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Abstract. The primary object of this article is to introduce (p, q)-beta loga-

rithmic function with extended beta function by using the logarithmic mean.

We evaluate different properties and representations of beta logarithmic func-
tion. Further, it is evaluated logarithmic distribution, hypergeometric and

confluent hypergeometric functions via logarithmic mean are evaluated and

their essential properties are studied. Numerous formulas of (p, q)-beta loga-
rithmic functions such as integral formula, derivative formula, transformation

formula and generating function are analyzed.

1. Introduction and Preliminaries

The ordinary hypergeometric functions have been the subject of comprehensive
research by various eminent mathematician. These functions play a vital role in
different branches of mathematics. Applications of special functions (higher order
transcendental functions such as Bessel function, Whittaker function, Wright func-
tions etc.) are found in a broad variety of engineering sub-fields. The Euler beta
function plays an important role in special function which introduced by Legendre,
Whittaker and Watson etc. Using techniques to unify and generalize specialized
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functions has been an active and interesting area of research. An extension of the
Euler beta function was proposed in 1997 by Chaudhry et al. [3] as well as a number
of other researchers.

Definition 1. The beta function (also called the Euler’s integral of the first kind)
is defined as (see [11,13]):

B(ξ, ζ) =
Γ(ξ) Γ(ζ)

Γ(ξ + ζ)
=

∫ 1

0

tξ−1(1− t)ζ−1dt, (Re(ξ) > 0, Re(ζ) > 0) (1)

where Γ (.) is gamma function, the Euler integral of the second kind (commonly
used as extension of factorial function to complex numbers defined for all complex
numbers except for the non-positive integers).

As we know that the gamma and beta functions play a crucial role in the de-
velopment of theory of higher order transcendental functions and their various
generalizations are given by the various number of researchers (see [1], [2], [3], [4],
[5], [7], [8], [9], [12], [15]).

Gamma function is defined by the convergent improper integral as:

Γ(x) =

∫ ∞

0

e−ttx−1dt, (Re(x) > 0).

The underlying extension of Euler’s beta function established by Chaudhry et al. [3]
is defined as

Bp(ξ, ζ) =

∫ 1

0

tξ−1(1− t)ζ−1 exp

[
− p

t(1− t)

]
dt, (Re(p) > 0, Re(ξ) > 0, Re(ζ) > 0).

(2)
For p = 0, the extended beta function reduces to the classical beta function.

In 2004, Chaudhry et al. [4] used new extended beta function B(β, ζ; ρ) to in-
troduced extended Gauss hypergeometric and confluent hypergeometric functions
which are defined by their series representation as

Fρ (ξ, ζ; η; z) =

∞∑
n=0

(ξ)n
Bρ(ζ + n, η − ζ)

B(ζ, η − ζ)

zn

n!
(3)

(ρ ≥ 0, |z| < 1, Re(η) > ℜ(ζ) > 0),

and

Φρ (ζ; η; z) =

∞∑
n=0

Bρ(ζ + n, η − ζ)

B(ζ, η − ζ)

zn

n!
(4)

(ρ ≥ 0, |z| < 1, Re(η) > Re(ζ) > 0).
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In 2014, Choi et al. [5] introduced another extension of beta function, denoted by
Bp,q(ξ, ζ) and is defined by

Bp,q(ξ, ζ) =

∫ 1

0

tξ−1(1− t)ζ−1exp

[
−p

t
− q

(1− t)

]
dt, (5)

(Re(p) > 0, Re(q) > 0), (Re(ξ) > 0, Re(ζ) > 0).

The integral representation for extended Gauss hypergeometric function and ex-
tended confluent hypergeometric function are defined as follows :

Fp,q (ξ, ζ; η; z) =
1

B(ζ, η − ζ)

∫ 1

0

tζ−1 (1−t)η−ζ−1 (1−zt)−ξ exp

[
−p

t
− q

(1− t)

]
dt,

(6)

(p, q ≥ 0; | arg(1− z)| < π; Re(η) > Re(ζ) > 0),

and

Φp,q (ζ; η; z) =
1

B(ζ, η − ζ)

∫ 1

0

tζ−1 (1− t)η−ζ−1 exp

(
zt− p

t
− q

(1− t)

)
dt, (7)

{p, q ≥ 0, Re(η) > Re(ζ) > 0}.

Definition 2. The logarithmic mean for x, y > 0 (quotient of difference of two
non-negative numbers by their logarithmic value) is defined as (see [14])

L(x, y) =

∫ 1

0

x1−tyt dt =

{ x−y
log(x)−log(y) x ̸= y,

x x = y.
(8)

It can be easily seen that the logarithmic mean satisfies the following properties
(see [6], [10]):
• The logarithmic mean always lies between the geometric mean and arithmetic
mean.
• For x = y all three means that are geometric mean, arithmetic mean and loga-
rithmic mean are same.
• The limiting condition of the logarithmic mean is given as:

lim
y→x

L(x, y) = L(x, x) = x.

• The logarithmic mean satisfies the following property that is:

1

L(x, y)
=

∫ 1

0

dt

tx+ (1− ty)
.

• The infinite product of the logarithmic mean of any two positive real numbers
are given as:

L(x, y) =

∞∏
m=1

(
x2−m + y2−m

2

)
.
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2. Construction of (p,q)- Beta Logarithmic Function

For any fixed x, y > 0 the function x1−tyt is continuous in [0, 1] and so it is
bounded on [0, 1]. It means that there exist c ≥ 0 and for any x, y, ξ, ζ > 0, we
have

0 ≤ x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
≤ c tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
, ∀ t ∈ (0, 1).

Thus, x1−t yt tξ−1 (1 − t)ζ−1 exp
[
−p
tm − q

(1−t)m

]
is integrable on (0, 1). We

introduce the underlying definition that defines the relation between beta function
and logarithmic mean.

Definition 3. For any x, y, ξ, ζ ∈ R+, we define

Bm
p,q L(x, y; ξ, ζ) =

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt, (9)

(p, q ≥ 0, Re(ξ) > 0, Re(ζ) > 0),

which we call the (p, q) beta-logarithmic function.

Remark 1. Substituting x = y = 1 in (9), we get extended beta function

Bm
p,q L(1, 1; ξ, ζ) = Bm

p,q (ξ, ζ), (Re(ξ) > 0, Re(ζ) > 0)

where,

Bm
p,q(ξ, ζ) =

∫ 1

0

tξ−1(1− t)ζ−1exp

[
−p

tm
− q

(1− t)m

]
dt, (Re(p) > 0, Re(q) > 0).

(10)

Remark 2. By setting x = y = 1, p = q = 0 and m = 1 in (9), we get the Euler
Beta function (1) (see [11], [13])

B1
0,0 L(1, 1; ξ, ζ) = B(ξ, ζ), (Re(ξ) > 0, Re(ζ) > 0.

Remark 3. If we take ξ = ζ = 1, p = q = 0 and m = 1 in (9), we get logarithmic
mean (8) (see [14]).

B1
0,0 L(x, y; 1, 1) = L(x, y), (x, y > 0).

3. Properties of (p,q)- Beta Logarithmic Function

In this section, we analyze different properties and representations of a new form
of beta function that we call the (p, q) beta logarithmic function. This function is
a combined study of a new extended beta function and the logarithmic mean.
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Proposition 1. For x, y, ξ, ζ, p, q > 0, the following assertions hold true:

Bm
p,q L(x, y; ξ, ζ) = Bm

p,q L(y, x; ξ, ζ), (11)

Bm
p,q L(x, x; ξ, ζ) = xBm

p,q (ξ, ζ), (12)

and

Bm
p,q L(δx, δy; ξ, ζ) = δBm

p,q L(x, y; ξ, ζ). (13)

Proof. The result (11) may be reached by altering the variable t by 1−u in equation
(9). The assertions (12) and (13) may be produced by easy computation in equation
(9). □

Proposition 2. For any x, y, ξ, ζ, p, q > 0, the following assertions hold true:

Bm
p,q L(x, y; ξ + 1, ζ) +Bm

p,q L(x, y; ξ, ζ + 1) = Bm
p,q L(x, y; ξ, ζ). (14)

Proof. By using the definition (9) to the left side of (14), we get the required
assertion (14). □

Corollary 1. If we set x = y = 1 in (14), we obtained the well known result
introduced by M. Räıssouli et al. [14]

Bm
p,q(ξ + 1, ζ) +Bm

p,q(ξ, ζ + 1) = Bm
p,q(ξ, ζ). (15)

Proposition 3. For any x, y, ξ, ζ > 0, p, q ≥ 0, the following assertions hold true:

min(x, y)Bm
p,q(ξ, ζ) ≤ Bm

p,qL(x, y; ξ, ζ) ≤ xBm
p,q(ξ, ζ + 1) + yBm

p,q(ξ + 1, ζ)

≤ max(x, y)Bm
p,q(ξ, ζ). (16)

Proof. From the underlying inequality

min(x, y) ≤ √
xy ≤ L(x, y) ≤

(
x+ y

2

)
≤ max(x, y) and Bm

p,q(ξ, ζ) > 0,

we get the following relation

min(x, y)Bm
p,q(ξ, ζ) ≤ Bm

p,qL(x, y; ξ, ζ). (17)

By using the underlying well known Young’s inequality

x1−tyt ≤ x(1− t) + yt, ∀ t ∈ [0, 1]
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we get

Bm
p,q L(x, y; ξ, ζ) ≤

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

≤ x

(∫ 1

0

tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

)
+ y

(∫ 1

0

tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

)
≤ x

(
Bm

p,q(ξ, ζ + 1)
)
+
(
y Bm

p,q(ξ + 1, ζ)
)

≤ max(x, y)
(
Bm

p,q(ξ, ζ + 1) +Bm
p,q(ξ + 1, ζ)

)
by using the relation (15), we achieved the required result. □

Proposition 4. For any x, y, ξ, ζ > 0, p, q ≥ 0 the following assertion holds true:

Bm
p,q L(x, y; ξ, ζ) =

∞∑
n=0

Bm
p,q(x, y; ξ + n, ζ + 1). (18)

Proof. We have

Bm
p,q L(x, y; ξ, ζ) =

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt,

By using the series representation (1 − t)−1 =
∑∞

n=0 t
n, for t ∈ (0, 1) with the

arguments of uniform convergence of this power series, we have

Bm
p,q L(x, y; ξ, ζ) =

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

=

∫ 1

0

x1−t yt tξ−1 (1− t)ζ (1− t)−1 exp

[
−p

tm
− q

(1− t)m

]
dt

=

∞∑
n=0

∫ 1

0

x1−t yt tξ−1 (1− t)ζ tn exp

[
−p

tm
− q

(1− t)m

]
dt

=

∞∑
n=0

∫ 1

0

x1−t yt tξ+n−1 (1− t)ζ exp

[
−p

tm
− q

(1− t)m

]
dt,

using the definition (9) in the above expression, we achieved the desired result. □

Theorem 1. Let x, y, ξ, ζ > 0, p, q ≥ 0, the following representation holds true:

Bm
p,q L(x, y; ξ, ζ) =

∞∑
r,n=0

Bm
p,q(ξ + n, ζ + r)

n!r!
(log(x))r(log(y))n. (19)
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Proof. Using the following power series expansion

x1−t =

∞∑
r=0

(log(x))r

r!
(1− t)r, yt =

∞∑
n=0

(log(y))n

n!
tn

using the above expansion in the result (9), we have

Bm
p,q L(x, y; ξ, ζ) =

∫ 1

0

x1−t yt tξ−1 (1− t)ζ−1 exp

[
−p

tm
− q

(1− t)m

]
dt

=

∫ 1

0

∞∑
r,n=0

(log(x))r(log(y))n

r!n!
tξ+n−1 (1− t)ζ+r−1 exp

[
−p

tm
− q

(1− t)m

]
dt

=

∫ 1

0

tξ+n−1 (1− t)ζ+r−1

r!n!
(log(x)

∞∑
r,n=0

)r(log(y))n exp

[
−p

tm
− q

(1− t)m

]
dt,

using the definition (10) in the above expression, we achieved the required re-
sult (19). □

4. The (p,q)-Beta Logarithmic Random Variable

In this section, we define beta-logarithmic distribution of (9) and obtain its
mean, variance and moment generating function.

Definition 4. For x, y, ξ, ζ > 0, p, q ≥ 0, the beta-logarithmic distribution is defined
as:

f(t) =

{
1

Bm
p,q L(ξ,ζ) x1−t yt tξ−1(1− t)ζ−1 exp

[
−p
tm − q

(1−t)m

]
, (0 < t < 1),

0, otherwise.
(20)

The kth- moment of a random variable X for any real number k is given as:

E(Xk) =
Bm

p,q L(x, y; ξ + k, ζ)

Bm
p,q L(x, y; ξ, ζ)

, (21)

( p, q ≥ 0, x, y, ξ, ζ > 0).

For k = 1, we obtain the mean as a particular case of (21) given by

µ = E(X) =
Bm

p,q L(x, y; ξ + 1, ζ)

Bm
p,q L(x, y; ξ, ζ)

. (22)

The variance of the distribution is defined as: σ2 = E(X2)− {E(X)}2

σ2 =
Bm

p,q L(x, y; ξ, ζ)Bm
p,q L(x, y; ξ + 2, ζ)−

{
Bm

p,q L(x, y; ξ + 1, ζ)
}2{

Bm
p,q L(x, y; ξ, ζ)

}2 . (23)
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The moment generating function of the distribution is defined as

M(t) =

∞∑
n=0

tn

n!
E(Xn) =

1

Bm
p,qL(x, y; ξ, ζ)

∞∑
n=0

Bm
p,qL(x, y; ξ + n, ζ)

tn

n!
. (24)

Here, we recall the following known lemma.

Lemma 1. Let Y be a random variable with values that exist inside a finite range
[x, y]. Then, we have for all E ∈ [x, y],∣∣∣∣P (Y ≤ E)− y − E(Y )

y − x

∣∣∣∣ ≤ 1

2
+

|E − x+y
2 |

y − x
. (25)

Proposition 5. Let X represent a beta-logarithmic random variable with parame-
ters (x, y; ξ, ζ). Then, for any k, E > 0, the following assumptions are true:∣∣∣∣P (X ≤ E)−

Bm
p,q L(x, y; ξ, ζ + 1)

Bm
p,q L(x, y; ξ, ζ)

∣∣∣∣ ≤ 1

2
+

∣∣∣∣E − 1

2

∣∣∣∣ (26)

and

P (Xk ≥ E) ≤
Bm

p,qL(x, y; ξ + k, ζ)

E Bm
p,qL(x, y; ξ, ζ)

(27)

Proof. With the help of (14) and (22), we have

E(X) = 1−
Bm

p,q L(x, y; ξ, ζ + 1)

Bm
p,qL(x, y; ξ, ζ)

, (28)

using the above relation in inequality (25), we achieved the desired result (26).

The second inequality (27) can be deduced by using the Markov’s inequality

P (Xk ≥ E) ≤ E(Xk)

E
and the definition of E(Xk), we get the desired result (27). □

5. Hypergeometric and Confluent Hypergeometric Representation
by (p,q)-Beta Logarithmic Function

Many researchers gave the extension of hypergeometric and confluent hyperge-
ometric functions (see [4], [5], [12]). Here, we introduce a new hypergeometric and
confluent hypergeometric functions in terms of (p,q)-beta logarithmic function.

The (p, q)-beta logarithmic hypergeometric function is defined as:

Fm
p,q L(ξ, ζ; η; z) =

∞∑
n=0

(ξ)n
Bm

p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)

zn

n!
, (29)

(p, q ≥ 0, |z| < 1, Re(η) > Re(ζ) > 0, x, y > 0).



314 N. U. KHAN, M. I. KHAN, M. SAIF, T. USMAN

The (p, q)-beta logarithmic confluent hypergeometric logarithmic function is defined
as:

Φm
p,q L (ξ; ζ; z) =

∞∑
n=0

Bm
p,q L(x, y; ξ + n, η − ζ)

B(ζ, η − ζ)

zn

n!
, (30)

(p, q ≥ 0, x, y,> 0, Re(η) > Re(ζ) > 0, Re(ξ) > 0, |z| < 1).

5.1. Integral formula.

Theorem 2. The following integral formula for the (p, q)-beta logarithmic hyper-
geometric and (p, q)-beta logarithmic confluent hypergeometric function holds true:

Fm
p,q L (ξ, ζ; η; z) =

1

B(ζ, η − ζ)

×
∫ 1

0

x1−tyt tζ−1 (1− t)η−ζ−1 (1− zt)−ξ exp

[
−p

tm
− q

(1− t)m

]
dt,

(31)
(| arg(1− z)| < π; p, q ≥ 0; x, y,∈ R+; Re(η) > Re(ζ) > 0),

and

ϕm
p,q L (ζ; η; z) =

1

B(ζ, η − ζ)

∫ 1

0

x1−tyt tζ−1 (1− t)η−ζ−1 eztexp

[
−p

tm
− q

(1− t)m

]
dt

(32)
(p, q ≥ 0; x, y,∈ R+; Re(η) > Re(ζ) > 0).

Proof. By applying the definition of beta logarithmic function (9) into (29) and by
rearranging the order of integral and summation, we get

Fm
p,q L (ξ, ζ; η; z) =

1

B(ζ, η − ζ)

×
∫ 1

0

x1−tyt tζ−1 (1− t)η−ζ−1 exp

[
−p

tm
− q

(1− t)m

] ∞∑
n=0

(ξ)n
(zt)n

n!
dt.

(33)
Applying the binomial theorem in (33), we obtained the desired result (31).

Similarly, we can obtain (32). □

5.2. Derivative formula.

Theorem 3. The following derivative formula for (p, q)-beta logarithmic hyperge-
ometric and (p, q)-beta logarithmic confluent hypergeometric functions hold true:

dn

dzn
{
Fm
p,q L (ξ, ζ; η; z)

}
=

(ξ)n(ζ)n
(η)n

Fm
p,q L (ξ + n, ζ + n; η + n; z) , (34)

and
dn

dzn
{
ϕm
p,q L (ζ; η; z)

}
=

(ζ)n
(η)n

ϕm
p,q L (ζ + n; η + n; z) , (35)
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where

(p, q ≥ 0, Re(η) > Re(ζ) > 0); n ∈ N0.

Proof. We know well known relation of Euler-Beta function,

B(ζ, η − ζ) =
η

ζ
B(ζ + 1, η − ζ), (36)

Differentiating (29) with respect to variable z, we get

d

dz

{
Fm
p,q L(ξ, ζ; η; z)

}
=

∞∑
n=0

(ξ)n
Bm

p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)

zn−1

n− 1!

=

∞∑
n=0

(ξ)n+1

Bm
p,q L(x, y; ζ + n+ 1, η − ζ)

B(ζ, η − ζ)

zn

n!
,

Using (α)n = Γ(α+n)
Γ(α) and (36) in the above expression, we obtain

d

dz

{
Fm
p,q L(ξ, ζ; η; z)

}
=

ξζ

η

∞∑
n=0

(ξ + 1)n
Bm

p,q L(x, y; ζ + n+ 1, η − ζ)

B(ζ + 1, η − ζ)

zn

n!
,

where (α)n is the Pochhammar symbol defined as

(α)n =
Γ(α+ n)

Γ(α)
=

{
1 (n = 0;α ∈ C \ {0})
α(α+ 1)(α+ 2) . . . (α+ n− 1) (n ∈ N;α ∈ C),

Now continuing the same process up-to (n− 1), we get the required result (34).
Similarly, by applying the same process on (30), we get the required result (35).

□

Remark 4. If we take p = q = 1 and m =1 in the expression (34) and (35), we
obtain a similar result in [4].

5.3. Transformation formulas.

Theorem 4. The following formulae for the hypergeometric logarithmic and con-
fluent hypergeometric logarithmic functions hold true:

Fm
p,q L (ξ, ζ; η; z) = (1− z)−ξ Fm

p,q L

(
ξ, η − ζ; η; − z

1− z

)
, (37)

Fm
p,q L

(
ξ, ζ; η; 1− 1

z

)
= zξ Fm

p,qL (ξ, η − ζ; η; 1− z) , (38)

Fm
p,q L

(
ξ, ζ; η;

z

1 + z

)
= (1 + z)ξ Fm

p,q L (ξ, η − ζ; η; −z) , (39)

Φm
p,q L (ζ, η; z) = ez Φm

p,q L (η − ζ; η; −z) . (40)

(p, q ≥ 0, x, y,∈ R+; |z| < 1; Re(η) > Re(ζ) > 0).
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Proof. Substituting t by 1− t in (1− zt)−ξ and replacing the following equation

[1− z(1− t)]−ξ = (1− z)−ξ

(
1 +

z

1− z
t

)−ξ

in (31) we obtain

Fm
p,q L (ξ, ζ; η; z) =

(1− z)−ξ

B(ζ, η − ζ)

×
∫ 1

0

tζ−1 (1− t)η−ζ−1

(
1 +

z

1− z
t

)−ξ

exp

[
−p

tm
− q

(1− t)m

]
dt,

(41)
further, we have

Fm
p,q L (ξ, ζ; η; z) =

(1− z)−ξ

B(ζ, η − ζ)

×
∫ 1

0

tζ−1 (1− t)η−ζ−1

(
1− −z

1− z
t

)−ξ

exp

[
−p

tm
− q

(1− t)m

]
dt.

(42)
In view of (31), we get the required result (37).
Substituting z by 1− 1

z and z
1+z in (37) yield (38) and (39) respectively.

□

Similarly applying the same process in (37) by simple calculation, we can estab-
lish (40).

Theorem 5. The following relation holds true:

Fm
p,q L (ξ, ζ; η; 1) =

Bm
p,q (x, y; ξ, η − ξ − ζ)

B(ζ, η − ζ)
(43)

(p, q ≥ 0; x, y ∈ R+; Re(η − ξ − ζ) > 0).

Proof. Putting z = 1 in (31) and using the definition (9), we obtain desired result
(43). □

6. Generating function of Fm
p,qL (ξ, ζ; η; z)

Theorem 6. The generating function for Fm
p,q L (ξ, ζ; η; z) holds the underlying

relation
∞∑
k=0

(ξ)k Fm
p,q L(ξ + k, ζ; η; z)

tk

k!
= (1− z)−ξ Fm

p,q

(
ξ, ζ; η;

z

1− t

)
(44)

(p, q ≥ 0, |t| < 1).
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Proof. Let left hand side of (44) be denoted by L, then from (29), we have

L =

∞∑
k=0

(ξ)k

( ∞∑
n=0

(ξ + k)n B
m
p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)

zn

n!

)
tk

k!
.

Using the identity (α)n(α+ n)k = (α)k(α+ k)n, we get

L =

∞∑
n=0

(ξ)n
Bm

p,q L(a, b; ζ + n, η − ζ)

B(ζ, η − ζ)

( ∞∑
k=0

(ξ + n)k
tk

k!

)
zn

n!
.

Since, we know that
∑∞

n=0 (ξ + n)n
tn

n! = (1− t)−ξ−n, we obtain

L =
∞∑

n=0

(ξ)n
Bm

p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)
(1− t)−ξ−n zn

n!

L = (1− t)−ξ
∞∑

n=0

(ξ)n
Bm

p,q L(x, y; ζ + n, η − ζ)

B(ζ, η − ζ)

(
z

1− t

)n
1

n!
. (45)

Finally by using (29) in (45), we get the desired result (44). □

7. Conclusions

In this article we define a (p, q)-beta logarithmic function which links with log-
arithmic mean and generalized beta function (see [3], [4]). Here, we analyze yet
another extension of the Euler beta function and study a variety of properties, in-
cluding integral representation, summation formula and derivative formula of the
(p, q)-beta logarithmic function. Some analytical properties of this new extended
function are developed and discuss its probabilistic concept as an application. Fur-
ther, we get the beta distribution and the other statistical formula that go along
with it. Finally, we expand the definition of hypergeometric and confluent hyper-
geometric function and explore the different features of the extended definition.
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