performed during these procedures. Intraoperative estimation of the radioactivity was performed both by the gamma probe (Europrobe 3/Eurorad SA/France) and portable gamma camera (Crystal Cam; Dimensions: $65\,\mathrm{mm} \times 65\,\mathrm{mm} \times 180\,\mathrm{mm}$; Detector: CdZnTe, $16 \times 16 = 256$ Pixel; Detector Dimensions: $39.06\,\mathrm{mm} \times 39.06\,\mathrm{mm} \times 50\,\mathrm{mm}$; Energy Range: $45 - 250\,\mathrm{keV}$; Energy Resolution: 46% at $122\,\mathrm{keV}$, 45.5% at 45% 45 # 4. Pathology Intraoperative pathology examination was not performed. The pathology results were analyzed with margin involvement estimation. ## 5. Results The tumor characteristics and pathology results of the patients are summarized in Table 1. The portable gamma camera imaging depicted the lesions clearly and disappearance of the lesions were determined as well. All the radiolabeled breast lesions were excised successfully with clear surgical margins. Additional resection was necessary in one case (Figure 1) who documented to have additional microfocus of intraductal papilloma. Although gamma probe imaging also showed the lesions the second lesion would not be determined without portable gamma camera images. The mean size of tumor by previous US imaging was 11,55±2,15 mm. Three patients had fibroadenoma and one patient had fibrocystic changes according to the pathology results. Figure 1: Portable gamma camera image of the breast lesion showing the two different uptake sites. Table 1. Summary of tumor characteristics and pathology results of the patients | No of Patient | Localization | US size (mm) | Pathology | Pathology size (cm) | Margins | |---------------|----------------|--------------|---|---------------------|----------------------| | 1. | Right/Clock 7 | 13x8 | Fibrocystic changes | 5x4x3 | Negative | | 2. | Right/Clock 12 | 10x6 | Fibroadenoma | 8x6x1.5 | Negative | | 3. | Right/Clock 7 | 10x6 | Fibroadenoma,
Intraductal
papilloma | 6x5x3
5x4x1 | Negative
Negative | | 4. | Right/Clock 9 | 14x7 | Fibroadenoma | 5x5x2 | Negative | #### 6. Discussion There are several radiopharmaceuticals for Roll including intratumoral nanocolloid injection, intratumoral macroagregated albumin as well as injection methods including with or without additional intradermal nanocolloid injection for sentinel lymph node imaging. Recently intratumoral deposit injection is implicated in these procedures (6). In this study we preferred intratumoral nanocolloid injection however we did not perform additional sentinel lymph node imaging. Roll procedures found to be highly effective and comfortable compared to other guided lesion localization procedures according to comparative studies (7). Roll has several superiorities over other procedures like better lesion centricity, lower volume of healthy tissue resection, and decrease in necessity of additional surgery, surgery time, and better cosmetic outcome (8, 9). Additionally, a previous study has shown that the dose of surgical procedures is only %10 of the dose limits (10). Bluemel et al. have reported high lesion detection rate of their study (97%) to be slightly lower than portable gamma camera procedures (97-99%) (11, 12) by 3D radioguided occult lesion localization. Additionally it is possible to perform two different surgical procedures in a single session; sentinel node and Roll; SNOLL procedures; feasibility of this approach was reported by handheld gamma probe (99%) in a previous study (12). Peredes et al. emphasized the fact that there is one problem about the Roll imaging which is the spilling of radiotracer within the mammary gland and suggested to obtain orthogonal planar views for this limitation (5). We also observed this finding during the operation and successfully excluded it by means of portable gamma camera images. The same observers reported a minor complication; needle line contamination during the Roll procedures as well (5). It has been suggested to give additional small volume of saline in this kind of situations (13). However during the operation of one of our patients we observed the same finding and easily attributed to the needle line contamination by portable gamma camera. The same researchers also considered portable gamma camera imaging to have higher spatial resolution and similar sensitivity compared to gamma probe (5). However we that portable gamma camera might change patient management as well. Peredes et al. emphasized the fact that guidance of portable gamma camera might lead to more distinct and smaller lesion resection with free margins (5) which was also commented in the application phase of this technique (14). We described that portable gamma camera imaging might contribute to patient management by determination surgical resection margins by showing additional lesions firstly in the literature. Olcott et al. investigated additional benefits of handheld gamma camera compared to gamma probe in sentinel lymph node imaging and concluded that handheld gamma camera may not have compelling benefits for sentinel lymph node imaging and may be implicated in only difficult cases such as head and neck melanoma, or cancers with multiple nodal stations (15). The authors recommend handheld gamma camera for verification of removal of all radioactive focus because they found 12 additional nodes that were missed by gamma probe (15). In a recent review about the portable gamma camera applications in breast cancer have highlighted that intraoperative gamma camera imaging is beneficiary in sentinel lymph node imaging (16). Roll procedures are more complicated which may require special attention compared to sentinel lymph node excision. It is not standard to perform standard gamma camera imaging during Roll procedures and might not be applicable. These intraoperative imaging procedures might improve the detection of lesion and define the true robust margins of the lesion. However, it is not appropriate to suggest this because of the small sample size in this study. Other limitation of this study is the retrospective structure of the study. This study might be performed in larger group of patients in prospective studies. Lack of frozen section analysis may be considered another limitation. ## 7. Conclusion Portable gamma camera applications might be beneficiary and can change patient management. In our small patient group, we observed that portable gamma camera imaging can determine the tumor borders more definitely compared to the gamma probe. The additional portable gamma camera imaging either decrease the size of the lesion by excluding healthy tissue in resection material or more importantly contributed by determination of additional lesion and lead to the change in patient management. #### REFERENCES - 1. Bricou A, Duval MA, Charon Y, Barranger E. Mobile gamma cameras in breast cancer care a review. Eur J Surg Oncol. 2013;39:409-16. - 2. Duarte C, Bastidas F, de Los Reyes A, Martínez MC, Hurtado G, Gómez MC, Sánchez R, Manrique J. Randomized controlled clinical trial comparing radioguided occult lesion localization with wire-guided lesion localization to evaluate their efficacy and accuracy in the localization of nonpalpable breast lesions. Surgery. 2016;159:1140-5. - 3. Goñi Gironés E, Vicente García F, Serra Arbeloa P, Estébanez Estébanez C, Calvo Benito A, Rodrigo Rincón I, Camarero Salazar A, Martínez Lozano ME. [Evaluation of the efficacy of sentinel node detection in breast cancer: chronological course and influence of the incorporation of an intra-operative portable gamma camera]. Rev Esp Med Nucl Imagen Mol. 2013;32:343-9. - 4. Casella C, Rossini P, Cappelli C, Nessi C, Nascimbeni R, Portolani N. Radioguided Parathyroidectomy with Portable Mini Gamma-Camera for the Treatment of Primary Hyperparathyroidism. Int J Endocrinol. 2015;2015:134731 - 5. Paredes P, Vidal-Sicart S, Zanón G, Roé N, Rubí S, Lafuente S, Pavía J, Pons F. Radioguided occult lesion localisation in breast cancer using an intraoperative portable gamma camera: first results. Eur J Nucl Med Mol Imaging. 2008;35:230-5. 9. 14. - 6. Gray RJ, Salud C, Nguyen K, Dauway E, Friedland J, Berman C, Peltz E, Whitehead G, Cox CE.Randomized prospective evaluation of a novel technique for biopsy or lumpectomy of nonpalpable breast lesions: radioactive seed versus wire localization. Ann Surg Oncol. 2001;8:711-5. - 7. Duarte C, Bastidas F, de Los Reyes A, Martínez MC, Hurtado G, Gómez MC, Sánchez R, Manrique J. Randomized controlled clinical trial comparing radioguided occult lesion localization with wire-guided lesion localization to evaluate their efficacy and accuracy in the localization of nonpalpable breast lesions. Surgery. 2016;159:1140-5. - 8. Nadeem R, Chagla LS, Harris O, Desmond S, Thind R, Titterrell C, Audisio RA. Occult breast lesions: A comparison between radioguided occult lesion localisation (ROLL) vs. wire-guided lumpectomy (WGL). Breast. 2005;14:283-9. 15. - 9. Zgajnar J, Hocevar M, Frkovic-Grazio S, Hertl K, Schweiger E, Besic N. Radioguided occult lesion localization (ROLL) of the nonpalpable breast lesions. Neoplasma. 2004;51:385-9. - 10. Cremonesi M, Ferrari M, Sacco E, Rossi A, De Cicco C, Leonardi L, Chinol M, Luini A, Galimberti V, Tosi G, Veronesi U, Paganelli G. Radiation protection in radioguided surgery of breast cancer. Nucl Med Commun. 1999;20:919-24. - 11. Bluemel C, Cramer A, Grossmann C, Kajdi GW, Malzahn U, Lamp N, Langen HJ, Schmid J, Buck AK, Grimminger HJ, Herrmann K. iROLL: does 3-D radioguided occult lesion localization improve surgical management in early-stage breast cancer? Eur J Nucl Med Mol Imaging. 2015;42:1692-9. - 12. Lombardi A, Nigri G, Scopinaro F, Maggi S, Mattei M, Bonifacino A, Parisella M, Soluri A, Amanti C. Highresolution, handheld camera use for occult breast lesion localization plus sentinel node biopsy (SNOLL): a single-institution experience with 186 patients. Surgeon. 2015;13:69-72. - 13. Cortés Romera M, Pardo García R, Soriano Castrejón A, García Vicente A, Ruiz Díaz M, Poblete García VM, Carbajo Vicente M, Rodado Marina S, Ruiz Solís S, Talavera Rubio P.Radioguided occult breast lesion location (ROLL). Rev Esp Med Nucl. 2005;24:374-9. - 14. Patel A, Pain SJ, Britton P, Sinnatamby R, Warren R, Bobrow L, Barber RW, Peters AM, Purushotham AD. Radioguided occult lesion localisation (ROLL) and sentinel node biopsy for impalpable invasive breast cancer. Eur J Surg Oncol. 2004;30:918-23. - 15. Olcott P, Pratx G, Johnson D, Mittra E, Niederkohr R, Levin CS. Clinical evaluation of a novel intraoperative handheld gamma camera for sentinel lymph node biopsy. Phys Med. 2014;30:340-5 - 16. Bricou A, Duval MA, Charon Y, Barranger E. Mobile gamma cameras in breast cancer care a review. Eur J Surg Oncol. 2013;39:409-16. © Author(s) 2021. This work is distributed under https://creativecommons.org/licenses/by-sa/4.0/