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Abstract: In this study, an improved version of the Beluga whale optimization (BWO) algorithm, which is a meta-
heuristic optimization algorithm recently presented in the literature, is developed to provide better solutions for
the problems. The fitness-distance balance (FDB) selection method was applied in the search processes in the
BWO algorithm, which was developed by modeling the swimming, preying and falling characteristics of beluga
whales. CEC2020 benchmark functions were used to test the performance of the BWO algorithm and the algorithm
named FDBBWO. The algorithms were tested on these test functions for 30, 50 and 100 dimensions. Friedman
analysis was performed on the test results and the performance ranks of the algorithms were determined. In
addition, Wilcoxon rank sum test was used to analyze whether there were significant differences in the results. As
a result of the experimental study, it is observed that the BWO algorithm improves the early convergence problem
that may arise due to the lack of diversity in the search process. In this way, the possibility of getting stuck at local
optimum points is reduced. In addition, the developed algorithm is compared with 3 different algorithms that have
been recently presented in the literature. According to the comparison results, FDBBWO has a superior
performance compared to other meta-heuristic algorithms. Source code of the proposed FDBBWO algorithm:
https://www.mathworks.com/matlabcentral/fileexchange/126400-fdb-bwo
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BEYAZ BALINA OPTIMIZASYON ALGORITMASININ UYGUNLUK
UZAKLIK DENGESI SECIM YONTEMIYLE iYILESTIRILMESI

Ozet: Bu ¢alismada son zamanlarda literatiire sunulmus bir meta-sezgisel optimizasyon algoritmasi olan Beyaz
balina optimizasyon (Beluga whale optimization, BWO) algoritmasinin problemlere daha uygun sonuglar iiretmesi
amaciyla iyilestirilmis bir versiyonu gelistirilmistir. Beyaz balinalarin yiizme, avlanma ve 6lme ozellikleri
modellenerek gelistirilmis olan BWO algoritmasinda yer alan arama siireclerinde uygunluk uzaklik dengesi
(fitness-distance balance, FDB) se¢im yontemi uygulanmigtir. BWO algoritmast ve FDBBWO ismi verilerek
gelistirilen algoritmanin performanslarini test etmek i¢in CEC2020 test fonksiyonlar1 kullanilmistir. Bu test
fonksiyonlar1 {izerinde 30, 50 ve 100 boyut i¢in algoritmalar test edilmistir. Elde edilen test sonuglarina Friedman
analizi yapilarak algoritmalarin performans siralari belirlenmistir. Ayrica Wilcoxon sirali isaret testiyle de sonuglar
iizerinde anlamli derecede farkliliklar olusup olusmadigi incelenmistir. Deneysel ¢alisma sonucunda BWO
algoritmasinin arama siirecindeki ¢esitlilik eksikligi sebebiyle ortaya c¢ikabilecek olan erken yakinsama
probleminin iyilestigi gdzlemlenmistir. Bu sayede yerel optimum noktalara takilma olasilig1 azaltilmistir. Ayrica
gelistirilen algoritma literatiire son zamanlarda sunulmus olan 3 farkli algoritmayla karsilastirilmistir.
Karsilagtirma sonuglarina gére FDBBWO, diger meta-Sezgisel algoritmalara gére daha istiin bir performans
sergilemektedir.

Anahtar Kelimeler: Beyaz balina optimizasyon algoritmasi, uygunluk uzaklik dengesi se¢imi yontemi, meta-
sezgisel
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1. INTRODUCTION

Optimization can be defined as the process of finding the optimal solution from a set of solution
to a problem. Mathematically, it is the process of finding the point that makes a function
minimum or maximum. In the past, classical mathematical optimization algorithms that make
use of derivatives have been used. However, in order to use these algorithms, the problem must
be modeled mathematically, and they are not flexible. For this reason, meta-heuristic algorithms
are used more and more today [1]. In addition, considering the increasing complexity of real-
world optimization problems, the required features of optimization algorithms have also
increased. A designed meta-heuristic optimization algorithm should be able to handle multi-
modal, non-continuous and non-differentiable optimization problems [2].

Meta-heuristic algorithms can be grouped into 4 main categories according to their inspiration
types: evolutionary algorithms [3-4], swarm-based algorithms [1, 4-7], human-based
algorithms [8] and physics-based algorithms [9, 10]. Meta-heuristic algorithms try to find the
optimum point by using a function called the fitness function, which is prepared according to
the problem to be optimized. Two main elements are generally prominent in this search process.
The first one is global search. The second is local search. The balanced operation of these two
elements improves the performance of the meta-heuristic algorithm. In the global search phase,
the variety of solutions produced by the algorithm is increased and the search space is better
explored. In this way, the probability of getting stuck at the local optimum point is also reduced.
Local search increases the probability of finding the optimum point. In this way, the solution
generation quality of the algorithm also increases.

Hundreds of meta-heuristic algorithms have been presented in the literature. The genetic
algorithm, inspired by Darwin's theory of evolution [3], the differential evolution algorithm, a
simplification of the genetic algorithm [4, 29], particle swarm optimization, inspired by the
foraging behavior of flocks of birds [6], the ant colony algorithm, inspired by ants finding the
shortest path between anthill and the food source [7], the artificial bee colony algorithm,
inspired by the foraging behavior of a swarm of bees [1], the gravitational search algorithm,
inspired by Newton's laws of motion [9], The stochastic fractal search algorithm inspired by the
diffusion process of fractals [11], the gray wolf algorithm inspired by the hierarchy and hunting
behavior of wolves [5], the symbiotic organism search algorithm inspired by the relationships
between organisms in the ecosystem [12], and the coronavirus herd immunity optimizer
algorithm inspired by the logic of herd immunity as a way to combat the coronavirus pandemic
are just a few of them.

Zhong et al. presented the beluga whale optimization algorithm (BWO) in 2022. They modeled
the swimming, preying and whale fall processes of beluga whales. Therefore, an algorithm
consisting of 3 main parts was presented. The swimming behavior represents the global search
feature, and the preying behavior represents the local search feature. The algorithm's inability
to increase the diversity of solutions increases the probability of getting stuck at local optimum
points. This problem also manifests itself in the BWO algorithm.

When the equations used in most of the meta-heuristic algorithms are examined, it is seen that
the algorithms generate new solutions by using the position information of a solution point
randomly selected from the population. To improve the performance of the algorithm,
Kahraman et al. proposed the fitness distance balance method by considering that the selection
of a solution point within a certain logic framework instead of this random selection can
improve the performance of the algorithm [15]. In summary, a selection process is performed
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using the locations of the solution points in the population and the fitness values obtained
against these solution points. Using this method, it has been observed that the performance of
many meta-heuristic algorithms in generating suitable solution points is improved [16-24].

In this study, the FDBBWO algorithm is proposed by using the FDB selection method in 3
different sections to be used in the equations in the beluga whale algorithm. In the original
algorithm, the FDB selection method was used instead of the solution points selected from the
population with the roulette wheel method. In this context, the first version was created by
modifying the equations modeling swimming behavior, the second version by modifying the
equations modeling preying behavior, and the third version by modifying the equation modeling
whale fall. The algorithms were tested in 30, 50 and 100 dimensions using the CEC2020 test
function set [25]. Friedman analysis was applied on the results obtained by the algorithms and
the performance rankings of the algorithms were obtained. In addition, Wilcoxon rank sum test
was used to examine whether there is a significant difference between the results obtained by
the algorithms. According to the results obtained, it was concluded that the third method
obtained better results in all dimensions. It is also observed that the premature convergence
problem of the BWO algorithm is reduced and the diversity in solution point generation is
increased.

In addition, the developed FDBBWO algorithm was compared with the mud ring algorithm
[26], prairie dog optimization algorithm [27] and coati optimization algorithm [28] presented
in the literature in 2022 and 2023. According to the results obtained, the FDBBWO algorithm
ranks first again.

This paper is organized as follows. In the second section, the beluga whale optimization
algorithm, the fitness distance balance selection method, and the types of FDB-based algorithms
developed are mentioned. In the third section, the benchmark problem set and experimental
study settings are described, and the analysis results are given. The last section, the fourth
section, presents the conclusion of the study.

2. MATERIAL AND METHOD

In this section, the beluga whale optimization algorithm is introduced in detail, the fitness
distance balance selection method and the developed FDBBWO algorithm are explained
respectively.

2.1. Beluga Whale Optimization Algorithm

The beluga whale optimization (BWO) algorithm was created by modeling the swimming,
preying and whale fall behavior of beluga whales [14]. The algorithm is divided into 3 parts:
global search, local search, and whale fall. A variable called the balance factor is used to choose
between global and local search. The balance factor is calculated as given in Equation 1. In the
equation, T is the current iteration, Tmax IS the maximum iteration and Bo is a random number
generated in the interval (0,1).

B, =B,(1-T/2T,,) 1)

If the calculated Br value is greater than 0.5, a global search is performed, otherwise a local
search is performed.
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In the global search section, the swimming behavior of beluga whales is modeled. Two different
equations are defined for the new position of the whale during the swimming behavior. If the
number of parameters to be optimized is less than or equal to one fifth of the population size,
new solution points are found according to the expression given in Equation 2, otherwise new
solution points are found as given in Equation 3.

XiTgll:XiTp1+(xIp1—X:pz)(l+rl)sin(27zr2) o
Xl-[,-gzl = Xi-ly—pz +(XIp2 - Xi-vrpz )(1+ rl)SIn(Zﬂ.rz)

)
X/,

xT

i,p;

. +(XIP1 —Xi.l’-p')(l-i- r)sin(2zr,) if jiseven
X[t = ’
L]

3)
(X7, =X, )+ n)cos(27,) if jisodd

i,p

T in the equations denotes the current iteration, p; is a randomly chosen dimension value
according to the dimension information of the optimization problem, r1 and r, are a random
value in the range (0 1).

For modeling the local search partition, the preying behavior of beluga whales was used.
Whales can move and hunt based on the location of nearby whales. In other words, they hunt
by sharing location information with each other. Levy Flight, which is frequently used in the
literature, is added to the algorithm and it is assumed that they can catch the prey in this way.
Local search is performed using the expression given in Equation 4. In the equation, T is the
current iteration, Xpest is the position of the whale with the best fitness value so far, X is the
position of a whale randomly selected from the population, rz and rs4 are randomly selected
values in the range (0 1). In addition, Ly is the value found according to Levy flight and is
calculated as given in Equation 5. C; is a parameter that adjusts the jump intensity of the Levy
flight and is calculated by the equation 2r4 (1-T/Tmax).

X =1 X — X! +C L (X] = X]) (4)

best

In the Levy flight equation, u and v are random values and fis defined as a constant of 1.5. &
is calculated according to Equation 6.

L, :0.05|\‘:|Tj‘ﬂ 5)
) Up
oo F(1+,B)Sln(7rﬂ/_2) )
r((1+p)/2)p2""

In their search for food, beluga whales are threatened by animals at the top of the food pyramid.
Whales can escape threats by sharing information with each other. But this is not always
possible. When they die for any reason, they actually become a source of food for many
creatures living in the sea and an ecosystem is formed in the environment. To model this
phenomenon, firstly find the probability of this happening. If the probability is realized, the
whale is removed from the population. However, a new whale is added to the population to
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keep the population size constant. This is done as given in Equation 7. In the equation, rs, re
and r7 are random values in the range (0 1) and Xstep IS the step size.

X;l—+1:r5X;r _rGXIT +r7xstep (7)

Xstep 1S calculated as given in Equation 8. ub and Ib are the upper and lower bounds of the
optimized parameters respectively, T is the current iteration and Trmax is the maximum iteration,
respectively.

X gep = (Uy =y ) eXD(—2W, MT/T,.,,) (8)

Wrs in Equation 8 is defined as a function decrease linearly from 0.1 to 0.05 as given in Equation
9.

W, =0.1-0.05T /T, 9)

2.2. Fitness Distance Balance Selection Method

When the equations used in meta-heuristic algorithms in the literature are examined, it is seen
that in many algorithms, the process of selecting the solution candidate from the population
randomly or with the best fitness value is encountered. The performance of the algorithm will
be improved if this candidate solution is selected in such a way that it can contribute to the
solution candidate to approach the optimum point. With this motivation, the fitness distance
balance (FDB) method is a selection method developed by Kahraman et al. [15]. FDB performs
the selection process by considering two feature values: the value obtained from the fitness
function of each solution candidate and the Euclidean distance to the solution point with the
best fitness value in the current population.

To use it in the algorithm, first the positions of the solution points in the population and the
fitness values of each solution point must be calculated. Then the position of the solution point
with the best fitness value is found. Then, the distance values of each solution point to the
solution point with the best fitness value are found as given in Equation 10. In the equation,
Prest IS the solution candidate with the best fitness value, P; is the solution point whose distance
is to be calculated, and d is the number of parameters to be optimized.

DPi :\/i(PIJ _Pbest,j)2 (10)

When the expression given in Equation 10 is calculated for each individual, the vector Dy,
which expresses the Euclidean distances of each solution point in the population to the solution
Prest, IS formed as shown in Equation 11. The expression n in the equation refers to the
population size.
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D =| - (11)

While calculating the FDB scores for each solution point, the conformity values obtained by
the solution points with the created Dp vector is used. However, these values must be
normalized before they are used. For this reason, the values in the Dy vector is normalized using
Equation 12.

D, —min(D,)

max(D,) (12)

normDp =

Similarly, the values obtained by the solution points using the fitness function are normalized
according to the expression given in Equation 13. The expression F in the equation is the vector
containing the fitness values.

F —min(F)
max(F)

normF = (13)

The expression given in Equation 14 is used to calculate the FDB scores. In the equation, w is
a coefficient that adjusts the effects of the relevance value and distance value on the FDB score.
When the studies conducted with FDB in the literature are examined, it is seen that the
coefficient w is generally taken as 0.5.

S, =wnormF, +(1-w)normD, (14)

After calculating the vector S, containing the FDB scores, the selection process is completed
by selecting the solution point with the highest FDB score. In this last step, probabilistic
methods can also be used instead of selecting the one with the highest FDB score. In this study,
after obtaining the vector Sp, the roulette wheel method was used to make the selection.

2.3. FDBBWO Algorithm

Three different cases were evaluated for the application of the selection method with FDB
instead of the selection methods in the BWO algorithm. In the first case, Xrps was used instead
of X; in Equations 2 and 3 in the original BWO algorithm, where the swimming behavior of the
beluga whale was modeled. In the second case, Xrps Was used instead of X; in Equation 4,
where the preying behavior of beluga whales is modeled. In the third and final case, where the
whale falls and a new whale is created, Xrpg is used instead of X; in Equation 7. The cases
created for the FDBBWO algorithm are given in Table 1. In addition, in the global search part
of the original algorithm, the rule “if the number of parameters to be optimized is less than or
equal to one-fifth of the population size, new solution points are found according to the
expression given in Equation 2, otherwise new solution points are found as given in Equation
3” is changed. randomly generated values in the interval (0 1) called rg and ro are generated. If
rs is greater than ro, new solution points are calculated according to Equation 3, otherwise new
solution points are calculated according to according to Equation 2.
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Tablo 1. Equations used for original BWO and FDBBWO cases.

BWO with FDB cases

i X7 +(XID1—XIPJ)(1+ r)sin(2zr,) if jiseven
" Xip, +(XIp1 —Xiij)(1+ r,)cos(2zr,) if jisodd
Swimming | or
BWO Xfy;llzXiTpl+(XIp1—Xisz)(1+r1)sin(27zr2)
Preying XiT+l:r3XtTest_r4XiT +C, I—F(XrT _XiT)
Fall X =e X! —r X! +6 X,
i Xi, +(XEDBYPI—Xiij)(1+rl)sin(27zr2) if jiseven L
ij = 8 9
j xiij+(XEDBYPI—Xiij)(1+rl)cos(27zr2) if jisodd
Swimming
Case
1 X{ =X +(Xipe o = Xio J(1+1)sin(2zr,
FDB T’pll T‘“ ( FTDB"” Tp)( ) _ (2,) otherwise
XTI = X0, +(Xios g, = Xy, ) (11, )sin (221,
Preying Xinl:raxgest_QXiT +C I—F(XrT _XiT)
Fall X =1 X! =6 X! +6X g,
i X7 +(XIp1—Xiij)(1+ r)sin(2zr,) if jiseven L
ij = 8 9
J X, +(XIp1 —Xiij)(1+rl)cos(27rr2) if jisodd
Swimming
Case
2 X=X (X —XT ) (1 in(2
FDB P 'vp1+( rp 'vpz)( +r1)S|n( 7Z.r2) otherwise
XIT;zl - XiT,pz +(XrT,pz - XiT,pz )(1+r1)5in(27[r2)
Preying >(iTJrl = rSXl;rest _r4XiT +C, L; (X;DB - XuT)
Fall X=X =X +6 X,
. X7, +(XIp1—Xiij)(1+ r,)sin(2zr,) if jiseven L
i = 8 9
J X, +(XIp1 —Xiij)(1+rl)cos(27zr2) if jisodd
Swimming
Case
3 X =XT (X —XT )(1 in(2
FDB P I,p1+( rp 'vpz)( +rl)S|n( ﬂr?) otherw|se
XITF:L = X;I:pz +(X:—,p2 - XiT,pz )(1+E)S|n(2ﬂ'r2)
Preying Xi-r+l:r3xgest_r4xi-r +Cy I—F(XrT _XiT)
Fall X =X =1 X s + 16X g
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The pseudocode of the FDBBWO algorithm is given in Figure 1.

1: Initialize the population

2: Evalute fitness values and find the best solution

3: While Fes<MaxFes Do

4: Calculate the Ws and Bs values

5: For each whale (X;) Do

6: If Bi>0.5

7: Generate the random indexes (P;)

8: If FDBCasel then generate X, using FDB Else generate X, using Roulette wheel selection
9: Choice rg and rg randomly

10: Ifre<rg

11: Generate new solution point using Equation 2
12: Else

13: Generate new solution point using Equation 3
14: End

15: Else

16: Calculate C; and Lr

17: If FDBCase2 then generate X, using FDB Else generate X using Roulette wheel selection
18: Generate new solution point using Equation 4
19: End

20: Check the boundaries of the new solution point

21: Evalute the fitness value

22: Fes = Fes +1

23: End For

24: For each whale (X;) Do

25: If Bf <= Wt

26: Calculate C,

27: Calculate Xstep

28: If FDBCase3 then generate X, using FDB Else generate X, using Roulette wheel selection
29: Generate new solution point using Equation 7
30: Check the boundaries of the new solution point
31: Evalute the fitness value

32: Fes = Fes +1

33: End

34: End

35: Find the best solution

36:  End While
Figure 1. The pseudocode of the FDBBWO algorithm

3. EXPERIMENTAL STUDY And DISCUSSIONS

In this section first describes the benchmark functions and experimental settings. Then, the
results of the analysis performed on the data obtained because of the test are given. Finally, the
results obtained by the proposed algorithm are compared with three meta-heuristic algorithms
presented in the literature in 2022 and 2023.

3.1. Benchmark Functions and Experimental Study Settings

The designed FDBBWO algorithm was tested using the benchmark functions frequently used
in the literature and defined for the CEC2020 conference [25]. This benchmark function set
includes 10 different unconstrained optimization problems. The search space is chosen between
-100 and 100. The 1st function is designed to detect the local search properties of the tested
algorithms. The 2nd, 3rd and 4th functions are used to detect the global search properties of the
algorithms. Functions 5, 6 and 7 are designed to determine whether the local and global search
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properties of the algorithms are in balance and functions 8, 9 and 10 are designed to determine
the algorithm performance for problems with high complexity.

The population size of the BWO algorithm is taken as 50 as the algorithm is presented. Each
benchmark function was tested for 30, 50 and 100 dimensions. In addition, each algorithm was
run independently 51 times for each function. Since meta-heuristic algorithms involve
stochastic processes, the same result may not be obtained every time the algorithm is run. For
this reason, it is not possible to run the algorithm once and evaluate the algorithm. For this
reason, as stated in the CEC2020 benchmark function definition document, the algorithm was
run 51 times for each test function. In order to fairly compare the compared algorithms, each
algorithm was allowed to use the fitness function 10000 x d times, where d is the problem
dimension. The experimental studies were carried out in MATLAB 2020a on a computer with
Intel Core i5-CPU @ 2.90 GHz, 8 GB RAM and Windows 10 operating system.

In order to compare the results obtained by the developed algorithm with other algorithms, the
mud ring algorithm (MRA), inspired by the hunting strategies of dolphins with mud rings
presented in the literature in 2022 [26], the prairie dog optimization algorithm developed by
imitating the behavior of prairie dogs (PDO) presented in the literature in 2022 [27], and the
kayoti optimization algorithm (COA), inspired by the behavior of kayoti, a raccoon-like animal
presented in the literature in 2023 [28], were selected. The default parameters of the algorithms
were used as algorithm parameters. The population size was taken as 30 for MRA, 100 for PDO
and 30 for COA.

3.2. Analysis Results of FDBBWO Algorithm

In this section, the results obtained by the original BWO algorithm and 3 FDBBWO versions
on benchmark functions are analyzed. Friedman analysis method is used to compare the
performance of the algorithms and rank them according to their performance. In addition,
Wilcoxon rank sum test was used to determine whether there is a significant difference between
the results obtained by the algorithms. The significant difference rate was taken as 5%.

The mean and standard deviation values of the error values obtained by the algorithms in 30,
50 and 100 dimensions for 10 benchmark functions are given in Table 2. When the table is
analyzed, it is seen that FDBBWO algorithms obtained lower error values in average error
values. Only in the 4th function, all algorithms found the optimum value and the error values
were 0.

Table 2. The mean and standard deviation values of the error values of the algorithms on the CEC2020 test
functions for 30, 50 and 100 dimensions
30D 50D 100D

Benchmark . Standard Standard Standard
. Algorithm | Mean - Mean - Mean -
Function Deviation Deviation Deviation

BWO |4,48E+10 | 4,35E+09 | 9,62E+10 | 3,68E+09 |2,43E+11 | 4,95E+09

FDBBWO
Case 1
F1 FDBBWO
Case 2
FDBBWO
Case 3

3,48E+08 | 7,37E+07 |8,72E+08 | 1,22E+08 | 2,36E+09 | 2,50E+08

3,33E+08 | 7,16E+07 |8,99E+08 | 1,37E+08 | 2,37E+09 | 2,60E+08

3,23E+08 | 6,75E+07 | 8,80E+08 | 1,68E+08 | 2,34E+09 | 3,00E+08
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Table 2. The mean and standard deviation values of the error values of the algorithms on the CEC2020 test
functions for 30, 50 and 100 dimensions (Continued)

BWO |6,90E+03 | 2,.03E+02 | 1,33E+04 | 3.91E+02 | 3,00E+04 | 7,06E+02
FDciiV‘l’o 3.24E+03 | 343E+02 | 6,52E+03 | 4,92E+02 | 1,46E+04 | 9,22E+02

F2
F%zi\’go 317E+03 | 3,69E+02 | 6,50E+03 | 5,81E+02 | 1,43E+04 | 7.90E+02
F%ESEZV;’O 3,20E+03 | 4,26E+02 | 6,55E+03 | 5,61E+02 | 1,42E+04 | 9,99E+02
BWO | 6,36E+02 | 2.58E+01 | 1,18E+03 | 4,02E+01 | 3,05E+03 | 5,78E+01
F%Ei\’\l’o 1.96E+02 | 1,34E+01 | 3,99E+02 | 2,45E+01 | 1,06E+03 | 8,63E+01

F3
F%ESEZV\Z’O 2 00E+02 | 1,66E+01 | 3,95E+02 | 2,57E+01 | 1,08E+03 | 9,63E+01
F%zfe\’go 2,00E+02 | 1,64E+01 | 3.94E+02 | 3,10E+01 | 1,07E+03 | 1,03E+02
BWO | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00
F%zfe\’\l’o 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00 | 0,00E+00

F4
F%EEEV‘Z’O 0,00E+00 | 0,00E+00 | 0,00E-+00 | 0,00E+00 | 0,00E+00 | 0,00E+00
F%Eivgo 0,00E+00 | 0,00E+00 | 0,00E-+00 | 0,00E+00 | 0,00E+00 | 0,00E+00
BWO | 3.00E+07 | 1,28E+07 | 2,.32E+08 | 6,51E+07 | 9,73E+08 | 1,38E+08
F%Eiv‘l’o 4,23E+06 | 1,79E+06 | 8,19E+06 | 3,18E+06 | 3,51E+07 | 6,10E+06

F5
F%’ife\’go 4,45E+06 | 2,07E+06 | 7,23E+06 | 2,56E+06 | 3,52E+07 | 6,40E+06
F%’ife\’go 4,12E+06 | 1,93E+06 | 7,78E+06 | 3,60E+06 | 3,55E+07 | 6,21E+06
BWO | 2.61E+03 | 2.64E+02 | 5,.81E+03 | 4, 49E+02 | 2,07E+04 | 1,34E+03
F%’ife\’\llo 3.21E+02 | 9,12E+01 | 7.84E+02 | 1,55E+02 | 3,10E+03 | 4,61E+02

F6
F%EEEV‘Z’O 2 0BE+02 | 9,31E+01 | 8,27E+02 | 1,42E+02 | 3,06E+03 | 4,11E+02
F%E;Vgo 317E+02 | 8,77E+01 | 7,75E+02 | 1,39E+02 | 3,11E+03 | 3,89E+02
BWO | 8.98E+06 | 4,18E+06 | 3,05E+07 | 9,.03E+06 | 2,42E+08 | 3,39E+07
F[():Efev‘l’o 4,76E+05 | 2,48E+05 | 3,96E+06 | 1,51E+06 | 1,55E+07 | 2,96E+06

F7
FDCiBeVgO 4,88E+05 | 2,71E+05 | 4, 44E+06 | 1,82E+06 | 1,59E+07 | 2,77E+06
F[g?evxg/o 5,46E+05 | 3,63E+05 | 4,05E+06 | 1,67E+06 | 1,61E+07 | 2,86E+06
BWO | 5.68E+03 | 4,28E+02 | 1,.38E+04 | 4,28E+02 | 3,11E+04 | 4.64E+02
F%Efev‘l’o 1,91E+02 | 1,36E+01 | 3,66E+03 | 3,33E+03 | 1,65E+04 | 2,44E+03

Fs
F%Efev‘z’o 1,91E+02 | 1,26E+01 | 3,26E+03 | 3.27E+03 | 1,66E+04 | 2,52E+03
FDCEEeV;’O 1,94E+02 | 1,32E+01 | 3,38E+03 | 3,30E+03 | 1,65E+04 | 2,55E+03
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Table 2. The mean and standard deviation values of the error values of the algorithms on the CEC2020 test
functions for 30, 50 and 100 dimensions (Continued)

BWO | 1,05E+03 |596E+01 | 1,84E+03 | 8,90E+01 | 5,.83E+03 | 2,69E+02
FDciiV‘l’o 5,82E+02 | 2,07E+01 | 8,65E+02 | 3.92E+01 | 1,55E+03 | 5,14E+01

F9
F%zi\’;’o 5,77E+02 | 2,08E+01 | 8,78E+02 | 4,17E+01 | 1,54E+03 | 4,25E+01
F%Ei\’go 5,82E+02 | 2,41E+01 | 8,75E+02 | 4.25E+01 | 1,53E+03 | 4,84E+01
BWO | 1.67E+03 | 111E+02 | 1.02E+04 | 5.67E+02 | 2,20E+04 | 9,22E+02
F%Ei\’\l’o 4,41E+02 | 1,85E+01 | 7,04E+02 | 4,48E+01 | 1,20E+03 | 6,53E+01

F10
F%ESEZV\Z’O 4,45E+02 | 2,32E+01 | 7,00E+02 | 3,02E+01 | 1,25E+03 | 5,96E+01
F%’Zi"go 4,43E+02 | 2,39E+01 | 7,02E+02 | 3.95E+01 | 1,26E+03 | 7.93E+01

The Friedman analysis results of 3 different FDBBWO models developed in this study and the
original BWO algorithm are given in Table 3.

Table 3. Friedman analysis ranking results of BWO and FDBBWO algorithms

Algorithm 30D 50D 100D Mean Rank
FDBBWO CASE 3 2,0422 2,0147 1,9735 2,0101
FDBBWO CASE 2| 2,0441 2,0853 2,0637 2,0644
FDBBWO CASE 1| 2,0637 2,0500 2,1127 2,0755

BWO 3,8500 3,8500 3,8500 3,8500

According to the Friedman analysis ranking shown in Table 3, the BWOCase3 version ranked
first in all dimensions. Therefore, the BWOCase3 algorithm also ranks first in the average rank
value. It is also observed that all three FDBBWO versions presented in this study find more
suitable results than the original algorithm. This shows that the selection method with FDB
reduces the probability of the original BWO algorithm getting stuck at local optimum points.
In other words, FDB has a positive effect on the algorithm.

Since the Wilcoxon rank sum test is a pairwise comparison, each model is compared with the
original BWO algorithm. According to the significant difference rate chosen as 5%, it is
examined whether there is a difference between the algorithms compared according to the data
obtained as a result of 51 studies. When there was a significant difference, it was decided which
algorithm gave more favorable results on average and whether they obtained good, similar or
bad results. The results obtained are given in Table 4.

Table 4. Comparison results of BWO and FDBBWO algorithms according to Wilcoxon rank sum test

30D 50D 100D
Better |Similar | Worse | Better |Similar | Worse | Better |Similar | Worse
FDBBWO CASE 1 9 1 0 9 1 0 9 1 0
FDBBWO CASE 2 9 1 0 9 1 0 9 1 0
FDBBWO CASE 3 9 1 0 9 1 0 9 1 0
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When Table 4 is analyzed, it is seen that the algorithms produce similar results in 1 test function
for all dimensions. In the other 9 benchmark functions, there was a significant difference
between the results produced by the original BWO algorithm and FDB models and FDB models
produced better results.

Box-plot plots are used to analyze the global and local search capabilities of the algorithms.
The results obtained by the original BWO algorithm and FDB models for 30, 50 and 100
dimensions on 10 benchmark functions are graphicalized. Figure 2 shows box-plot plots for
bechmark functions 1 to 5. When the graph is analyzed, it is seen that the algorithms produce
similar results in the fourth test function. In the other four functions, the FDB versions produced
better results than the original algorithm. When the FDB versions are evaluated within
themselves, it is observed that they produce close results to each other.

Figure 3 shows box-plot plots for benchmark functions 6 to 10. In all five test functions, the

FDB versions produced more favorable results than the original algorithm. When the FDB
versions are evaluated within themselves, it is observed that they produce similar results.
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Figure 2. Box-plot characteristics of BWO and FDBBWO algorithms for test functions F1-F5
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3.3. Analysis Results of FDBBWO and Other Algorithms

In this section, the results obtained by FDBBWO, COA, MRA and PDO algorithms on
CEC2020 benchmark functions are analyzed. The mean and standard deviation values of the
error values obtained by the algorithms in 30, 50 and 100 dimensions for 10 benchmark
functions are given in Table 5. When the table is analyzed, it is observed that the FDBBWO
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Figure 3. Box-plot characteristics of BWO and FDBBWO algorithms for test functions F6-F10
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algorithm obtains lower values as average error values in all dimensions. Only in the 4th
function, all algorithms found the optimum value and the error values were 0.

Table 5. The mean and standard deviation values of the error values of the algorithms on the CEC2020 test
functions for 30, 50 and 100 dimensions of FDBBWO and other algorithms

30D 50D 100D

“Functon | Alsorithm | Mean | SEEET wean | SR | Mean | o
FDBBWO | 3.23E+08 | 6.75E+07 | 8.80E+08 | 1.68E+08 | 2.34E+09 | 3.00E+08

£l COA 6.14E+10 | 9.16E+09 | 1.19E+11 | 8.87E+09 | 2.81E+11 | 9.24E+09
MRA 7.97E+10 | 8.10E+08 | 1.34E+11 | 3.03E+08 | 2.94E+11 | 4.01E+08

PDO 3.56E+10 | 7.88E+09 | 7.30E+10 | 9.44E+09 | 1.60E+11 | 1.07E+10
FDBBWO |3.20E+03 | 4.26E+02 | 6.55E+03 | 5.61E+02 | 1.42E+04 | 9.99E+02

2 COA 7.87E+03 | 2.85E+02 | 1.51E+04 | 4.09E+02 | 3.22E+04 | 6.37E+02
MRA 8.88E+03 | 1.26E+02 | 1.64E+04 | 1.64E+02 | 3.50E+04 | 5.58E+02

PDO 6.45E+03 | 6.59E+02 | 1.25E+04 | 8.68E+02 | 2.79E+04 | 1.25E+03
FDBBWO | 2.00E+02 | 1.64E+01 | 3.94E+02 | 3.10E+01 | 1.07E+03 | 1.03E+02

F3 COA 7.82E+02 | 4.34E+01 | 1.43E+03 | 2.35E+01 | 3.40E+03 | 5.60E+01
MRA 8.33E+02 | 8.09E+00 | 1.43E+03 | 1.52E+01 | 3.44E+03 | 1.77E+01

PDO 6.15E+02 | 1.38E+02 | 1.19E+03 | 1.86E+02 | 2.92E+03 | 2.55E+02
FDBBWO | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00

F4 COA 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
MRA 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00

PDO 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00 | 0.00E+00
FDBBWO |4.12E+06 | 1.93E+06 | 7.78E+06 | 3.60E+06 | 3.55E+07 | 6.21E+06

5 COA 1.24E+08 | 6.41E+07 | 8.10E+08 | 3.18E+08 | 2.16E+09 | 4.94E+08
MRA 3.40E+08 | 8.04E+07 | 1.70E+09 | 6.52E+08 | 3.22E+09 | 2.43E+08

PDO 3.13E+07 | 1.54E+07 | 1.99E+08 | 8.26E+07 | 6.86E+08 | 2.58E+08
FDBBWO | 3.17E+02 | 8.77E+01 | 7.75E+02 | 1.39E+02 | 3.11E+03 | 3.89E+02

6 COA 4.55E+03 | 1.30E+03 | 9.88E+03 | 2.12E+03 | 3.43E+04 | 5.42E+03
MRA 9.57E+03 | 3.99E+03 | 1.69E+04 | 3.69E+03 | 4.46E+04 | 1.73E+03

PDO 2.40E+03 | 4.88E+02 | 5.67E+03 | 1.20E+03 | 1.94E+04 | 2.58E+03
FDBBWO | 5.46E+05 | 3.63E+05 | 4.05E+06 | 1.67E+06 | 1.61E+07 | 2.86E+06

£7 COA 4.43E+07 | 2.83E+07 | 1.42E+08 | 8.60E+07 | 4.72E+08 | 7.33E+07
MRA 2.74E+08 | 1.77E+08 | 6.43E+08 | 2.54E+08 | 6.47E+08 | 4.28E+06

PDO 8.50E+06 | 6.57E+06 | 3.28E+07 | 1.76E+07 | 2.24E+08 | 6.69E+07
FDBBWO |1.94E+02 |1.32E+01 | 3.38E+03 | 3.30E+03 | 1.65E+04 | 2.55E+03

8 COA 7.88E+03 | 6.78E+02 | 1.53E+04 | 4.80E+02 | 3.35E+04 | 7.36E+02
MRA 9.24E+03 | 1.35E+02 | 1.69E+04 | 2.22E+02 | 3.55E+04 | 1.85E+02

PDO 5.39E+03 | 1.57E+03 | 1.28E+04 | 7.17E+02 | 2.92E+04 | 1.33E+03
FDBBWO |5.82E+02 | 2.41E+01 | 8.75E+02 | 4.25E+01 | 1.53E+03 | 4.84E+01

F9 COA 1.43E+03 | 2.35E+02 | 2.55E+03 | 5.12E+02 | 8.61E+03 | 1.30E+03
MRA 2.01E+03 | 2.80E+02 | 3.59E+03 | 3.67E+02 | 1.15E+04 | 4.78E+02

PDO 9.73E+02 | 7.84E+01 | 1.72E+03 | 8.12E+01 | 5.39E+03 | 2.01E+02
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Table 5. The mean and standard deviation values of the error values of the algorithms on the CEC2020 test
functions for 30, 50 and 100 dimensions of FDBBWO and other algorithms (Continued)

FDBBWO | 4.43E+02 | 2.39E+01 | 7.02E+02 | 3.95E+01 | 1.26E+03 | 7.93E+01
F10 COA 3.26E+03 | 5.07E+02 | 1.49E+04 | 9.82E+02 | 2.90E+04 | 1.65E+03
MRA 4.61E+03 | 3.34E+01 | 1.66E+04 | 5.55E+01 | 3.21E+04 | 1.00E+02
PDO 1.73E+03 | 3.56E+02 | 7.71E+03 | 9.30E+02 | 1.39E+04 | 1.50E+03

The Friedman analysis results of the FDBBWO algorithm and the other algorithms compared
are given in Table 6.

Table 6. Friedman analysis ranking results of FDBBWO and other algorithms

Algorithm 30D 50D 100D Mean Rank

FDBBWO 1.1539 1.1500 1.1500 1.1513
PDO 2.0833 2.0951 2.0578 2.0788
COA 2.9382 2.9971 2.9814 2.9722
MRA 3.8245 3.7578 3.8108 3.7977

According to the Friedman analysis ranking shown in Table 6, the FDBBWO version ranked
first in all dimensions. Therefore, the FDBBWO algorithm also ranks first in the average rank
value. The PDO algorithm ranked second in all dimensions, while COA and MRA ranked third
and fourth, respectively.

The results of the Wilcoxon ranked sign test for FDBBWO and the other compared algorithms
are given in Table 7.

Table 7. Comparison results of FDBBWO and other algorithms according to Wilcoxon rank sum test

30D 50D 100D
Better |Similar | Worse | Better |Similar | Worse | Better |Similar | Worse
COA 0 1 9 0 1 9 0 1 9
MRA 0 1 9 0 1 9 0 1 9
PDO 0 1 9 0 1 9 0 1 9

When Table 7 is analyzed, it is seen that the algorithms produce similar results in only 1 test
function for all dimensions. In the other 9 test functions, there was a significant difference
between the results produced by the FDBBWO algorithm and the other algorithms and all
algorithms produced worse results than the FDBBWO model. This confirms that the developed
algorithm produces better results.

Figure 4 shows box-plot plots for benchmark functions 1 to 5. When the graph is analyzed, it
is seen that the algorithms produce similar results in the fourth test function. In the other four
functions, the FDBBWO algorithm produced better results than the original algorithm. Figure
5 shows box-plot plots for benchmark functions 6 to 10. In all five test functions, the FDBBWO
algorithm produced more favorable results than the original algorithm.
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Figure 5. Box-plot characteristics of FDBBWO and other algorithms for test functions F6-F10

4. CONCLUSIONS

In this study, in order to improve the performance of the BWO algorithm, a fitness distance
balance selection method is applied to three different parts of the algorithm. In this way, the
diversity of solutions produced by the BWO algorithm is increased and the probability of
premature convergence problem is reduced. The proposed algorithm is named FDBBWO.
CEC2020 benchmark functions were used to test the performance of the developed algorithm.
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In simulations for 30, 50 and 100 dimensions, each algorithm was run 51 times independently
and the results were recorded. Friedman analysis was performed on the results obtained by the
algorithms and the performance ranks of the algorithms were determined. In addition, Wilcoxon
ranked sign test was applied for each algorithm in pairs and it was determined whether there
was a significant difference. While the absence of significant difference indicates that the
solutions produced are similar, if there is a difference, it is concluded that it produces good or
bad results. As a result of the experimental analysis, it was observed that the FDBBWO
algorithm produced better results in 9 of the 10 test functions and produced similar results in 1
function. In addition, the developed algorithm was compared with the COA, MRA and PDO
algorithms presented in the literature in 2022 and 2023 using the same test functions. According
to the results obtained, it is observed that the FDBBWO algorithm produces better results than
these three algorithms.

In future studies, the developed FDBBWO algorithm will be applied to engineering problems
and the results obtained will be analyzed.
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