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1. Introduction 

Unsupervised machine learning is a powerful tool that discovers patterns and relationships in data without the need 
for labeled training data. A common approach in unsupervised learning is to use mutual information, a measure of 
statistical dependence between two variables, to detect patterns and structure in data. By analyzing the mutual 
information between different features or variables in a dataset, the hidden relationships and dependencies can be 
detected that may not be immediately apparent. On the other side, the structure of complex systems is frequently 
shown and analyzed using graphical representations of networks. While edges in a network reflect the connections 
or links between nodes, nodes in a network represent entities or objects. Networks can be graphically represented 
in a variety of ways, such as with node-link diagrams, adjacency matrices, and force-directed layouts.  
As an explanation of the node-link diagrams, suppose a  (𝑛 × 𝑝)-dimensional data set where 𝑝 is the number of 
columns (variable) and 𝑛 is the number of rows (sample). This data will be represented graphically as a network 
with 𝑝 nodes to embody the variables. Let's call 𝐸	the set of edges that can be written as a set of  
{(𝑖, 𝑗); 𝑖, 𝑗 = 1,… , 𝑝	}	which 𝑌! and 𝑌" are connected by a un/directed edge. In the directed graphs, the relationship 
matric is not symmetric means that the existence of an edge between 𝑌! to 𝑌" does not imply an edge from 𝑌" to 𝑌!. 
The study of directed networks, also known as directed graphs, has a long history in mathematics, computer 
science, and other fields. There are more than six thousand papers that scrutinized the directed edges between the 
variables since 1953 started by Harary and Norman (1953). There are still many unanswered topics in the study of 
directed networks today, and new applications are constantly being developed. On the other side, undirected graphs 
are a type of graph in which the edges between nodes are not directed, meaning that they do not have a specific 
direction associated with them means if there is an edge from 𝑌! to 𝑌" , there is also an edge from 𝑌" to 𝑌! . Undirected 
graphs have been studied extensively in graph theory and have many applications in various fields, such as 
computer science, social network analysis, and transportation planning. They are often used to model relationships 
between objects or entities where the direction of the relationship is not important, such as in a social network 
where the connections are bidirectional. There are around three thousand recorded articles based on undirected 
graphs started by Borowiecki, (1947). Among these studies, some researchers investigated conditional dependence 
when each variable is written as a regression equation based on another variable given the remaining variables. 
(Dobra and Lenkoski, 2011, Mohammadi and Wit, 2015, Farnoudkia and Purutcuoglu, 2019). In continuation, the 
undirected and directed graphs are implemented in the presentation of time-related data, as well. (Abegaz and Wit, 

Unsupervised machine learning affords a general idea about complicated data 
using a graphical representation of networks by nodes and edges to provide a 
better and easier understanding of the data. The existence of an edge between 
two entire nodes is determined by their relationship in terms of any kind of 
dependence i.e., conditional dependence, linear and non-linear, directed or 
undirected. This study tries to show the accuracy of a non-parametric approach 
i.e., mutual information (MI) on a real data set named by the Rochdale data that 
is composed of eight factors effected on women’s economic activity by 
comparing with some methods such as reversible jump Markov Chain Monte 
Carlo (MCMC) and birth-death MCMC those tried to detect the conditional 
dependence between the variables.  As a result, MI is not only a very simple 
but also a very accurate method in the inference of data with complexities.   
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2013). The adjacency matrix, on the other hand, is a binary matrix with the dimension of 𝑝 × 𝑝 where 𝑝 is the 
number of variables (nodes) in which 1 stands for the related and 0 for non-related corresponding variables. 
Apart from all discussed until here, there is a very general and non-parametric tool that can measure the strength 
of the connection between two variables called mutual information (MI) shown by 𝐼(𝑋! , 𝑋") introduced by McGill 
in 1954. This measure is a non-negative entity with zero value for the independence case. MI is a symmetric 
measure like a correlation coefficient and is able to catch the dependence even in a non-linear case, unlike the 
correlation coefficient. The definition and details of MI will be stated in Section 2. Furthermore, two alternatives 
are explained briefly in Section 3. Finally, the accuracy of MI will be stated by two accuracy measures and 
compared with two alternatives in the Application section for a real data set to detect the symmetric (undirected) 
reletionship between every two variables.  
 
2. Mutual information 
Mutual information is a function of the univariate and bivariate Shannon entropy (Sahnnon ,1949)shows the 
common information of two processes or variables as below: 
                     	𝐼4𝑋! , 𝑋"5 = 𝐻(𝑋!) + 𝐻4𝑋"5 − 𝐻4𝑋! , 𝑋"5 = 𝐻(𝑋!) − 𝐻4𝑋!9𝑋"5 = 𝐻4𝑋"5 − 𝐻(𝑋"|𝑋!)                          (1)       
Where 𝐻 stands for Shannon entropy.  
For discrete cases, if variable 𝑋! takes the value of {𝑥!#, … , 𝑥!$}	with the probability of 𝑝#, … , 𝑝$ that is a 
multinomial distribution which is the mother of the discrete distributions, then the Shannon entropy is defined by 
𝐻(𝑋!) = −∑ 𝑝%log	(𝑝%)$

%&#   shows the uncertainty corresponding to  𝑋!. 
For the bivariate case, suppose there is another variable 𝑋" taking the values of @𝑥"#, … , 𝑥"'A	with the joint 
probability function with 𝑋! as 𝑃(!,("(𝑥!% , 𝑥"*) for 𝑟 = {1,… , 𝑘} and 𝑠 = {1,… , 𝑙}. The definition of the joint 
Shannon entropy of 𝑋! and 𝑋" is  
                                       𝐻4𝑋! , 𝑋"5 = −∑ ∑ 𝑝(!,("(𝑥!% , 𝑥"*)log	(𝑝(!,("(𝑥!% , 𝑥"*))

'
*&#

$
%&#                                         (2) 

For the dependent case, 𝐻4𝑋! , 𝑋"5 = 𝐻(𝑋!) + 𝐻4𝑋"5 and then 𝐼4𝑋! , 𝑋"5 = 0.  
MI is a symmetric measure that assures us to use it in the inference of undirected networks.  
To use it in directed networks some other measures are introduced like transfer entropy (TE) (Schreiber, 2000) 
that is for time data and also 𝐾-dependence coefficient defined as 𝐾4𝑋!: 𝑋"5 =

+,(!,("-

.((!)
∈ [0,1] (Kong, 2007).  

 
3. Some Alternatives 
As mentioned before, this study aims to provide a very simple way to detect the dependent variables to create an 
undirected graph of the data. We employ the MI on a real data set composed of binary values due to its better 
definition for discrete random variables. To compare MI accuracy, some alternatives such as Reversible Jump 
Markov Chain Monte Carlo (MCMC) and Birth-Death MCMC try to estimate the inverse covariance matrix to 
determine the conditional dependence between the variable after transforming the data into Gaussian by Copula. 
The details can be found in the study of Farnoudkia and Purutçuoğlu (2017). In this section, the two alternatives 
will be explained in detail that try to construct an undirected graph for the data set.  
 
3.1 Reversible Jump Markov Chain Monte Carlo 
The Bayesian approach is a very well-known method provides a more accurate estimation of the parameters, where 
the estimation most of the time can be written in terms of the prior estimator and maximum likelihood estimator. 
On another side, MCMC methods can offer an estimation of the parameters based on an iterative algorithm in 
which, the estimation of each iteration is not worse than the previous one.  The precision matrix is responsible for 
the conditional dependence between two normally distributed variables, where the number of non-zero elements 
can change in each iteration when the precision matrix is estimated by MCMC method. That is why RJMCMC is 
proposed as a suitable algorithm that is compatible with the dimension-varying problem. The values of the 
estimated precision matrix from this method are responsible for the conditional dependence between 
corresponding normally-distributed variables in which the zero elements indicated the conditional independence.  
If the data is not normally distributed, the copula can transform the data into a normally distributed one using the 
inverse of the empirical cumulative distribution of the variables in the Gaussian Copula function. More details are 
referred to in Kojadinovic and Yan (2010). 
 
3.2 Birth-Death Markov Chain Monte Carlo 
BDMCMC is another method based on the continuous-time approach which estimates the precision matrix when 
the data is normally distributed and the parameter dimension is varying like RJMCMC. In this algorithm, both 
birth rate and death rate are calculated by the Poisson process. So in each iteration, the zero elements of the 
precision matrix are born with a birth rate and the non-zero elements would die by the death rate. Then, the 
precision matrix is updated at the end of each iteration. The choice of the birth and death rates determines the birth-
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death process and is made in such a way that the stationary distribution is precisely the posterior distribution of 
interest. Contrary to the RJMCMC approach, the moves between models are always accepted, which makes the 
BDMCMC approach extremely efficient and fast. More details can be found in Mohammadi and Wit (2017). 
 
4  Application 
The only data that is used in this study is a real set named the Rochdale data. To calculate the accuracy of the 
proposed method and some alternatives the adjacency matrix is estimated and evaluated by two measures as 
follows. 

• 𝐹#-score which is equal to 1 for the best case and 0 for the worst with the following formula. 
                                                                         𝐹#-score= 123

123453456
                                                                     (3) 

where TP stands for true positive edges, FP for the false positive edges, FN for the false negative, and 
TN for the true negative edges. These are the four elements of the confusion matrix where the estimation 
is binary that is suitable fort his study.  

• Mathew correlation coefficient (MCC) lying between -1 and +1, one for the most accurate case and -1 
when there is a complete disagreement between the prediction and observed values and zero for the 
random case as follows. 

 
                                                                     MCC= (23×26)8(53×56)

9(2345:)(23456)(26453)(26456)
                                             (4) 

4.1 The Rochdale data 
The Rochdale data is a set of eight binary economic factors which is firstly modeled by the log-linear model in the 
study of Whittaker (2009). The data is gathered by 665 persons answering eight YES/NO questions. The questions 
(variables) are labeled by letters as a: 1 for economically active wife, b: 1 if the wife is older than 38, c: 1 if the 
husband is unemployed, d: 1 if the family has more than 4 children, e: 1 of the education level of the wife is more 
than high school,  f: 1 if the education level of husband is more than high-school,  g: 1 for the Asian origin, and h: 
1 of other household member is working. The data is represented conveniently in Table 1. where each cell 
represents one of the 2; the possible combination of 0 and 1. For instance, the first cell shows that 5 persons out 
of 665 answered all eight questions as zero. For instance,  the 9th row and the 13th column which is 57 mean that 
57 persons out of 665 answered the questions by, 𝑎 = 0, 𝑏 = 0, 𝑐 = 0, 𝑑 = 0, 𝑒 = 1, 𝑓 = 1, 𝑔 = 0, ℎ = 0. 
 

Table 1. The Rochdale data 
5 0 2 1 5 1 0 0 4 1 0 0 6 0 2 0 
8 0 11 0 13 0 0 0 3 0 1 0 26 0 1 0 
5 0 2 0 0 0 0 0 0 0 0 0 0 0 1 0 
4 0 8 2 6 0 1 0 1 0 1 0 0 0 1 0 
17 10 1 1 16 7 0 0 0 2 0 0 10 6 0 0 
1 0 2 0 0 0 0 0 1 0 0 0 0 0 0 0 
4 7 3 1 1 1 2 0 1 0 0 0 1 0 0 0 
0 0 3 0 0 0 0 0 0 0 0 0 0 0 0 0 
18 3 2 0 23 4 0 0 22 2 0 0 57 3 1 1 
5 1 0 0 11 0 1 0 11 0 0 0 29 2 0 0 
3 0 0 0 4 0 0 0 1 0 0 0 0 0 0 0 
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
41 25 0 1 37 26 0 0 15 10 0 0 43 22 0 0 
0 0 0 0 2 0 0 0 0 0 0 0 3 0 0 0 
2 4 0 0 2 1 0 0 0 1 0 0 2 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 
The true network is composed of 14 edges as ac, ad, ae, ag, bd, be, bh, ce, cf, cg, dg, dh, ef, fg.  To verify the 
accuracy of the proposed method, the adjacency matrix (an 8 × 8 − dimensional	binary	matrix) is estimated by 
MI for this study and the other two methods from the study of Farnoudkia and Purutcuoglu (2017). Table 2 shows 
the accuracy of different methods in two measures. 
 

Table 2. 𝐹#-score and MCC measures of three differenet methods 
 True Network MI RJMCMC BDMCMC 

TP 14 14 12 11 
TN 14 14 14 10 
FP 0 0 0 4 
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FN 0 0 2 3 
			𝐹#-Score 1 1 0.92 0.76 

MCC 1 1 0.87 0.50 
5. Discussion and Conclusion 
This study aims to suggest the use of the MI of two variables as criteria for any relationship between them which 
is one of the main aspects of unsupervised machine learning methods. MI is a non-parametric measure and easy 
to apply but the point is that this measure is designed for discrete random variables. Mutual information can be 
used in stock market analysis to identify the relationships between different variables and their impact on stock 
prices. By calculating the mutual information between various economic indicators and stock prices, we can 
determine which variables have the strongest influence on the market (Farnoudkia and Purutçuoğlu, 2020). 
However, for continuous random variables, the method of binding should be implemented first. There are some 
other methods like Gaussian Copula transformation as well. The application section proves the high accuracy of 
MI for the binary data set by comparing it with the true network and also by two alternative methods’ accuracy. 
In this study, the graph is an undirected graph and the true graph is determined by conditional dependence which 
does not necessarily coincide with dependence. In the future study, other types of data will be used as well as other 
types of relationships. In a nutshell, MI is superior to be used at least for the independent variables because a zero 
MI implies linear and non-linear independence. 
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