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Abstract  

 

This study, while reviewing some of the established unified equations and fundamentals of the energy structure and 

providing a detailed interpretation of their physical concepts, expands the relevant equations for new topics and 

applications, and in fact, establishes novel results and equations from the energy structure analysis. In fact, this paper 

establishes an energy components-based-general model inspired by the first and second laws of thermodynamics as 

well as using a new division to the total energy of the system. The established model is completed by extracting the 

physical direction for the feasible processes based on the energy components of the system. As two of the most 

important achievements of the energy components approach, using a new quasi-statistical approach as well as a novel 

energy conservation principle, an entropy equation is gained that has a common basis as the Boltzmann entropy 

equation as well as a general solution to the different formulations of the second law of thermodynamics is established. 

The established equations are gained without any limiting assumptions, and are governed to any physical system. 

Several basic examples have been studied, and matching the obtained results with expected ones is shown. 

 

Keywords: Unified thermodynamics; high particle number systems; dependent energy components; energy structure 

equation; feasible processes; compatibility conditions; Boltzmann entropy equation.  

 

1. Introduction 

While the principles of motion determine the relationship 

between forces and accelerations, the principle of energy 

conservation, as a unifying principle in physics, with respect 

to kinetic energies, different potential energies, etc., 

examines the general behavior of the system due to exchange 

energy with the surrounding [1-2]. Of course, this issue can 

also be raised in thermodynamics. [1]. Two thermodynamic 

laws were developed by Clausius in 1865[3]. The first law 

of thermodynamics is a result of the principle of energy 

conservation for thermodynamic cycles and states that the 

sum of work done and heat exchange in a closed cycle is 

equal to zero. While the second law of classical 

thermodynamics examines the feasibility of thermodynamic 

processes. Clausius [3] using the concept of entropy, stated 

the second law as a prediction of the increase of entropy in 

physical processes, and it is based on the fact that based on 

the second law, it is necessary that the entropy of the 

universe is always increasing. In fact, the second law of 

thermodynamics is also referred to as a summary of all laws 

governing nature [3]. The use of the above expression in 

scientific theories is not easy as we know that Isaac Newton 

does not pay attention to entropy in compiling the principles 

of mechanics, in other words, classical mechanics are written 

reversibly [4]. Certainly, there are ideas for applying the 

second law on the mechanic and thermodynamic coupling 

problems on a macroscopic scale, based on thermodynamic 

entropy [5]. The second law has attracted many scholars and 

has not lost its credibility even with the advent of advanced 

scientific theories [6,7]. Various mathematical models are 

proposed for the second law of thermodynamics [8,9]. It has 

also been proven in various ways [10]. Some of these 

methods are based on statistical mechanics and some on the 

basis of quantum mechanics. However, in the quantum 

mechanical science, the law entitled "the generalization of 

the second law of thermodynamics" is formulated and 

presented, as well as the thermodynamic concept for 

negative entropy [11]. Today, the concept of entropy is wider 

than that defined by Clausius which is referred to as 

thermodynamic entropy, while some researchers have also 

defined entropy in addition to thermodynamic entropy that 

is used in relevant scientific fields to investigate problems 

[12,13]. These definitions are based on the energies that are 

involved in the relevant issues and the entropy changes 

depend on these energy changes. Processes in which entropy 

production is present are referred to as irreversible processes. 

The reasons of process irreversibility can be seen 

microscopically in theories that are used to prove the second 

law [8, 11]. In the macroscopic view, the existence of friction, 

the heating of a system with a finite rate, the presence of a 

temperature gradient, and etc., are considered as factors that 

cause the irreversibility of a process as well as entropy 

production [14-16]. Change in the structure and properties of 

the system can be considered as the main factors that cause 

the irreversibility in the microscopic view. These factors are 

the base of analysis in some branches of science such as 

Tribo-fatigue, unified mechanics theory, and also 

mechanothermodynamics [17-19]. In 

mechanothermodynamics, as a new branch of physics, an 

entropy is defined which is used as the base of MTD system 

analysis [20]. Also, energy and entropy are two main 

quantities to understand nanoparticle behavior [21]. In 
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addition, other quantities are including of chemical potential, 

strongly affecting the solubility, nucleation, and stability of 

the nanoparticle. Also, these quantities can be coupled with 

Gibbs free energy [21-23]. To investigate nanoparticle 

behavior from the perspective of the energy application, 

chosen element structure can has a very important role [24-

25]. Moreover, in statistical physics, entropy is considered 

as a function of attainable states of the system at the 

corresponding energy level [26]. Achievable states can be 

calculated at the corresponding energy level using quantum 

concepts as well as probability theory  [26]. Considering the 

assumptions of statistical physics, Boltzmann calculated her 

entropy equation in terms of attainable states of the system 

at the corresponding energy level [27]. Boltzmann equation 

can be used in general in particle systems as well as 

continuous media. This equation can be generally used to 

calculate entropy changes in reversible and irreversible 

processes  and is not directly dependent on energy losses in 

the performed process. According to the basis of statistical 

physics, in order to study the energy losses in particle 

systems, the dynamics of system particles can be 

investigated [29-31].  Various cases have been observed both 

in the scientific position and in the applied position of 

scientific principles in nature, which require the 

simultaneous mastery of the first and second laws of 

thermodynamics as governing principles. As an example, the 

formation of two-layer oxide films in the material structure 

can be mentioned [32-40]. Double layer oxide films with 

their outstanding features are still in the stage of being 

known. However, according to what is known so far about 

these films and the conditions of their formation, they are 

formed in a highly irreversible process, and in fact, in their 

analysis, the results related to the energy conservation 

principle cannot be considered for these issues, and in fact, 

reaches obvious, and of course, inapplicable results in the 

study of these films. Therefore, in this situation, the practical 

role of the second law of thermodynamics, and of course, the 

role of coupled equations and the possibility of their 

applicability become very important. In this situation, there 

are various challenges that researchers are working on. For 

example, the unequal form of the second law generally 

cannot be used as an equation that can be applied in problems, 

in order to obtain the behavior of the system in a specific 

energy exchange with the surroundings. In fact, the relevant 

form is in the position of checking the feasibility of a 

physical solution for the behavior of the studied system. Also, 

the existence of different expressions and formulations for 

the second law of thermodynamics brings many practical 

and scientific challenges [41-55]. Attempts have been made 

to find a general solution for various expressions of the 

second law of thermodynamics in terms of system energy 

components for physical processes [56]. Also, the energy 

components of the system have been used to provide a quasi-

statistical equation for entropy, such that the corresponding 

equation has the same basis as Boltzmann's entropy equation 

[57]. In fact, we can apply some of the effects of the second 

law on the energy structure of the system using its energy 

components [50,56,58-59]. Borchers presents his equations 

by considering mechanical and thermal variables in order to 

determine the behavior of the system in the representation of 

its internal energy, and also, using the relevant mathematical 

structure resulting from the definition of entropy in the 

second law of thermodynamics [60]. In this respect, the 

energy structure approach can be similar to Borchers 

approach. In fact, according to the achievements that have 

been obtained from the perspective of the energy structure, 

the issue of its expansion and completion can be very 

valuable. References [50,56-59] provide the equation of 

energy structure with the assumptions of irreversibility in a 

physical process, and are used to provide the quasi-statistical 

equation for entropy as well as the different expressions of 

the second law of thermodynamics. In this study, the energy 

structure equation is extracted with the relevant 

mathematical analysis process, and used to define a new 

energy space. Feasible processes are investigated, and 

system compatibility conditions are derived. Also, the 

dynamic energy definition of the system is provided based 

on the extracted energy structure, from which valuable 

results can be obtained on the behavior of physical systems 

from the point of view of its energy components. The 

relevant perspective provides a simultaneous view of the 

first and second laws of thermodynamics, and is used in the 

energy coordinates of the system in order to express the 

processes that can be performed as a result of energy 

exchange with the surrounding. Another issue that results 

from this point of view is determining the structure of 

irreversibility, and also, defining the components of 

irreversibility. The analysis of irreversibility in a physical 

process using the energy structure equation is available in 

reference [59]. In this paper, according to the mathematical 

process established for deriving the equation of the energy 

structure as well as the definition of the new dynamic energy 

component and system compatibility conditions, a more 

comprehensive approach to the results presented for the 

analysis of irreversibilities is obtained. Finally, it must be 

noted that one of the goals of the energy structure perspective 

is to try to improve the relevant forms to express the energy 

of the system by providing its equations on the basis of the 

activated energy components and their structure and apply 

the governed principles that have recently become one of the 

challenges of scientists regarding the correct forms of the 

first and second laws of thermodynamics are converted, as 

well as the mathematical errors corresponding to these laws. 

 

2. Notations and Definitions 

In this part, the most important used concepts and 

notations are defined. At the first step, we need to provide a 

standard formulation to the first law of thermodynamics.  

  

2.1 N.D.1. Energy Space 

Energy space is combined of the all activated and non-

activated energy components of the system in the performed 

process. During a physical process, one of the sub-spaces of 

the energy space participates in the performed process. All 

analysis are done based on the energy space of the system, 

and relations are written based on the independent and 

dependent energy components of the system. Notation 𝑢𝑖 is 

used for energy components of system.  

    

2.2 N.D.2. Independent Energy Components 

For a performed process, independent energy 

components are that components that are activated 

independently of that how energy is applied to the system. In 

fact, these components are the basis of the performed process, 

and will be activated in all conditions of energy applying for 

the considered process. 

   

 

 

2.3 N.D.3. Dependent Energy Components 
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Dependent energy components can be activated 

dependently to the independent energy components. In fact, 

these components are dependence that how energy is applied 

to the system, and also can be ranged as value-dependence 

( 𝑔𝑗 = 𝑔𝑗(𝑢1, 𝑢2, … , 𝑢𝑚) ) and rate-dependence ( ℎ𝑝 =

ℎ𝑝(�̇�1, … , �̇�𝑚) ) to the independent energy components 

activated in the performed processes. Where 𝑚 is number of 

the activated independent energy components. 

 

2.4 N.D.4. Energy Structure Equation 

Energy structure equation is established and developed 

as an equation that can formulate the performed processes 

using activated, independent and dependent, energy 

components of the system, and also shows their dependence. 

Therefore, energy structure equation is used to study the 

physical processes from the perspective of the energy space 

of the system. 

 

2.5 N.D.5. Quasi-Static Path 

In a quasi-static path, energy is applied to the system with 

a zero rate. In fact, for independent components, it can be 

considered that in a quasi-static path �̇�𝑖 ≅ 0. This path is 

used as a reference path, and other paths are studied using 

comparison with the quasi-static path. In this path, only 

independent and value-dependence energy components can 

be activated. 

 

2.6 N.D.6. General Paths 

In a general path, energy is applied to the system with a 

non-zero rate (Or �̇�𝑖 ≠ 0). 

 

2.7 N.D.7. Particular Process 

All processes that have the same active independent 

energy components. 

 

2.8 N.D.8. Various Conditions 

All conditions that same energy amount is applied to the 

system. 

  

3. Energy In A Physical System 

When the principle of energy conservation is used for a 

physical problem, at first, it is necessary to express the 

proper term for the system energy, which includes those 

participating in the processes that are possible for the system 

and will change through. The principle of energy 

conservation relates these changes to each other as well as 

the exchange of energy with the environment. For example, 

when the principle of mechanical energy conservation is to 

be applied, the total mechanical energy is considered as a 

sum of potential energies and kinetic energy [61]. 

 

𝐸𝑀 = 𝑈𝑠𝑦𝑠 + 𝐾𝑠𝑦𝑠                                                                                (1) 

                                                                                        

In that 𝐸𝑀 is the total mechanical energy, 𝑈𝑠𝑦𝑠 and 𝐾𝑠𝑦𝑠 

are respectively potential energy and kinetic energy. In this 

case, the principle of energy conservation states that the total 

energy change rate is equal to the exchange rate of energy 

with the environment. 

If the desired problem has thermal effects too, then in 

writing the principle of energy conservation, it is necessary 

to consider the terms related to heat exchange. For a unit 

mass of the body, if 𝑑𝐻 is the variation in the heat collected, 

𝑑𝐸  is the internal energy variation, 𝑑𝑊  of the work 

performed by the external forces, 𝑑𝑉 is the change of the  

kinetic energy stored and 𝑑𝑅 is the heat changes transformed 

to the environment, then the principle of energy conservation 

is thus written [1]:  

 

𝑑𝐻 = 𝑑𝐸 + 𝑑𝑊 + 𝑑𝑉 + 𝑑𝑅                                              (2)   

                                                                                                                                                                                                                                                         

Equation (2) identifies the relationship between the 

intrinsic, thermal and kinetic energy changes of the system 

to the work done and changes in the heat exchanged with the 

surrounding environment. 

As another example, it can be argued that a vulnerable 

solid object can exchange heat with the surrounding 

environment. Sosnovsky [12] named these systems as 

mechanothemodynamic systems. He also considered the 

energy of the whole to analyze the mechanothermodynamic 

systems as follows: 

 

𝐸 = 𝐸𝑇 + 𝐸𝑀                                                                               (3)  

                                                                                                                                                                                                                                                                                              

Where 𝐸 is the total energy, 𝐸𝑇and 𝐸𝑀 are respectively 

thermal and mechanical energy. He used this expression to 

determine the mechanothermodynamic entropy. 

In this paper, it is assumed that the total energy for the 

system can be considered as follows, as shown in figure 1: 

 

𝑈𝑇=𝑈𝑁𝐷 + 𝑈𝐷                                                                     (4) 

                                                                                                                

That 𝑈𝑇  is the total energy, 𝑈𝐷  is the dynamic energy 

and 𝑈𝑁𝐷 is the sum of all other types of energy. Fig 1 takes 

a scheme of this division:  

 

            
Figure 1. A new division of the total energy. 

 

Dynamic energy is the sum of energies that are directly 

related to the inertia of the system. Non-dynamic energy is 

also the sum of energies that are not directly related to the 

inertia of the system and are related to the deformation of the 

system and its displacement. Energies such as the potential 

energy of the massless spring, the energy associated with the 

massless damper, the energy associated with changing the 

distance between the plates of a massless capacitor, etc. are 

the examples of non-dynamic energy. A component of the 

kinetic energy such as kinetic energy of a moving rigid body 

could be an example of dynamic energy, because it is 

directly related to the inertia of the system. This division 

enables us to apply the effects of the surrounding 

environment on the equation governing the behavior of the 

system, thus representing each physical process as a term 

appropriate for dynamic and non-dynamic energies. This 

manner of presentation allows us to incorporate the internal 

structure of the system and the processes that can be 

implemented for it in terms of non-dynamic energies. 

Eq. (4) introduces a new approach for investigating the 

total energy of the system which its base is the direct 

dependence on the inertia of the system. Each energy type in 

this equation whether dynamic or non-dynamic could be 

divided into different components e.g. in studying damage 

of mechanothermodynamic systems, irreversible effective 
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energy in damage will be one of them, therefore this equation 

is more general than any other relation considering only a 

phenomena such as tribo-fatigue. 

 Using this assumption, a study on the energy structure 

of physical systems can be performed.  

 

4. Non-Dynamic Energy Structure 

In physical systems, the concepts of reversibility and 

irreversibility are an important issue for the performed 

process. It is in this situation that paying special attention to 

irreversibility factors has a special place [28-31].  In fact, 

physical processes are generally irreversible and this issue 

needs to be considered especially in the basis of the 

governing equations. Figure 2 shows a physical system in 

energy exchange with the surrounding environment and also 

according to its energy components: 

 

 
Figure 2. Scheme of a physical system with its energy 

components. 

 

In Figure 2, a physical system with its non-dynamic 

energy components is shown. This system receives some 

energy from its surrounding. The total non-dynamic energy 

for the system can be expressed as follows: 

 

𝑈𝑁𝐷 = ∑ 𝑢𝑖𝑖                                                                            (5) 

                                                                                                                                                                                                                                                              

That 𝑢𝑖 is a non-dynamic energy component. 

In a process performed by the system, some of the energy 

components remain constant, some others change 

independently in the process, and remaining will also change 

as a function of independent components. Therefore, 

assuming that the first 𝑚  components are independently 

participating in the process, 𝑘 components are the dependent 

ones, and the other components remain unchanged, the non-

dynamic variation can be written as follows: 

 

𝛿𝑈𝑁𝐷 = [𝛿𝑢1 + 𝛿𝑢2 + ⋯+ 𝛿𝑢𝑚] + [𝛿𝑢𝑚+1 + ⋯+
𝛿𝑢𝑚+𝑘] + 0                                                                         (6)                                       

 

Assuming that the process is quasi-static (�̇�𝑖≅0), then the 

dependent components can be rewritten as follows, as shown 

in figure 3. 

 

𝛿𝑔𝑗 ≡ 𝛿𝑢𝑚+𝑗                                                                          (7)    

                                                                                                                                                                                                                                                                      

That: 

 

𝑔𝑗 = 𝑔𝑗(𝑢1, 𝑢2, … , 𝑢𝑚)                                                          (8) 

                                                                                                                 

So the Eq. (6) can be rewritten as follows: 

𝛿𝑈𝑁𝐷 = [𝛿𝑢1 + 𝛿𝑢2 + ⋯+ 𝛿𝑢𝑚] + [𝛿𝑔1 + ⋯+ 𝛿𝑔𝑘]    (9) 

                                                                  

By calculating the non-dynamic energy of the Eq. (9): 

 

𝑈𝑁𝐷 = (𝑢1 + 𝑢2 + ⋯+ 𝑢𝑚) + [𝑔1 + ⋯+ 𝑔𝑘] + 𝑈𝑇0     (10)   

                                                                                  

That 𝑈𝑇0  is the sum of all the energies that have not 

participated in the process: 

 

𝑈𝑇0 = ∑ 𝑢𝑚+𝑘+𝑖𝑖                                                                       (11)  

 

 
Figure 3. Non-dynamics energy change in the quasi-static 

process. 

                                                                                                                                                                                                                   

Path 1-2 is an ideal path on which the variations of the 

independent components occur in a quasi-equilibrium state. 

The quasi-static path occurs with remaining the system in 

internal equilibrium, even for an ideal process to be 

performed it could be supposed that infinite time is needed.  

As expected, in this case the relationship between the energy 

components is independent of time (because the functions 𝑔𝑗 

do not depend on time). 

 And in general case (�̇�𝑖 ≠ 0), as shown in figure 4, the 

following statement is used: 

 

 
Figure 4. Non-dynamics energy change in general case. 

 

𝑈𝑁𝐷 = (𝑢1 + 𝑢2 + ⋯+ 𝑢𝑚) + [𝑔1 + ⋯+ 𝑔𝑘] + [ℎ1 +
⋯+ ℎ𝑛] + 𝑈𝑇0                                                                     (12) 

                                                        

ℎ𝑝 = ℎ𝑝(�̇�1, … , �̇�𝑚)                                                                 (13) 

                                                                                                                         

Based on the Eq. (12), can be named Energy Structure 

Equation, in a physical process, the energy components that 

are activated can depend on the rate of energy applied to the 

system by the environment, and also on how it is applied, as 

well as the internal structure of the system. Eq. (12) states 

that in a non-static state, the energy given to the system is 

divided into more components than the static state. 

The changes in Eq. (12) can be expressed as follows: 

 

𝛿𝑈𝑁𝐷 = ∑ 𝛿𝑢𝑖
𝑚
𝑖=1 + ∑ ( 

𝜕𝑔𝑗

𝜕𝑢1
𝛿𝑢1 + ⋯+

𝜕𝑔𝑗

𝜕𝑢𝑚
𝛿𝑢𝑚 )𝑘

𝑗=1 +

∑ ( 
𝜕ℎ𝑝

𝜕�̇�1
𝛿�̇�1 + ⋯+

𝜕ℎ𝑝

𝜕�̇�𝑚
𝛿�̇�𝑚 )𝑛

𝑝=1                                      (14) 
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As 𝛿𝑈𝑇 is exchanged between system and surrounding, 

activated energy components will change based on how 

energy is applied to the system. So, considering this process, 

Eq. (15) can take the variations of the activated independent 

energy components (𝛿𝑈𝑇 is not necessarily heat or work, and 

in general it can be a combination of them or the cause of a 

variation in the independent components of energy): 

 

𝛿𝑢1 = 𝛼1𝛿𝑈𝑇 

⋮ 
𝛿𝑢𝑚 = 𝛼𝑚𝛿𝑈𝑇                                                                   (15) 

                                                                                                                                                                                                                                                                                             

The coefficients 𝛼𝑖 can be named as loading coefficients 

that depend on how energy is applied to the system. 

Therefore, by assuming that: 

 

𝛼 = [∑ 𝛼𝑖 (1 + ∑
𝜕𝑔𝑗

𝜕𝑢𝑖

𝑘
𝑗=1 )𝑚

𝑖=1 ] + [∑ �̇�𝑖 (∑
𝜕ℎ𝑝

𝜕�̇�𝑖

𝑛
𝑝=1 )𝑚

𝑖=1 ]   (16) 

                                                                                                                                

𝛽 = ∑ 𝛼𝑖 (∑ ( 
𝜕ℎ𝑝

𝜕�̇�𝑖
)𝑛

𝑝=1 )𝑚
𝑖=1                                                 (17)   

                                                                                                                                                                                                                                       

Equation (14) can be rewritten as follows: 

 

𝛿𝑈𝑁𝐷 = 𝛼𝛿𝑈𝑇 + 𝛽𝛿�̇�𝑇                                                     (18)   

                                                                                                                                                                                                                                                   

The coefficients 𝛼 and 𝛽 depend on the amount and rate 

of energy applied to the system, as well as the inherent 

properties of the system. 𝛿𝑈𝑇 is not necessarily heat or work, 

and in general it can be a combination of them or the cause 

of a variation in the independent components of energy.  

Equation (18) can also be expressed as: 

 

�̇�𝑁𝐷 = 𝛼�̇�𝑇 + 𝛽�̈�𝑇                                                                          (19)  

                                                                                                                                                                                                                                                                                                       

Equation (19) depends on the variation of non-dynamic 

energies to the amount and variation of the rate of the energy 

that applied from the environment to the system as well as 

the coefficients 𝛼 and 𝛽. 

As an example, in one degree of freedom vibrational 

systems [30], the potential energy depends on the 

displacement of the mass while the dissipated energy 

depends on the velocity. Therefore, by assuming the 

potential energy as the independent energy component, the 

dissipated energy could be considered as the dependent one. 

It is also notable that some of these energy components could 

be considered as non-dynamic energy of the system. 

The energy structure equation is based on the energy 

components of the system as well as the way of energy 

exchange between the system and the surrounding 

environment. In fact, according to the energy structure 

equation, in a physical process, some components are 

activated independently, and some participate in the physical 

process depending on the independent components, and the 

rest of the components remain inactive. Dependent 

components can be a function of the amount or rate of 

independent components. The components dependent on the 

rate of change of the independent components, in fact, show 

the irreversibility aspects of the performed physical process. 

The energy structure perspective has no contradiction 

with the second law of thermodynamics. In fact, based on 

sub-structural approaches to the second law of 

thermodynamics [62-64], the perspective of energy structure 

is in complete agreement with this law.  

 

5. Feasible Processes 

In order to study the performed processes, classical 

thermodynamics considers their initial and final states, and 

heat exchange and work done in different paths are studied. 

Therefore, for thermodynamic processes with transferred 

heat and work done, as well as considering constant initial 

and final states, in paths that have similar initial and final 

states, the internal energy changes are equal, although the 

heat exchanged and also the work done in these paths are 

different, as shown in figure 5.  

 

 
Figure 5. System behavior in different paths with fixed first 

and final states. 

 

In this approach, as shown in figure 6, the energy 

exchanged between the system and the surrounding 

environment is considered equal in different paths, and the 

changes of the energy components in these paths are studied. 

 

 
Figure 6. System behavior by applying the same energy in 

different paths. 

 

To investigate the feasible processes, same amounts of 

energy are applied to a system in two different paths and thus 

the variation of the energy components will be compared. In 

fact, it is assumed that the variations of non-dynamic 

energies are equal in these two different paths and then the 

variations of independent components will be studied. In 

other words, the perspective of the energy structure studies 

the paths that have equal energy exchange and derives the 

governing condition for the feasible processes based on the 

energy components of the system. 

As shown in figure 6, if Eq. (9) and Eq. (14) are equaled 

when the component 𝑢𝑗 is the only independent component 

of the process, then the following relation can be concluded 

(That  𝛿𝑢𝑗  takes the variation of component 𝑢𝑗  in general 

path (�̇�𝑗 ≠  0) for the case that 𝛿𝑈𝑇 is exchanged between 

system and surrounding. Also, 𝛿𝑢′
𝑗  takes the variation of 

component 𝑢𝑗 for the quasi-static path (�̇�𝑗 ≅ 0) for the case 

that 𝛿𝑈𝑇 is exchanged between system and surrounding.): 

 

𝛿𝑢𝑗 + ∑ ( 
𝜕𝑔𝑖

𝜕𝑢𝑗
𝛿𝑢𝑗 ) + ∑ ( 

𝜕ℎ𝑝

𝜕�̇�𝑗
𝛿�̇�𝑗  )

𝑛
𝑝=1

𝑘
𝑖=1 = 𝛿𝑢′

𝑗 +

∑ ( 
𝜕𝑔𝑖

𝜕𝑢𝑗
𝛿𝑢′

𝑗 )
𝑘
𝑖=1                                                                  (20) 

 

Therefore:  
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(1 + ∑ ( 
𝜕𝑔𝑖

𝜕𝑢𝑗
 )𝑘

𝑖=1 ) (𝛿𝑢𝑗 − 𝛿𝑢′
𝑗) = −(∑ ( 

𝜕ℎ𝑝

𝜕�̇�𝑗
 )𝑛

𝑝=1 ) 𝛿�̇�𝑗  

                                                                                         (21)                                                                            

 

−[
(∑ ( 

𝜕ℎ𝑝
𝜕�̇�𝑗

 )𝑛
𝑝=1 )

(1+∑ ( 
𝜕𝑔𝑖
𝜕𝑢𝑗

 )𝑘
𝑖=1 )

] =
(𝛿𝑢𝑗−𝛿𝑢′

𝑗)

𝛿�̇�𝑗
                                          (22) 

 

−[
(∑ ( 

𝜕ℎ𝑝
𝜕�̇�𝑗

 )𝑛
𝑝=1 )

(1+∑ ( 
𝜕𝑔𝑖
𝜕𝑢𝑗

 )𝑘
𝑖=1 )

] (
𝛿𝑢𝑗−𝛿𝑢′

𝑗

�̇�𝑗
) =

(𝛿𝑢𝑗−𝛿𝑢′
𝑗)

𝛿�̇�𝑗
(
𝛿𝑢𝑗−𝛿𝑢′

𝑗

�̇�𝑗
)       (23) 

 

[
(∑ ( 

𝜕ℎ𝑝
𝜕�̇�𝑗

 )𝑛
𝑝=1 )

(1+∑ ( 
𝜕𝑔𝑖
𝜕𝑢𝑗

 )𝑘
𝑖=1 )

] (
𝛿𝑢𝑗−𝛿𝑢′

𝑗

�̇�𝑗
) = −

(𝛿𝑢𝑗−𝛿𝑢′
𝑗)

2

�̇�𝑗𝛿�̇�𝑗
=

−2
(𝛿𝑢𝑗−𝛿𝑢′

𝑗)
2

𝛿(�̇�𝑗)
2                                                                     (24) 

 

Therefore, since a quasi-static path is used as reference 

path:  

 

[
(∑ ( 

𝜕ℎ𝑝
𝜕�̇�𝑗

 )𝑛
𝑝=1 )

(1+∑ ( 
𝜕𝑔𝑖
𝜕𝑢𝑗

 )𝑘
𝑖=1 )

] (
𝛿𝑢𝑗−𝛿𝑢′

𝑗

�̇�𝑗
) ≤ 0                                             (25) 

                                                                                                           

The terms ( ∑
𝜕ℎ𝑝

𝜕�̇�𝑗

𝑛
𝑝=1  ) and (

𝛿𝑢𝑗−𝛿𝑢′
𝑗

�̇�𝑗
) are actually a 

description of the more energy distribution in applying 

energy to the system at a non-zero rate. The term (1 +

∑
𝜕𝑔𝑖

𝜕𝑢𝑗

𝑘
𝑖=1 ) also depends on the internal structure of the system 

and does not depend on the rate of energy applying. 

Relationship (25) is established for any process that the 

system experiences. This inequality is expressed in the 

following Eq. (18) and shows that a physical system cannot 

experience any arbitrary process and inequality (25) must be 

established.   This condition is very similar to the second law 

of thermodynamics, which states that in real processes, some 

entropy will always be generated.  

Relationship (25) can also be considered as a constraint 

on processes performed by the system. 

 

6. A Novel Energy Conservation Principle 

Borchers considered the law of conservation of energy in 

terms of mechanical and thermal variables [60]. The 

perspective of energy structure actually uses energy 

components by considering the related dependence structure 

in order to express the energy of system. In fact, one of the 

achievements of the energy structure perspective mentioned 

in the references is providing a new expression for the energy 

conservation principle using a standard formulation to the 

first law of thermodynamics [50,57,65-66]. In this part, a 

brief overview of this statement is provided. Considering 

figure 7. 

 

𝛿𝑈𝑗 = 𝛿𝑢𝑗 − 𝛿𝑢′
𝑗                                                                  (26)  

                                                                                                                                            

So, relation (25) takes: 

   

[
(∑ ( 

𝜕ℎ𝑝

𝜕�̇�𝑗
 )𝑛

𝑝=1 )

(1+∑ ( 
𝜕𝑔𝑖
𝜕𝑈𝑗

 )𝑘
𝑖=1 )

] (
𝛿𝑈𝑗

�̇�𝑗
) ≤ 0                                         (27)    

                                                                                             

Or: 

 

[
(1+∑ ( 

𝜕𝑔𝑖
𝜕𝑈𝑗

 )𝑘
𝑖=1 )

(∑ ( 
𝜕ℎ𝑝

𝜕�̇�𝑗
 )𝑛

𝑝=1 )

] (
𝛿𝑈𝑗

�̇�𝑗
) ≤ 0                                              (28) 

                                                                                                                              

Eq. (28), like Borchers equations [60], in addition to 

energy exchange, depends on the internal structure of the 

system as well as the way of energy exchange. Eq. (28) is 

general in system energy coordinates and according to the 

energy structure equation, and it is obtained without any 

limiting assumption. These conditions are provided in 

Borchers unified view in terms of mechanical and thermal 

variables that can provide a complete description of the 

system. 

 

 
Figure 7. Difference between two different paths [65]. 

 

7. The Physical Significance of Entropy 

Borchers considered the law of conservation of energy in 

terms of mechanical and thermal variables [60]. The 

perspective of energy structure 

The second law can be expressed as follows [67]: 

 

∮
𝛿𝑄

𝑇
≤ 0                                                                                (29) 

                                                                                                                                                 

Where 𝛿𝑄 is the heat exchanged at temperature 𝑇. Also, 

for a continuous distribution of matter: 

 
𝑑

𝑑𝑡
∫ 𝜌𝑠
𝑝

𝑑𝑉 ≥  ∫ 𝜌𝑒
𝑝

𝑑𝑉 − ∫
𝑞𝑖𝑛𝑖

𝑇
 𝑑𝑎

𝜕𝑝
                       (30) 

                                                                                                 

So, in the differential form: 

 
𝑑𝑠

𝑑𝑡
− 𝑒 − 

1

𝜌
 (

𝑞𝑖

𝑇
) ,𝑖 ≥ 0                                                (31) 

                                                                                                                               

Where 𝑝  is a material particle, and 𝜕𝑝  is the surface 

containing the volume of the particle 𝑝. Also, 𝑒 is the rate of 

entropy entry from surrounding surface by external sources 

per unit mass of the material, 𝑞𝑖  is the heat flux vector 

passing through the unit surface, 𝜌  is density, 𝑛𝑖  is the 

normal vector of surface, 𝑇 is temperature, and 𝑠 is entropy 

of the considered material point.  

The equality state is for reversible processes, and the 

inequality state is for irreversible processes. Among the most 

important equations of classical thermodynamics in order to 

study irreversibility in performed process, Eq. 32 can be 

considered: [68]: 

 

𝐼𝑘⃗⃗⃗  = ∑ 𝐿𝑘𝑙𝐹 𝑙𝑙                                                            (32) 
                                                                                                                                            

Where 𝐼𝑘⃗⃗⃗   is a set of general currents and 𝐹 𝑙  is 

thermodynamic forces. Also, 𝐿𝑘𝑙  is a matrix of kinematic 

coefficients. For matrix 𝐿𝑘𝑙  it is required to satisfy the 
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symmetry equations in the OSAGER equations [69]. In this 

perspective, the irreversibility is studied using investigating 

the sub-structures of the system. 

However, when there is no irreversibility in the 

performed process, Eq. (33) takes the entropy change in the 

process: 

 

𝑇𝑑𝑠 = 𝑑𝑄                                                                                           (33) 

                                                                                                                                                       

Based on the second law of thermodynamics, 𝑑𝑠 ≥
𝑑𝑄

𝑇
 or 

𝑑𝑠𝑔𝑒𝑛 ≥ 0, that 𝑠𝑔𝑒𝑛  is the entropy generated, and must be 

always positive in all feasible process. The entropy 

generated is the basis for studying the amount of available 

work lost. In fact, irreversibility in a physical process is 

directly related to the amount of entropy production. The 

generated entropy increases the amount of thermal energy of 

the system, and this can be studied in the increase of changes 

related to the dependent components ℎ𝑝 activated in the 

performed process. The amount of irreversibility is 

considered as 𝑇0𝛿𝑆𝑔𝑒𝑛  that is defined based on entropy 

generation and the environment temperature [67].  

From the perspective of the statistical physics, Planck's 

theorem, entropy is considered as a function of the 

probability [70]. So: 

 

𝑆 = 𝑓(𝑊)                                                                                (34) 
                                                                                                                               

Where 𝑆 is entropy, and 𝑊 is the probability. Based on 

the considered properties for entropy, function 𝑓  must 

satisfies the following conditions [70]: 

 

𝑆 = 𝑆1 + 𝑆2                                                             (35) 

                                                                                                                             

𝑓((𝑊1.𝑊2) = 𝑓(𝑊1) + 𝑓(𝑊2)                                  (36)  

  

That 𝑊1 and 𝑊2 are probabilities of sub-systems 1 and 2. 

So: 

 

𝑆 = 𝑘𝑙𝑛(𝑊) + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                          (37)   

 

That 𝑘 is a constant. Plank equation for entropy is [26]:  

 

𝑆 = 𝑘[(𝑁 + 𝑃) ln(𝑁 + 𝑃) − 𝑁𝑙𝑛(𝑁) − 𝑃𝑙𝑛(𝑃)]           (38)  

 

That 𝑁 is resonators, and 𝑃 is an integer. The equation of 

probability has been provided with diferent approaches [27]. 

As an example,  Fermi-Dirac provide the following equation: 

 

𝑊 = ∏
𝑔𝑗!

(𝑔𝑗−1)!𝑁𝑗!
𝑗                                                      (39)  

                                                                                                                  

That 𝑁𝑗  is the number of particles with the weighting 

factor of energy level 𝑔𝑗. Statistical mechanics determines 

the absolute value of entropy according to the energy levels 

of its constituent elements. In this view, the energy level of 

each particle is considered as a variable, and according to the 

set of all energy levels, statistical mechanics will be able to 

calculate the absolute value of entropy. 

 

8. Energy Component’s Approach to the Boltzmann 

Entropy Equation 

Borchers considered the law of conservation of energy in 

terms of mechanical and thermal variables [60]. The 

perspective of energy structure 

As one of the achievements of the energy structure 

perspective in the references, it is the presentation of the 

quasi-statistical equation of entropy, which has a common 

basis as Boltzmann's entropy equation [57]. In this section, a 

brief overview of this equation is provided. Figure 8 shows 

a scheme of the energy components approach: 

 

 
Figure 8. Energy Component’s approach for particles. 

system [57]. 

 

Considering Eq. (26) and rewriting Eq. (21): 

 

(1 + ∑ ( 
𝜕𝑔𝑖

𝜕𝑈𝑗
 )𝑘

𝑖=1 ) (𝛿𝑈𝑗) = −(∑ ( 
𝜕ℎ𝑝

𝜕�̇�𝑗
 )𝑛

𝑝=1 ) (𝛿�̇�𝑗)      (40) 

 

So, if Eq. (40) is replaced in the relation (28): 

 

(−
𝛿�̇�𝑗

�̇�𝑗
) ≤ 0                                                                       (41)  

                                                                                                                                                

Or: 

 

𝛿[ln(�̇�𝑗)] ≥ 0                                                                             (42) 
                                                                                                                                    

Because it is necessary that the relation (42) be 

established for each independent activated component, so 

relation (43) can be derived: 

 

𝛿 [ln(�̇�1)] + 𝛿[ln(�̇�2)] + ⋯+ 𝛿 [ln(�̇�𝑚)] ≥ 0             (43) 

 

Therefore: 

 

 𝛿[ln(∏ �̇�𝑗
𝑚
𝑗=1 )] ≥ 0                                                        (44) 

                                                                                                                          

Considering 𝑤𝑢𝑗
= �̇�𝑗  ,and also 𝑊𝑢 = ∏ 𝑤𝑢𝑗

𝑚
𝑗=1 , 

therefore:   

 

𝛿[ln(𝑊𝑢)] = 𝛿 [ln (∏ 𝑤𝑢𝑗

𝑚
𝑗=1 )] = ∑ 𝛿ln (𝑤𝑢𝑗

)𝑚
𝑗=1 ≥ 0   

                                                                                         (45)                                                                    

 

Finally, as the Boltzmann equation, the quasi-statistical 

definition of entropy can be provided as follows: 

 

𝛿𝑠 = 𝐾𝑀𝑆 𝛿[ln(𝑊𝑢)]                                                          (46) 

                                                                                                                        

Where 𝐾𝑀𝑆 is a universal constant. The quasi-statistical 

equation of entropy relates entropy changes to the rate of 

energy components that are measured relative to the quasi-

static path. It also obtains entropy changes depending on the 

amount and manner of energy exchange. Also, applicability 

for systems with a continuous distribution of matter as well 
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as the amount of acceptable calculations can be mentioned 

as two features of this equation [57]. 

 

9. Dynamic Energy and Compatibility Conditions of 

System 

Using Eq. (4), the variation of the dynamic energy in a 

process can be written as follows: 

 

𝛿𝑈𝐷 = 𝛿𝑈𝑇 − 𝛿𝑈𝑁𝐷                                                                     (47) 

                                                                                                                                                                                                                                                                                     

By placing the Eq. (18) in (47): 

 

𝛿𝑈𝐷 = (1 − 𝛼)𝛿𝑈𝑇 − 𝛽𝛿�̇�𝑇                                            (48)  

                                                                                                                                                                                                                                                                     

Eq. (48) shows the dependence of the dynamic energy 

variation to the amount and rate of energy applied from the 

environment to the system as well as the coefficients 𝛼 and 

𝛽. By using Eq. (15) dynamic energy can also be written in 

terms of independent components: 

 

𝛿𝑈𝑇 =
𝛿𝑢𝑗

𝛼𝑗
  , 1 ≤ 𝑗 ≤ 𝑚 , 𝛼𝑗 ≠ 0                                        (49) 

                                                                                                                                                                                                          

𝛿�̇�𝑇 = (
1

𝛼𝑗
) 𝛿�̇�𝑗 − (

�̇�𝑗

𝛼𝑗
2) 𝛿𝑢𝑗                                            (50) 

                                                                                                                           

Therefore: 

 

𝛿𝑈𝐷 = [(
1−𝛼

𝛼𝑗
) + (

𝛽�̇�𝑗

𝛼𝑗
2)] 𝛿𝑢𝑗 − (

𝛽

𝛼𝑗
)𝛿�̇�𝑗 ≡ 𝛾𝑗𝛿𝑢𝑗 + 𝛾𝑗

′𝛿�̇�𝑗   

                                                                                         (51)                                                                      

                                                              

Eq. (51) gives the variation of dynamic energy in terms 

of the independent component of 𝑢𝑗 and its changing rate. 𝛾𝑗 

and 𝛾𝑗
′ are the coefficients of influence of 𝛿𝑢𝑗  and 𝛿�̇�𝑗  on 

the variation of the dynamic energy of the system. The 

dependence of dynamic energy on the rate of the 

independent energy components indicates the possibility of 

more energy distribution by increasing the rate of applied 

energy to the system. The following relationship will also 

exist between the independent energy components: 

 

𝛾𝑗𝛿𝑢𝑗 + 𝛾𝑗
′𝛿�̇�𝑗 = 𝛾𝑖𝛿𝑢𝑖 + 𝛾𝑖

′𝛿�̇�𝑖 , 1 ≤ 𝑖, 𝑗 ≤ 𝑚              (52) 

                           

The Eq. (52) indicates possible paths for independent 

energy components. This equation can be rewritten as 

follows: 

 

(𝛾𝑗𝛿𝑢𝑗 − 𝛾𝑖𝛿𝑢𝑖) = (𝛾𝑖
′𝛿�̇�𝑖 − 𝛾𝑗

′𝛿�̇�𝑗) = 𝜇𝑖𝑗                      (53) 

 

Where 𝜇𝑖𝑗  is a scalar that depends on the performed 

process as well as 𝛿𝑢𝑖  and 𝛿𝑢𝑗  components. For a process 

performed by the system, each of the 𝑚  independent 

components should be analyzed with (𝑚 − 1)  other 

components by using the Eq. (52). Therefore, the number of 
𝑚(𝑚−1)

2
 values could be calculated for  𝜇𝑖𝑗 . These 

𝑚(𝑚−1)

2
 

equations state the compatibility conditions of the system 

that must be satisfied for the performed process. 

 If 𝜇𝑖𝑗 = 0 and  𝛾𝑗 , 𝛿𝑢𝑖 , 𝛿�̇�𝑖 , 𝛾𝑗
′ ≠ 0 : 

 
𝛿𝑢𝑗

𝛿𝑢𝑖
=

𝛾𝑖

𝛾𝑗
                                                                                             (54) 

                                                                                                                                               

And also:  

𝛿�̇�𝑗

𝛿�̇�𝑖
=

𝛾𝑖
′

𝛾𝑗
′                                                                                  (55) 

 

Eq.s (54) and (55) must be established together. 

Therefore if  𝜇𝑖𝑗 = 0 , 𝑚(𝑚 − 1)  equations should be 

satisfied for the performed process, which in fact they 

specify the performed process as well as system 

compatibility conditions. 

By using Eq. (19), the dynamic energy rate can also be 

expressed as: 

 

�̇�𝐷 = (1 − 𝛼)�̇�𝑇 − 𝛽�̈�𝑇                                                    (56)   

                                                                                                                   

That takes the rate of dynamic energy.     

 

10. Energy State Equation 

Using Eq. (4), the variation of the dynamic energy in a 

process can be written as follows: 

In the case of β = 0, then dynamic and non-dynamic 

energy changes are independent of the exchange rate of 

energy with the environment and will only depend on the 

amount of energy exchanged. In this case, it is expected that 

for each value of the energy given to the system, the dynamic 

and non-dynamic energies will establish in a given 

relationship, which is dependent on the internal structure of 

the system. 

If we consider this relation as follows: 

 

𝐺(𝑈𝑁𝐷, 𝑈𝐷) = 0                                                                               (57)  

                                                                                                                                                                                                                                                                                             

In this case, by calculating the variation of Eq. (57) and 

using Eq.s (18) and (56), the following differential equation 

is obtained: 

 

𝛼
𝜕𝐺

𝜕𝑈𝑁𝐷
+ (1 − 𝛼)

𝜕𝐺

𝜕𝑈𝐷
= 0                                                  (58) 

                                                                                                                                                                                                                                                                  

If 𝛼 =  0  or  𝛼 =  1 , we obtain from the differential 

equation (58) that 𝐺 =  𝑐, where c is a constant value. The 

value of 𝛼 =  0 represents the process by which all energy 

exchanged with the environment is converted to dynamic 

energy and in the case of 𝛼 =  1, all energy exchanged also 

increases non-dynamic energy and does not result in a 

change in the dynamic energy. If 𝛼 =  1/2, then from the 

differential Eq. (58), 𝑈𝑁𝐷 − 𝑈𝐷 = 𝑐 is obtained, where 𝑐 is a 

constant value. 

In fact for a physical system, if  𝛽  =  0  then every 

function 𝐺  in the form of Eq. (58) represents a feasible 

process in the system. 

 

11. A Few Energy-Related Basic Examples 

In this part, the presented model, novel concepts, and 

established relations are developed for some energy-related 

basis examples. The main purpose is an applicable validation 

for the established concepts as well as relations. In the 

following examples, based on the established model, the 

distribution of the whole energy given to the system is 

shown. In some of them, a part of energy may be wasted and 

the remaining may be stored in the components of the 

system. No contradiction will be found in the relations. 

These basis problems can be combined with others to create 

a variety of systems, ranging from classical to modern 

domains, and are used to show the performance ability of the 

established energy structure approach. Also, the established 

model is used to investigating the linear viscoelasticity 
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models. 

 

11.1 First Basic Example: Newton's Particle System 

For Newton's particle shown in figure 9 with 𝐹𝑖.𝑒𝑥𝑡  as 

external force, and 𝐹𝑖,𝑖𝑛𝑡  as internal force applied on the 

particle 𝑖: 
 

𝛼 = 𝛽 = 0                                                                       (59) 

   

 
Figure 9. Dynamic and non-dynamic energy of Newton’s 

particle system. 

 

In this case, we obtain of the Eq. (60): 

 

�̇�𝐷 = �̇�𝑇                                                                                          (60)  

                                                                                                                                                                                                                                                                                                                     

This equation states that the energy given to the system 

is completely transformed into dynamic energy. 

In this case, the relation (28) is established in the equality 

state and the function 𝐺 is also 𝐺 =  0. 

 

11.2 Second Basic Example: Elasticity Properties 

An elastic rod with hardness 𝑘 under the axial force 𝑝 at 

the end is supposed, as shown in figure 10. 

 

 
Figure 10. Non- dynamic energy related to the elasticity 

properties. 

 

The elastic potential energy of the spring is considered as 

an independent component of the process: 

 

𝑈𝑁𝐷 = 𝑢𝑒                                                                                 (61)  

                                                                                                                                                                                                                                                               

That 𝑢𝑒  is the elastic potential energy. Therefore, the 

corresponding coefficient in Eq. (15) can be considered as 

follows: 

 

𝛼𝑒 =
√2𝑘𝑢𝑒

𝑝
                                                                         (62) 

                                                                                                                                                                                                                                                                                                                      

From the Eq. (62), it can be concluded that the coefficient 

is a function of the current system condition and also the 

amount of energy applied to it. 

Given that 𝛾𝑒 = (
1−𝛼𝑒

𝛼𝑒
) and 𝛾𝑒

′ = 0, Eq. (63) also obtains 

the dynamic energy as follows: 

 

𝛿𝑈𝐷 = (
1−𝛼𝑒

𝛼𝑒
)𝛿𝑢𝑒                                                (63) 

 

Therefore: 
 

𝛿𝑈𝐷 = (
1−(

√2𝑘𝑢𝑒
𝑝

)

(
√2𝑘𝑢𝑒

𝑝
)

)𝛿𝑢𝑒 ≡ (𝑝 − 𝑘𝑣)�̇�𝛿𝑡                               (64)   

                                                                                                                 

Where 𝑣  is the displacement of the force location  𝑝 . 

Using this equation, we will be able to calculate the dynamic 

energy available in the system. This energy belongs to all 

elements of the system and based on Eq. (64) is a function of 

the elastic potential energy of the system, 𝑈𝐷 = 𝑈𝐷(𝑢𝑒). 

As can be seen, Eq. (64) is completely equivalent to the 

result that expected, which determines the total entire 

system's dynamic energy. 

Given that an independent energy component 

participates in the process, there is no need to apply a specific 

compatibility condition to the changes in the independent 

energy components ( 
𝑚(𝑚−1)

2
= 0  𝑓𝑜𝑟 𝑚 = 1 ). 

The Eq. (42) indicates that the dynamic energy does not 

dependent on the rate of change of the component 𝑢𝑒  and 

therefore dissipation does not occur in the system due to non-

zero energy applied rate and the more energy distribution is 

not occurred, in the other words, given that for this problem 

( ∑
𝜕ℎ𝑝

𝜕�̇�𝑗

𝑛
𝑝=1  ) = 0,  the relation (28) will be in the state of 

equality.  

The differential equation for the function 𝐺 is obtained 

as follows: 
 

(
√2𝑘𝑈𝑇𝑉

𝑝
)

𝜕𝐺

𝜕𝑈𝑁𝐷
+ (1 −

√2𝑘𝑈𝑇𝑉

𝑝
)

𝜕𝐺

𝜕𝑈𝐷
= 0                            (65) 

                                                                                            

In fact, the above equation shows the energy states for 

the problem of figure 10. 

 

11.3 Third Basic Example: System with Mass and Elastic 

Bounding 

This example represents a sub-system of two point 

masses with elastic bonding so that the point masses can be 

moved along the line of their connection, as shown in figure 

11: 

 

 
Figure 11. Non-dynamic energy for a system with mass and 

elastic bounding. 
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If the gravitational potential energy is ignored, and also 

considering 𝑢𝑒  as elastic energy component, the non-

dynamic energy for this system can be expressed as follows:  

 

𝑈𝑁𝐷 = 𝑢𝑒                                                                           (66)  

                                                                                                                                                                                                                                                                           

Given that ∑
𝜕ℎ𝑝

𝜕�̇�𝑗

𝑛
𝑝=1 = 0, the relation (28) is established 

for this problem in its equality state. 

 

11.4 Fourth Basic Example: System with Electric 

Charges and Elastic Bonding 

The figure 12 is shown a system including two point 

electric charges with elastic bonding so that the point electric 

charge can be moved along the line of their connection: 

 

 
Figure 12. Non-dynamic energy for a system with electric 

charges and elastic bonding. 

 

Considering 𝑢𝑒  as elastic energy component, and 𝑢𝑞  as 

electrical energy component, the following equation can be 

expressed for non-dynamic energy of this system: 
 

𝑈𝑁𝐷 = 𝑢𝑒 +
𝑐1

𝑐2√𝑢𝑒+𝑐3
                                                         (67)  

                                                                                                                                                                                                                                                

Where  𝑐1 , 𝑐2  and 𝑐3  are constants depend on the 

structure of the system and the initial and final conditions of 

the process. Eq. (67) can explain the processes that electric 

charges move along the lines of each other. 

Given ∑
𝜕ℎ𝑝

𝜕�̇�𝑗

𝑛
𝑝=1 = 0, relation (28) is established for this 

problem in its equality state. 

 

11.5 Fifth Basic Example: Combining Third and Fourth 

Examples  

Figure 13 illustrates two examples by combining the 

third and fourth examples. These examples are samples of 

multi-component systems. For models shown in figure 13, 

the components of energy that are important are: the 

potential energy of springs and electrical charge, and also the 

compatibility conditions will be important for the 

investigation of these systems. 

 
(a) 

 

 
(b) 

Figure 13. Two different schemes of combining two points 

electric charge with elastic bonding. 

For figure (13-a) with considering  𝑢𝑒
′ = 2𝑢𝑒 , non-

dynamic energy equation can be written: 

 

𝑈𝑁𝐷 = 𝑢𝑒
′ +

𝑐1

𝑐2√𝑢𝑒
′+𝑐3

                                                           (68) 

 

And for figure (13-b) it can be written: 

 

𝑈𝑁𝐷 = 𝑢𝑒1 + 𝑢𝑒2 +
𝑐1

𝑐2√𝑢𝑒1+𝑐3
                                           (69) 

 

That 𝑢𝑒1  and 𝑢𝑒2  are the elastic potential energy of 𝑘1 

and 𝑘2. Respectively based on Eq. (30) dynamic energy is: 

 

𝛿𝑈𝐷 = 𝛾𝑗𝛿𝑢𝑒𝑗 + 𝛾𝑗
′𝛿�̇�𝑒𝑗  , 𝑗 = 1 𝑜𝑟 2                    (70) 

 

And compatibility condition for this system is: 

 

𝛾1𝛿𝑢𝑒1 + 𝛾1
′𝛿�̇�𝑒1 = 𝛾2𝛿𝑢𝑒2 + 𝛾2

′𝛿�̇�𝑒2                           (71) 

 

Because for this problem 𝛽1  and 𝛽2  are zero, therefore  

𝛾1
′  and 𝛾2

′  are zero too, so Eq.s (70) and (71) can be 

rewritten as follows:  

 

𝛾1𝛿𝑢𝑒1 = 𝛾2𝛿𝑢𝑒2                                                              (72) 

 

𝛿𝑈𝐷 = 𝛾𝑗𝛿𝑢𝑒𝑗  , 𝑗 = 1 𝑜𝑟 2                                               (73) 

 

And by using Eq. (51): 

 

(
1−𝛼

𝛼𝑒1
) 𝛿𝑢𝑒1 = (

1−𝛼

𝛼𝑒2
) 𝛿𝑢𝑒2                                                      (74) 

 

𝛿𝑈𝐷 = (
1−𝛼

𝛼𝑒𝑗
) 𝛿𝑢𝑒𝑗  , 𝑗 = 1 𝑜𝑟 2                                  (75) 

 

Also by using the Eq.s (16) and (17): 

 

𝛼 = 𝛼𝑒1 + 𝛼𝑒2(1 −
𝑐1𝑐2

(2√𝑢𝑒1)(𝑐2√𝑢𝑒1+𝑐3)
2)                           (76) 

 

 𝛽 = 0                                                                              (77) 

                                                                                                                                                      

Therefore Eq.s (74) and (75) can be rewritten as follow: 

 

(
𝛿𝑢𝑒1

𝛼𝑒1
) = (

𝛿𝑢𝑒2

𝛼𝑒2
)                                                             (78) 

 

𝛿𝑈𝐷 = (

1−(𝛼𝑒1+𝛼𝑒2(1−
𝑐1𝑐2

(2√𝑢𝑒1)(𝑐2√𝑢𝑒1+𝑐3)
2))

𝛼𝑒𝑗
)𝛿𝑢𝑒𝑗  , 𝑗 =

1 𝑜𝑟 2                                                                                (79) 

  

Given the Eq. (15), the Eq. (79) has the same result as we 

expected. The Eq. (58) gives the dynamic energy of the 

system in all possible processes. By using Eq. (76), Eq. (79) 

can be rewritten as following too: 

 

𝛿𝑈𝐷 = 𝐷𝛿𝑈𝑇                                                               (80) 

 

Where: 

 

𝐷 = (1 − (𝛼𝑒1 + 𝛼𝑒2 (1 −
𝑐1𝑐2

(2√𝑢𝑒1)(𝑐2√𝑢𝑒1+𝑐3)
2)))       (81) 
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The coefficient 𝐷  indicates how much of the input 

energy into the system will be converted to dynamic energy. 

This coefficient can provide a description of the internal 

structure of the system, its inertia as well as the processes 

that can be performed. Also, according to Eq. (47), energy 

conservation principle, the rest of the energy will be 

converted to non-dynamic energy of the system, therefore: 

 

𝛿𝑈𝑁𝐷 = 𝛿𝑈𝑇 − 𝛿𝑈𝐷                                                          (82) 

 

𝛿𝑈𝑁𝐷 = (1 − 𝐷)𝛿𝑈𝑇 ≡ 𝐷∗𝛿𝑈𝑇                                        (83) 

 

The coefficient 𝐷∗  denotes the share of non-dynamic 

energies. This coefficient can provide a description of the 

possibility of distributing non-dynamic energies in the 

system. If the variation of the Eq. (69) is calculated, the result 

will be the Eq. (82). 

 

11.6 Sixth Basic Example: Generalized Maxwell and 

Kelvin’s Viscoelasticity Models 

From the point of view of energy behavior, viscoelastic 

materials have components of stored energy and wasted 

energy.  The way of activation and dependence of the 

relevant components depends on the relevant viscoelasticity 

model, and also the amount and manner of energy applying 

is included in determining the loading coefficients of the 

components. Therefore, the investigation of viscoelastic 

materials and their energy behavior in the perspective of 

energy structure can provide important results about them, 

and also be a suitable topic to express the applications of the 

perspective of energy structure. So, In this section, the 

presented approach is used to linear viscoelasticity 

problems. For example, generalized Kelvin and Maxwell’s 

models are studied. Eq. (84) shows the general linear form 

of 𝑈𝑁𝐷 with two components: one independent component 

and one dependent component. 

 

𝑈𝑁𝐷 = 𝑢1 + (𝑐1�̇�1 + 𝑐2)                                                   (84) 

 

Eq. (84) can be used for investigating the linear 

viscoelasticity models. Since, if the component of stored 

energy is shown by 𝑢𝑒  and the component of dissipated 

energy shown by 𝑢𝑑, for the kelvin model [35], as shown in 

figure 14: 

 

 
Figure 14. Energy structure equation for viscoelasticity 

kelvin model. 

 
𝑑𝑢𝑒

𝑑𝑥
= 𝐸𝑥                                                                                         (85) 

 

𝑑𝑢𝑑

𝑑𝑥
= ƞ�̇�                                                                                        (86) 

                                                                                                                                                                                                                                                                                  

Therefore: 

 
𝑑2𝑢𝑒

𝑑𝑥𝑑𝑡
= (

𝐸

ƞ
)

𝑑𝑢𝑑

𝑑𝑥
                                                                                  (87) 

 

𝑢𝑑 = (
𝐸

ƞ
) �̇�𝑒 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                  (88)   

                                                                                                                                                                                                                                                                                              

And also for the Maxwell model [35], as shown in figure 

15: 

 
Figure 15. Energy structure equation for viscoelasticity 

Maxwell model. 

 

𝜀̇𝑂𝑉 =
𝐸

ƞ
𝜀𝑒                                                                      (89) 

                                                                                                                                 

Therefore: 

 
𝑑𝑢𝑑

𝑑𝜀𝑂𝑉 = ƞ𝜀̇𝑂𝑉 = 𝐸𝜀𝑒 =
𝑑𝑢𝑒

𝑑𝜀𝑒                                                  (90) 

 
𝑑𝑢𝑑

�̇�𝑂𝑉𝑑𝑡
=

𝑑𝑢𝑒

�̇�𝑒𝑑𝑡
                                                                                     (91) 

 

𝑢𝑒 =
ƞ

2𝐸
�̇�𝑑                                                                                  (92) 

                                                                                                                                               

In fact, if the independent component is assumed the 

component of stored energy, that means 𝑢1 = 𝑢𝑒 and 𝑐1 =
𝐸

ƞ
, equation (84) can be used for kelvin model and if the 

independent component is assumed the component of 

dissipated energy, that means 𝑢1 = 𝑢𝑑 and 𝑐1 =
ƞ

2𝐸
, Eq. (84) 

can be used to Maxwell model. And also 𝑐1 is determined 

with Eq.s (88) and (92). 

And also by using of Eq.s (16) and (17), for example, for 

the kelvin model: 

 

𝛼 = 𝛼𝑒 + 𝑐1�̇�𝑒                                                       (93) 

 

𝛽 = 𝑐1𝛼𝑒                                                                     (94) 
                                                                                                                             

And about determining the 𝛼𝑒, it can be written based on 

the energy conservation principle: 

 

𝛿𝑈𝑇 = 𝛿𝑢𝑒 + 𝛿𝑢𝑑                                                                              (95) 

                                                                                                                                 

And also: 

 

𝛿𝑢𝑑 = (
𝐸

ƞ
)𝛿�̇�𝑒                                                                         (96) 
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𝛿𝑢𝑑 = (
ƞ

𝐸
) [�̇�𝑒𝛿𝑈𝑇 + 𝛼𝑒𝛿�̇�𝑇]                                           (97) 

                                                                                                                     

Therefore: 

 

𝛿𝑈𝑇 = (𝛼𝑒)𝛿𝑈𝑇 + (
𝐸

ƞ
) [�̇�𝑒𝛿𝑈𝑇 + 𝛼𝑒𝛿�̇�𝑇]                           (98) 

                                                                                              

Or: 

 

�̇�𝑇 = (𝛼𝑒)�̇�𝑇 + (
𝐸

ƞ
) [�̇�𝑒�̇�𝑇 + 𝛼𝑒�̈�𝑇]                                (99) 

 

�̇�𝑒 + [
�̇�𝑇+(

𝐸

ƞ)�̈�𝑇

(
𝐸

ƞ)�̇�𝑇

] 𝛼𝑒 = (
ƞ

𝐸
)                                               (100) 

                                                                                                                  

Therefore, 𝛼𝑒 is calculated from Eq. (100) in functional 

of the how energy is applied to the system. 

The obtained energy structure can be easily generalized 

for different combinations of the corresponding elements. 

For example, figure 16 can be considered:  

 

 
Figure 16. Energy structure equation for generalized Kelvin 

elements. 

 

𝑈𝑉 = 𝑢𝑒1 + 𝑢𝑒2 + ⋯+ 𝑢𝑒𝑁 + 𝑐𝑒1�̇�𝑒1 + 𝑐𝑒2�̇�𝑒2 + ⋯+
𝑐𝑒𝑁�̇�𝑒𝑁 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                           (101) 

 

Derived structure of Eq. (101) also can be used for 

generalized Maxwell elements: 

 

 
Figure 17. Energy structure equation for generalized 

Maxwell element. 

 

𝑈𝑉 = 𝑢𝑑1 + 𝑢𝑑2 + ⋯+ 𝑢𝑑𝑁 + 𝑐𝑑1�̇�𝑑1 + 𝑐𝑑2�̇�𝑑2 + ⋯+
𝑐𝑑𝑁�̇�𝑑𝑁 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                                                        (102) 

 

In addition to obtain the structure of non-inertial 

energies, it actually obtains the feasible processes and the 

way energy components change as a result of energy 

exchange between the system and the surrounding 

environment. 

 

12. Irreversibility Analysis 

Analysis of irreversibility in the perspective of energy 

structure has been done using a novel definition in references 

[58-59,71]. In this section, a brief overview is provided. 

Considering figures 18 and 19. 

Considering Eq.s (103-104): 

 

𝛿𝐻𝑖 = (∑ ( 
𝜕ℎ𝑝

𝜕�̇�𝑖
 )𝑛

𝑝=1 ) 𝛿�̇�𝑖                                       (103) 

 

𝛿𝛹 = ∑ 𝛿𝐻𝑖
𝑚
𝑖=1                                                                 (104) 

                                                                                                                                    

So, irreversibility is derived as follows: 

 

𝜑 =
𝛿𝛹

𝛿𝑈𝑇
= ∑

𝛿𝐻𝑖

𝛿𝑈𝑇

𝑚
𝑖=1 = ∑ 𝜑𝑖

𝑚
𝑖=1                                        (105) 

                                                                                                            

That always has positive sign (as well as 𝜑𝑖 ≥ 0) [58-

59,71].  

Eq. (105) gives irreversibility from the point of view of 

the energy structure. Also, another important feature of this 

equation is obtaining irreversible components that determine 

the amount and manner of the effect of each component in 

the total irreversibility. Therefore, irreversibilities are clearly 

dependent on the internal structure of the system, the amount 

and manner of energy exchange between the system and the 

surrounding, which are presented in Eq. (105). 

 

 
Figure 18. Different paths for the performed process [71]. 

 

 
Figure 19. Deviation from the quasi-static path to the 

general [71]. 

 

13. Conclusions 

The perspective of energy structure suggests the use of 

activated energy components and their structure to represent 

energy in physical systems. In fact, due to the role of the 

energy conservation principle as a unifying principle in 

physics, energy components are able to expand the range of 

responses and processes that can be performed by physical 

systems. Valuable achievements have also been presented in 

this direction, which have been gathered in this paper, as well 

as the perspective of the energy structure has been developed 

and the relevant equations for the development of a closed 

space of a scientific theory have been established and 

generalized in order to explain and analyze the physical 

processes of physical systems. The effort has been to find the 

simplest form of equations in order to close the solution 

spaces. In fact, given the energy components of the system 

as quantities that can describe the process performed, new 

space is created for the set of governing equations. In the 

resulting space, the effects of the second law of 

thermodynamics can be directly applied to the energy 

structure of the system and in fact, the sensitivity of the 

system to the second law can be examined. Also, one of the 

advantages of this new approach is that a particular process 

in various conditions is studied instead of studying a particle 

of the system. In fact, this approach gives a general view 

regarding the studied process as well as the internal structure 

of the system in response to the energy exchange with the 



 
Int. J. of Thermodynamics (IJoT) Vol. 26 (No. 3) / 059 

environment. This paper established an energy components-

based-general model inspired by the first and second laws of 

thermodynamics as well as using a new division to the total 

energy of the system. The established model is completed by 

extracting the physical direction for the feasible physical 

processes based on the energy components of the system. 

Also, the presented model has developed for the high particle 

number systems as well as some energy-related basis 

examples.  As three cases of the other achievements of the 

energy structure approach is the providing a quasi-statistical 

equation to entropy, a general solution to the different 

formulations of the second law of thermodynamics as well 

as irreversibility analysis using a novel definition. The 

problems studied are the energy-related basis systems that 

can be combined with others to create a variety of systems. 

Eq. (52) can also derive dynamic energy in terms of 

independent energy components. These relations can also 

describe the dynamics of the system with respect to 

independent component changes. The energy coordinates of 

the system by relying on the energy conservation principle 

obtain a standard and error-free mathematical method for the 

first and second laws in such a way that unification and a 

wide range of applications are provided, and applicability in 

classical and modern problems is created. 
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Nomenclature 

𝒈𝒋 : Value-dependent energy component with SI (metric) 

dimension (Joule). 

𝒉𝒏 : Rate-dependent energy component with SI (metric) 

dimension (Joule). 

𝑲𝑴𝑺 : Universal constant of quasi-statistical entropy 

definition without SI (metric) dimension. 

𝒖𝒊: Energy component (Dependent and Independent) of the 

system with SI (metric) dimension (Joule). 

𝑼𝑻: Total energy of the system with SI (metric) dimension 

(Joule). 

𝑼𝑵𝑫: Non-Dynamic energy component of the system with 

SI (metric) dimension (Joule). 

𝑼𝑫 : Dynamic energy component of the system with SI 

(metric) dimension (Joule). 

𝒔 : Entropy of the system with SI (metric) dimension (
𝑱𝒐𝒖𝒍𝒆

𝑲° ). 

 

Greek Letters 

𝝋 : Irreversibility component with SI (metric) dimension 

(Joule). 

𝜶: Change energy coefficient without SI (metric) dimension. 

𝜷 : Change energy-rate coefficient without SI (metric) 

dimension. 

𝜸: Change energy component coefficient without SI (metric) 

dimension. 

𝜳: Irreversibility with SI (metric) dimension (Joule). 

𝜺: Strain without SI (metric) dimension. 

𝝈: Stress with SI (metric) dimension (
𝑵

𝒎𝟐). 

Ƞ: Viscosity coefficient with SI (metric) dimension (
𝒎𝟐

𝒔
). 
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