

Research Article

The Bochner-Schoenberg-Eberlein module property for amalgamated duplication of Banach algebras

Mohammad Ali Abolfathiⁱ D, Ali Ebadianⁱ D, Ali Jabbari^{*} D

Department of Mathematics, Faculty of Science, Urmia University, Urmia, Iran

Abstract

The Bochner-Schoenberg-Eberlein module property on commutative Banach algebras is a property related to extensions of multipliers on Banach algebras to module morphisms from Banach algebras into Banach modules. In this paper, we answer the problem (1) raised in [J. Algebra Appl., 21(8) (2022), 2250155, DOI: 10.1142/S0219498822501559]. We show that the Banach $A \rtimes \mathfrak{A}$ -module $X \times Y$ (*X* is a Banach A, \mathfrak{A} -module and *Y* is a Banach A-module) has a BSE-module property if and only if *X* is a BSE Banach A*,* A-module and *Y* is a BSE Banach $\mathfrak A$ -module.

Mathematics Subject Classification (2020). 46J05, 46J20

Keywords. amalgamated Banach algebra, BSE-Banach algebra, BSE module property, character, multiplier

1. Introduction

Let A be a Banach algebra and *X* be a Banach A-bimodule. An A-module morphism of A into *X* is called a multiplier of *X* and we denote it by $\mathcal{M}(\mathcal{A}, X)$. If $T \in \mathcal{M}(\mathcal{A}, X)$, then there exists a unique vector field \hat{T} on $\Delta(A)$ such that $\widehat{T(a)} = a\hat{T}$, for all $a \in \mathcal{A}$. The notion of multipliers from Banach algebras into Banach modules is thoroughly investigated by Daws in [6]. A mapping $T : \mathcal{A} \longrightarrow \mathcal{A}$ is a *left (resp., right)* multiplier of \mathcal{A} if $T(ab) = aT(b)$ $(T(ab) = T(a)b$, for all $a, b \in A$. We denote the set of all left (resp., right) multipliers on A by $\mathcal{M}_l(\mathcal{A})$ (resp., \mathcal{M}_r). Moreover, T is called a *multiplier* of A if it is both left and right multiplier and the set of all multipliers of A is denoted by $\mathcal{M}(\mathcal{A})$, see [22], for more details re[la](#page-9-0)ted to multipliers on various versions of Banach algebras. A Banach algebra A is said to be *without order* if $xA = \{0\}$ or $Ax = \{0\}$, then $x = 0$. A bounded continuous function σ on $\Delta(A)$ is called a *BSE-function* if there exists a constant $C > 0$ such that for every finite number of $\varphi_1, \ldots, \varphi_n \in \Delta(\mathcal{A})$ and complex numbers c_1, \ldots, c_n , t[he](#page-9-1) inequality

$$
\left|\sum_{i=1}^n c_i \sigma(\varphi_i)\right| \leq C \left\|\sum_{i=1}^n c_i \varphi_i\right\|_{\mathcal{A}^*}
$$

[∗]Corresponding Author.

Email addresses: m.abolfathi@urmia.ac.ir (M. A. Abolfathi), ebadian.ali@gmail.com (A. Ebadian), jabbari al@yahoo.com (A. Jabbari)

Received: 06.03.2023; Accepted: 10.08.2023

holds, where \mathcal{A}^* is the first dual of \mathcal{A} . The *BSE-norm* of σ i. e., $\|\cdot\|_{BSE}$ is defined to be the infimum of all such *C*. The set of all BSE-functions is denoted by $C_{BSE}(\Delta(\mathcal{A}))$. A Banach algebra A is called *BSE-algebra* if the BSE-functions on $\Delta(\mathcal{A})$ are precisely the Gel'fand transforms of the elements of $\mathcal{M}(\mathcal{A})$, i.e., $\mathcal{M}(\mathcal{A}) = C_{BSE}(\Delta(\mathcal{A}))$. This notion is introduced by Takahasi and Hatori in [25] and it is characterized by Kaniuth and Ülger in [21]. There are many literatures that they have contained interesting results of BSE-algebras, see $[1-4, 11, 12, 14-20, 26]$, for more details.

Takahasi in [24] generalized the BSE-property to Banach modules. Let *A* be a commutative Banach algebra [wit](#page-10-0)h a bounded approximate identity and *X* be a [sym](#page-9-2)metric Banach *A*-bimodule, i.e., $a \cdot x = x \cdot a$, for all $a \in A$ and $x \in X$. Let $\varphi \in \Delta(A)$. Denote $\ker \varphi$ $\ker \varphi$ $\ker \varphi$ [by](#page-9-5) $M_{\varphi} = \{a \in A : \varphi(a) = 0\}$ $M_{\varphi} = \{a \in A : \varphi(a) = 0\}$ $M_{\varphi} = \{a \in A : \varphi(a) = 0\}$ $M_{\varphi} = \{a \in A : \varphi(a) = 0\}$ $M_{\varphi} = \{a \in A : \varphi(a) = 0\}$ $M_{\varphi} = \{a \in A : \varphi(a) = 0\}$. There exists $e_{\varphi} \in A$ such that $\varphi(e_{\varphi}) = 1$. Now, define

$$
X^{\varphi} = \overline{\mathrm{sp}}\{M_{\varphi}X + (1 - e_{\varphi})X\},\
$$

where \overline{sp} is the closed linear span. Note that X^{φ} is independent of choice of e_{φ} . Then *X*^{*φ*} becomes a Banach *A*-submodule of *X*. Now define $X_{\varphi} = X/X^{\varphi}$ and $\hat{x}(\varphi) = x + X^{\varphi}$, for all $x \in X$. Hence, X_{φ} becomes a Banach *A*-bimodule. Let $\prod X_{\varphi}$ be the class of all functions σ defined on $\Delta(A)$ such that $\sigma(\varphi) \in X_{\varphi}$. An element of $\prod X_{\varphi}$ is called a *vector field* on $\Delta(A)$. The space $\prod X_{\varphi}$ is an *A*-module by the following action

$$
(a \cdot \sigma)(\varphi) = \varphi(a)\sigma(\varphi), \quad (a \in A, \varphi \in \Delta(A), \sigma \in \prod X_{\varphi}).
$$

Set

$$
\prod \,^b X_{\varphi} = \left\{ \sigma \in \prod X_{\varphi} : \|\sigma\|_{\infty} = \sup_{\varphi \in \Delta(A)} \|\sigma(\varphi)\| < \infty \right\}.
$$

For each $\varphi \in \Delta(A)$, define $\pi_{\varphi}(x) = \hat{x}(\varphi)$, for all $x \in X$. A vector field $\sigma \in \prod X_{\varphi}$ is called *BSE* if there exists $\beta \in \mathbb{R}^+$ such that for any finite number of $\varphi_1, \ldots, \varphi_n \in \Delta(A)$ and the same number $f_1 \in (X_{\varphi_1})^*, \ldots, f_n \in (X_{\varphi_n})^*,$ we have

$$
\left|\sum_{i=1}^n \langle \sigma(\varphi_i), f_i \rangle \right| \leq \beta \left\| \sum_{i=1}^n f_i \circ \pi_{\varphi_i} \right\|_{X^*}
$$

,

where $(X_{\varphi_i})^*$ denotes the dual space of the Banach space X_{φ_i} . Moreover, set

$$
\prod_{\text{BSE}} X_{\varphi} = \left\{ \sigma \in \prod X_{\varphi} : \sigma \text{ is BSE} \right\}.
$$

A vector field $\sigma \in \prod X_{\varphi}$ is called continuous if it is continuous at every $\varphi \in \Delta(A)$. The class of all continuous vector fields in $\prod X_{\varphi}$ is denoted by $\prod C^ X_{\varphi}$ and set $\prod_{\text{BSE}} C^ X_{\varphi}$ Π_{BSE} $X_{\varphi} \cap \Pi^c$ X_{φ} . Let $\hat{X} = \{\hat{x} : x \in X\}$ and $\widehat{\mathcal{M}}(\mathcal{A}, \overline{X}) = \{\hat{T} : T \in \mathcal{M}(\mathcal{A}, X)\}$. A Banach A-module *X* is called *BSE* if $\widehat{M(A,X)} = \prod_{\text{BSE}}^c X_{\varphi}$, for all $\varphi \in \Delta(A)$. In [24], some examples of Banach algebras that have BSE module property such group algebras on locally compact groups are given and in [2] authors characterized module property of module extensions of Banach algebras.

Let A and $\mathfrak A$ be two Banach algebras such that A is a Banach $\mathfrak A$ -bimodule with the [lef](#page-10-2)t and right compatible actions of $\mathfrak A$ on $\mathcal A$, i.e., for all $a, b \in \mathcal A$ and $\alpha \in \mathfrak A$,

$$
\alpha \cdot (ab) = (\alpha \cdot a)b
$$
, $(ab) \cdot \alpha = a(b \cdot \alpha)$ and $a(\alpha \cdot b) = (a \cdot \alpha)b$.

Also, A is called a commutative Banach \mathfrak{A} -bimodule if $a \cdot \alpha = \alpha \cdot a$, for all $a \in \mathcal{A}$ and $\alpha \in \mathfrak{A}$. The amalgamated duplication of A along \mathfrak{A} , denoted by $\mathcal{A} \rtimes \mathfrak{A}$ is defined as the Cartesian product $A \times \mathfrak{A}$ with the algebra product

$$
(a, \alpha)(b, \beta) = (ab + \alpha \cdot b + a \cdot \beta, \alpha\beta),
$$

and with the norm $||(a, \alpha)|| = ||a||_A + ||\alpha||_{\mathfrak{A}}$, for all $a, b \in A$ and $\alpha, \beta \in \mathfrak{A}$. The Banach algebra $A \rtimes \mathfrak{A}$ is introduced by Javanshiri and Nemati in [13] in light of D'Anna and Fontana work related to amalgamated duplication of a ring along an ideal [5]. Some results related to these algebras are given in [7,8,10]. In this paper we need the following results on $A \rtimes \mathfrak{A}$:

Lemma 1.1. *[13, Lemma 3.1]* If $\varphi \in \Delta(\mathcal{A})$, then there exists a unique linear functional $\widetilde{\varphi}$ *in* $\Delta(\mathfrak{A}) \cup \{0\}$ *such that*

$$
\varphi(a \cdot \beta) = \varphi(\beta \cdot a) = \varphi(a)\widetilde{\varphi}(\beta) \qquad (a \in \mathcal{A}, \beta \in \mathfrak{A}).
$$

In particular, i[f ei](#page-9-10)ther $\langle \mathcal{A} \cdot \mathfrak{A} \rangle = \mathcal{A}$ *or* $\langle \mathfrak{A} \cdot \mathcal{A} \rangle = \mathcal{A}$ *, then* $\tilde{\varphi} \neq 0$ *.*

Proposition 1.2. *[13, Proposition 3.3] Let*

$$
E := \{ (\varphi, \widetilde{\varphi}) : \varphi \in \Delta(\mathcal{A}) \} \quad and \quad F := \{ (0, \psi) : \psi \in \Delta(\mathfrak{A}) \}.
$$

Set $E = \emptyset$ *(respectively,* $F = \emptyset$ *) if* $\Delta(\mathcal{A}) = \emptyset$ *(respectively,* $\Delta(\mathfrak{A}) = \emptyset$ *). Then E* and *F are disjoint and* $\Delta(A \rtimes \mathfrak{A}) = E \cup F$ $\Delta(A \rtimes \mathfrak{A}) = E \cup F$ $\Delta(A \rtimes \mathfrak{A}) = E \cup F$.

According to [13, Remark 3.1], $A \rtimes \mathfrak{A}$ is a commutative Banach algebra if and only if A, $\mathfrak A$ are commutative Banach algebras and A is a symmetric Banach $\mathfrak A$ -bimodule. In [9], authors investigated BSE property of $A \rtimes \mathfrak{A}$ in a special case that A possess a nonzero idempotent that does not lie in the kernel of any character of A . Authors in $[9]$ asked the following proble[ms:](#page-9-10)

- (1) Let X and Y be Banach A and $\mathfrak A$ -modules, respectively. Under which c[on](#page-9-11)ditions $X \times Y$ is BSE Banach $A \rtimes \mathfrak{A}\text{-module}$?
- (2) Under which conditions $A \rtimes \mathfrak{A}$ is BSE Banach $A \rtimes \mathfrak{A}$ -module?

We answer the problem (1) in the next section and problem (2) remains open because it is complicated and at this time we could not answer it.

2. BSE-module property of Banach $A \rtimes \mathfrak{A}$ -modules

In this section, we investigate the BSE-module property of $A \rtimes \mathfrak{A}$ -modules. Throughout this section, A and $\mathfrak A$ are commutative Banach algebras with bounded approximate identities such that A is a symmetric $\mathfrak{A}\text{-bimodule}$ and $\langle \mathcal{A}\cdot \mathfrak{A}\rangle = \mathcal{A}$, by E and F, we mean the sets are obtained in Proposition 1.2 and *X* and *Y* are Banach $A-\mathfrak{A}$ and \mathfrak{A} -modules, respectively. We consider $X \times Y$ as a Banach $A \rtimes \mathfrak{A}$ -module by the following module action:

$$
(a, \alpha) \cdot (x, y) = (a \cdot x + \alpha \cdot x, \alpha \cdot y),
$$

f[o](#page-2-0)r all $(a, \alpha) \in \mathcal{A} \rtimes \mathfrak{A}$ and $(x, y) \in X \rtimes Y$. Moreover, we consider X as a Banach $\mathcal{A} \rtimes \mathfrak{A}$ module by the module action $(a, \alpha) \cdot x = a \cdot x + \alpha \cdot x$, for all $(a, \alpha) \in A \rtimes \mathfrak{A}$ and $x \in X$. The existence of a bounded approximate identity for $A \rtimes \mathfrak{A}$ is investigated in [8, Proposition 2.2 (ii)] and it was shown that $(a_{\varpi}, \beta_{\varpi})_{\varpi}$ is a bounded approximate identity of $\mathcal{A} \rtimes \mathfrak{A}$ if and only if $||a_{\varpi}||_A$ → 0, $(\beta_{\varpi})_{\varpi}$ is a bounded approximate identity of A in $\mathfrak A$ i. e., $a \cdot \beta_{\varpi} \to a$, for every $a \in \mathcal{A}$, in norm of A. So, in the rest of this section we have assume that $A \rtimes \mathfrak{A}$ has a bounded approximate identity. The proof of the followin[g r](#page-9-12)esult is clear and so we have omitted it.

Lemma 2.1. *For any* $\varphi \in E$ *and* $\psi \in F$ *,* $M_{(0,\psi)} = M_{\psi}$ *and*

$$
M_{(\varphi,\widetilde{\varphi})} = (M_{\varphi} \times \{0\}) \cup \left(\{0\} \times M_{\widetilde{\varphi}}\right) \cup \left(M_{\varphi} \times M_{\widetilde{\varphi}}\right) \cup \{(a,\alpha) : \varphi(a) = -\widetilde{\varphi}(\alpha)\}.
$$

By Hom_{$\mathfrak{A}(\mathcal{A}, X)$, we mean the space of all continuous linear maps such as $T : \mathcal{A} \longrightarrow X$} such that $T(\alpha \cdot a) = \alpha \cdot T(a)$, for all $\alpha \in \mathfrak{A}$ and $a \in \mathcal{A}$.

Lemma 2.2. $T \in \mathcal{M}(\mathcal{A} \times \mathcal{A}, X \times Y)$ *if and only if there exist* $T_{\mathcal{A},X} \in \mathcal{M}(\mathcal{A},X) \cap \mathcal{A}$ Hom₂((A, X) , $T_{21, X} \in M(21, X)$ and $T_{21, Y} \in M(21, Y)$ such that

$$
T((a,\alpha)) = \left(T_{\mathcal{A},X}(a) + T_{\mathfrak{A},X}(\alpha), T_{\mathfrak{A},Y}(\alpha)\right),\tag{2.1}
$$

for all $(a, \alpha) \in \mathcal{A} \rtimes \mathfrak{A}$ *.*

Proof. Consider the mappings $\imath_A : A \longrightarrow A \rtimes \mathfrak{A}$ by $\imath_A(a) = (a, 0), \imath_{\mathfrak{A}} : \mathfrak{A} \longrightarrow A \rtimes \mathfrak{A}$ by $i_{\mathfrak{A}}(\alpha) = (0, \alpha), \rho_X : X \times Y \longrightarrow X$ by $\rho_X(x, y) = x$ and $\rho_Y : X \times Y \longrightarrow Y$ by $\rho_Y(x, y) = y$, for all $a \in \mathcal{A}, \, \alpha \in \mathfrak{A}, \, x \in X$ and $y \in Y$. Clearly, the above defined maps are linear. Now, we define $T_{\mathcal{A},X} = \rho_X \circ T \circ i_{\mathcal{A}}, T_{\mathcal{A},Y} = \rho_Y \circ T \circ i_{\mathcal{A}}, T_{\mathfrak{A},X} = \rho_X \circ T \circ i_X$ and $T_{\mathfrak{A},Y} = \rho_Y \circ T \circ i_Y$. It is easy to check that these mappings are linear. Then

$$
T((a,\alpha)) = \left(T_{\mathcal{A},X}(a) + T_{\mathfrak{A},X}(\alpha), T_{\mathcal{A},Y}(a) + T_{\mathfrak{A},Y}(\alpha)\right),\tag{2.2}
$$

for all $(a, \alpha) \in \mathcal{A} \rtimes \mathfrak{A}$. If $T \in \mathcal{M}(\mathcal{A} \rtimes \mathfrak{A}, X \times Y)$, then

$$
T((a,\alpha)(b,\beta)) = (T_{\mathcal{A},X}(ab+a\cdot\beta+\alpha\cdot b) + T_{\mathfrak{A},X}(\alpha\beta), T_{\mathcal{A},Y}(ab+a\cdot\beta+\alpha\cdot b) + T_{\mathfrak{A},Y}(\alpha\beta))
$$
(2.3)

and

$$
(a, \alpha) \cdot T((b, \beta)) = (a \cdot T_{\mathcal{A}, X}(b) + a \cdot T_{\mathfrak{A}, X}(\beta) + \alpha \cdot T_{\mathcal{A}, X}(b) + \alpha \cdot T_{\mathfrak{A}, X}(\beta), \alpha \cdot T_{\mathcal{A}, Y}(b) + \alpha \cdot T_{\mathfrak{A}, Y}(\beta)),
$$
\n(2.4)

for all (a, α) , $(b, \beta) \in \mathcal{A} \rtimes \mathfrak{A}$. Letting $a = b = 0$ in (2.3) and (2.4) implies that

$$
T_{\mathfrak{A},X}(\alpha\beta)=\alpha\cdot T_{\mathfrak{A},X}(\beta)\quad\text{and}\quad T_{\mathfrak{A},Y}(\alpha\beta)=\alpha\cdot T_{\mathfrak{A},Y}(\beta).
$$

Thus, $T_{\mathfrak{A}_X} \in \mathcal{M}(\mathfrak{A}, X)$, because \mathfrak{A} has a boun[ded](#page-3-0) appro[xim](#page-3-1)ate identity and $T_{\mathfrak{A}_Y} \in$ $\mathcal{M}(\mathfrak{A}, Y)$. Similarly, letting $\alpha = \beta = 0$ in (2.3) and (2.4) implies that

$$
T_{\mathcal{A},X}(ab) = a \cdot T_{\mathcal{A},X}(b).
$$

Therefore, $T_A \times \in \mathcal{M}(\mathcal{A}, X)$. Letting $b = 0$ $b = 0$ and $\alpha = 0$ $\alpha = 0$ $\alpha = 0$ imply that

$$
T_{\mathcal{A},Y}(a\cdot\beta)=0.
$$

Moreover, letting $a = 0$ and $\beta = 0$, imply that

$$
T_{\mathcal{A},X}(\alpha \cdot b) = \alpha \cdot T_{\mathcal{A},X}(b) \quad \text{and} \quad T_{\mathcal{A},Y}(\alpha \cdot b) = \alpha \cdot T_{\mathcal{A},Y}(b).
$$

Then the above equalities together with $\mathfrak A$ has a bounded approximate identity and continuity of $T_{\mathcal{A},Y}$ imply that $T_{\mathcal{A},Y} = 0$ and $T_{\mathcal{A},X} \in \text{Hom}_{\mathfrak{A}}(\mathcal{A}, X)$. The proof of the converse is clear. converse is clear.

Lemma 2.3. *Let X be a Banach* A*-module and Y be a Banach* A*-module. Then*

- $(X \times Y)^{(\varphi,\varphi)} = X^{(\varphi,\widetilde{\varphi})} \times Y^{\widetilde{\varphi}}, \text{ for every } (\varphi,\widetilde{\varphi}) \in E.$
 $(X \times Y)^{(0,\psi)} = Y^{\psi} \cdot (\varphi \cdot \varphi) \cdot (\varphi \cdot \varphi) = \nabla \cdot (\varphi \cdot \varphi) \cdot (\varphi \cdot \varphi)$
- (ii) $(X \times Y)^{(0,\psi)} = Y^{\psi}$, for every $(0,\psi) \in F$.
- (iii) $(X \times Y)_{(\varphi, \widetilde{\varphi})} \cong X_{(\varphi, \widetilde{\varphi})} \times Y_{\widetilde{\varphi}},$ for every $(\varphi, \widetilde{\varphi}) \in E$.
(iv) $(X \times Y)_{(\varphi, \varphi)} \cong Y_{\psi}$ for every $(0, \psi) \in F$
- (*w*) $(X \times Y)_{(\varphi,\varphi)} = X_{(\varphi,\varphi)} \times Y_{\varphi}$, for every $(\varphi,\psi) \in F$.
(*iv*) $(X \times Y)_{(0,\psi)} \cong Y_{\psi}$, for every $(0,\psi) \in F$.
- (\mathbf{v}) $\Pi_{\text{BSE}}^c(X \times Y)_{(\varphi, \widetilde{\varphi})} = \Pi_{\text{BSE}}^c X_{(\varphi, \widetilde{\varphi})} \times \Pi_{\text{BSE}}^c Y_{\widetilde{\varphi}}$, for every $(\varphi, \widetilde{\varphi}) \in E$.

vi) $\Pi_{\text{BSE}}^c(X \times Y)_{(\varphi, \psi)} = \Pi_{\text{BSE}}^c Y_{\psi}$ for every for every $(0, \psi) \in F$
- (Vi) $\Pi_{\text{BSE}}^{c}(X \times Y)_{(0,\psi)} = \Pi_{\text{BSE}}^{c} Y_{\psi}$, *for every , for every* $(0,\psi) \in F$.

Proof. Let $e_{\varphi} \in A$ and $f_{\widetilde{\varphi}} \in \mathfrak{A}$ such that $\varphi(e_{\varphi}) = 1$ and $\widetilde{\varphi}(f_{\widetilde{\varphi}}) = 1$.

(i) Let $(x, y) \in (X \times Y)^{(\varphi, \varphi)}$. Then, for any $\varepsilon > 0$, there exist $(a_1, \alpha_1), \ldots, (a_n, \alpha_n) \in$ $M_{(\varphi,\widetilde{\varphi})}$ and $(x_1,y_1),\ldots,(x_n,y_n),(r_1,s_1),\ldots,(r_m,s_m)\in X\times Y$, such that

$$
\left\|(x,y) - \sum_{i=1}^n (a_i, \alpha_i) \cdot (x_i, y_i) - \left(1 - (e_{\varphi}, f_{\widetilde{\varphi}})\right) \sum_{j=1}^m (r_j, s_j)\right\| < \varepsilon.
$$
 (2.5)

Then (2.5) implies that

$$
\left\| \left(x - \sum_{i=1}^{n} (a_i \cdot x_i + \alpha_i \cdot x_i) - (1 - (e_{\varphi}, f_{\widetilde{\varphi}})) \sum_{j=1}^{m} r_j, y - \sum_{i=1}^{n} \alpha_i \cdot y_i - (1 - f_{\widetilde{\varphi}}) \sum_{j=1}^{m} s_j \right) \right\|
$$

\n
$$
= \left\| x - \sum_{i=1}^{n} (a_i, \alpha_i) \cdot x_i - (1 - (e_{\varphi}, f_{\widetilde{\varphi}})) \sum_{j=1}^{m} r_j \right\| + \left\| y - \sum_{i=1}^{n} \alpha_i \cdot y_i - (1 - f_{\widetilde{\varphi}}) \sum_{j=1}^{m} s_j \right\|
$$

\n
$$
<\varepsilon.
$$

Thus,

$$
\left\| x - \sum_{i=1}^{n} (a_i, \alpha_i) \cdot x_i - (1 - (e_{\varphi}, f_{\widetilde{\varphi}})) \sum_{j=1}^{m} r_j \right\| < \varepsilon
$$

and

$$
\left\| y - \sum_{i=1}^n \alpha_i \cdot y_i - (1 - f_{\widetilde{\varphi}}) \sum_{j=1}^m s_j \right\| < \varepsilon.
$$

Then by the above inequalities we have $x \in X^{(\varphi,\widetilde{\varphi})}$ and $y \in Y^{\widetilde{\varphi}}$. Hence, $(X \times Y)^{\varphi} \subseteq$ $X^{(\varphi,\varphi)} \times Y^{\varphi}$. Now, let $(x,y) \in X^{(\varphi,\varphi)} \times Y^{\varphi}$. Then for every $\varepsilon > 0$, there exist $(a_1, \alpha_1), \ldots,$ $(a_n, \alpha_n) \in M_{(\varphi, \widetilde{\varphi})}, \beta_1, \dots, \beta_m \in \mathfrak{A}, x_1, \dots, x_n, r_1, \dots, r_t \in X \text{ and } y_1, \dots, y_m, s_1, \dots, s_k \in Y$
such that such that

$$
\left\|x - \sum_{i=1}^{n} (a_i, \alpha_i) \cdot x_i - (1 - (e_{\varphi}, f_{\widetilde{\varphi}})) \sum_{j=1}^{t} r_j \right\| < \frac{\varepsilon}{2} \text{ and } \left\|y - \sum_{i=1}^{m} \beta_i \cdot y_i - (1 - f_{\widetilde{\varphi}}) \sum_{j=1}^{k} s_j \right\| < \frac{\varepsilon}{2}.
$$
\n
$$
(2.6)
$$

If $m \geq n$, then we assume that $a_{n+1} = \cdots = a_m = 0$ and similarly we do it for t and *k*. Set $n_1 = \max\{n,m\}$ and $t_1 = \max\{t,k\}$. For any $(\varphi, \tilde{\varphi}) \in E$, $M_{(\varphi, \tilde{\varphi})}(X \times \{0\}) + M_{(\varphi, \tilde{\varphi})}(X) \subset M_{(\varphi, \tilde{\varphi})}(X \times \{0\})$. Then by this fact and by (2.6) we have $M_{(\varphi,\widetilde{\varphi})}(\{0\}\times Y) \subseteq M_{(\varphi,\widetilde{\varphi})}(X\times Y)$. Then by this fact and by (2.6), we have

$$
\begin{split}\n&= \left\| (x,y) - \sum_{i=1}^{n_1} \left((a_i, \alpha_i) \cdot (x_i, 0) + (a_i, \beta_i) \cdot (0, y_i) \right) - \left(1 - (e_{\varphi}, f_{\widetilde{\varphi}}) \right) \sum_{j=1}^{t_1} (r_j, s_j) \right\| \\
&= \left\| (x,y) - \left(\sum_{i=1}^{n_1} (a_i \cdot x_i + \alpha_i \cdot x_i) - \left(1 - (e_{\varphi}, f_{\widetilde{\varphi}}) \right) \sum_{j=1}^{t_1} r_j, \sum_{i=1}^{n_1} \beta_i \cdot y_i - (1 - f_{\widetilde{\varphi}}) \sum_{j=1}^{t_1} s_j \right) \right\| \\
&= \left\| (x,y) - \left(\sum_{i=1}^{n} (a_i, \alpha_i) \cdot x_i - \left(1 - (e_{\varphi}, f_{\widetilde{\varphi}}) \right) \sum_{j=1}^{t} r_j, \sum_{i=1}^{m} \beta_i \cdot y_i - (1 - f_{\widetilde{\varphi}}) \sum_{j=1}^{k} s_j \right) \right\| \\
&= \left\| \left(x - \sum_{i=1}^{n} (a_i, \alpha_i) \cdot x_i - \left(1 - (e_{\varphi}, f_{\widetilde{\varphi}}) \right) \sum_{j=1}^{t} r_j, y - \sum_{i=1}^{m} \beta_i \cdot y_i - (1 - f_{\widetilde{\varphi}}) \sum_{j=1}^{k} s_j \right) \right\| \\
&= \left\| x - \sum_{i=1}^{n} (a_i, \alpha_i) \cdot x_i - \left(1 - (e_{\varphi}, f_{\widetilde{\varphi}}) \right) \sum_{j=1}^{t} r_j \right\| + \left\| y - \sum_{i=1}^{m} \beta_i \cdot y_i - (1 - f_{\widetilde{\varphi}}) \sum_{j=1}^{k} s_j \right\| \\
&< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.\n\end{split}
$$

Thus, $(x, y) \in (X \times Y)^{(\varphi, \varphi)}$. Hence, (i) holds.

(ii) By Lemma 2.1 and similar argument in (i), we conclude that (ii) holds.

(iii) Define $\Lambda : X \times Y \longrightarrow X_{(\varphi,\widetilde{\varphi})} \times Y_{\widetilde{\varphi}}$ by $\Lambda(x,y) = \left(x + X^{(\varphi,\widetilde{\varphi})}, y + Y^{\widetilde{\varphi}}\right)$, for all $y \in X \times Y$ Clearly Λ is a continuous homomorphism between Banach spaces and $(x, y) \in X \times Y$. Clearly, Λ is a continuous homomorphism between Banach spaces and, by applying (i),

$$
\ker \Lambda = \left\{ (x, y) \in X \times Y : \Lambda(x, y) = 0_{X^{(\varphi, \widetilde{\varphi})} \times Y^{\widetilde{\varphi}}} = X^{(\varphi, \widetilde{\varphi})} \times Y^{\widetilde{\varphi}} \right\}
$$

$$
= X^{(\varphi, \widetilde{\varphi})} \times Y^{\widetilde{\varphi}} = (X \times Y)^{(\varphi, \widetilde{\varphi})}.
$$

Then

$$
(X \times Y)_{(\varphi,\widetilde{\varphi})} \cong \frac{X \times Y}{(X \times Y)^{(\varphi,\widetilde{\varphi})}} \cong X_{(\varphi,\widetilde{\varphi})} \times Y_{\widetilde{\varphi}}.
$$

Hence, (iii) holds. Similarly, one can show that (iv) holds.

(v) Define π^X $\begin{array}{c} X \\ (\varphi,\widetilde{\varphi}) \end{array}$ (*x*) = $\hat{x}(\varphi,\widetilde{\varphi})$ and $\pi_{\widetilde{\varphi}}^Y$ $\frac{\gamma}{\varphi}(y) = \hat{y}(\tilde{\varphi})$, for all $x \in X$ and $y \in Y$. More-
(*y*) for all $(x, y) \in X \times Y$. Suppose that $\sigma_{X} \in$ over, define $\pi_{(\varphi,\widetilde{\varphi})}(x,y) = (\pi_{(\varphi)}^X)$ (φ,φ)
nd *(* $(x), \pi \frac{Y}{2}$ $\frac{\gamma}{\varphi}(y)$, for all $(x, y) \in X \times Y$. Suppose that $\sigma_X \in$

(*(a)* $\tilde{\varphi}$ \in *E*. Then there exist β_1 , $\beta_2 \in \mathbb{R}^+$ $\Pi_{\text{BSE}}^c X_{(\varphi,\widetilde{\varphi})}, \sigma_Y \in \Pi_{\text{BSE}}^c Y_{\widetilde{\varphi}} \text{ and } (\varphi_1,\widetilde{\varphi}_1), \ldots, (\varphi_n,\widetilde{\varphi}_n) \in E.$ Then, there exist $\beta_1, \beta_2 \in \mathbb{R}^+$ such that for all $f_1 \in (X_{(\varphi_1, \widetilde{\varphi}_1)})^*$, ..., $f_n \in (X_{(\varphi_n, \widetilde{\varphi}_n)})^*$ and $g_1 \in (Y_{\widetilde{\varphi}_1})^*$, ..., $g_n \in (Y_{\widetilde{\varphi}_1})^*$ $\left(Y_{\widetilde{\varphi}_n}\right)^*,$

$$
\left| \sum_{i=1}^{n} \langle \sigma_X(\varphi_i, \tilde{\varphi}_i), f_i \rangle \right| \leq \beta_1 \left\| \sum_{i=1}^{n} f_i \circ \pi^X_{(\varphi_1, \tilde{\varphi}_1)} \right\|_{X^*}
$$
\n(2.7)

and

 $\overline{}$

$$
\left| \sum_{i=1}^{n} \langle \sigma_Y(\tilde{\varphi}_i), g_i \rangle \right| \leq \beta_2 \left\| \sum_{i=1}^{n} g_i \circ \pi_{\tilde{\varphi}_i}^Y \right\|_{Y^*}.
$$
\n(2.8)

Set $\beta = 2 \max\{\beta_1, \beta_2\}$. We consider $\left(X_{\varphi} \times Y_{\widetilde{\varphi}}\right)^* = X_{(\varphi_i, \widetilde{\varphi}_i)}^* \times Y_{\widetilde{\varphi}}^*$ with the maximum
rm i.e. $\|(f, g)\| = \max\{\|f\|_{Y^*}\}$ $\|(g_{\alpha})_{Y^*}\| \leq C_1$ for all $(f, g) \in X^* \cong Y^* \cong Y^*$. Let $\exists f \in$ $\max\{||f||_{X^*_{\varphi_i, \widetilde{\varphi}_i}}, ||g||_{Y^*_{\widetilde{\varphi}_i}}\}$
 $(X \times Y)^*$ \approx $\mathcal{F}_n \in (X \times Y)^*$ \approx Then *}*, for all $(f, g) \in X^*_{(\varphi_i, \widetilde{\varphi}_i)} \times Y^*_{\widetilde{\varphi}}$. Let $\mathcal{F} \in$
then spit $f \in \mathcal{F}^*$ $(X \times Y)^*_{(\varphi_1, \widetilde{\varphi}_1)}, \dots, \mathcal{F}_n \in (X \times Y)^*_{(\varphi_n, \widetilde{\varphi}_n)}.$ Then, there exist $f_1 \in X^*_{(\varphi_i, \widetilde{\varphi}_i)}, \dots, f_n \in X^*_{(\varphi_n, \widetilde{\varphi}_n)}$
and $g_1 \in Y^*_{\varphi_1}, \dots, g_n \in Y^*_{\varphi_n}$ such that $\mathcal{F}_i = (f_i, g_i)$, for $i = 1, \dots, n$. Now, imply that

$$
\left| \sum_{i=1}^{n} \langle (\sigma_X, \sigma_Y) (\varphi_i, \widetilde{\varphi}_i) (\mathcal{F}_i) \rangle \right| = \left| \sum_{i=1}^{n} \langle (\sigma_X (\varphi_i, \widetilde{\varphi}_i), \sigma_Y (\widetilde{\varphi}_i)) (f_i, g_i) \rangle \right| \n= \left| \sum_{i=1}^{n} \langle \sigma_X (\varphi_i, \widetilde{\varphi}_i), f_i \rangle + \sum_{i=1}^{n} \langle \sigma_Y (\widetilde{\varphi}_i), g_i \rangle \right| \n\leq \left| \sum_{i=1}^{n} \langle \sigma_X (\varphi_i, \widetilde{\varphi}_i), f_i \rangle \right| + \left| \sum_{i=1}^{n} \langle \sigma_Y (\widetilde{\varphi}_i), g_i \rangle \right| \n\leq \beta_1 \left\| \sum_{i=1}^{n} f_i \circ \pi_{(\varphi_i, \widetilde{\varphi}_i)}^X \right\|_{X^*} + \beta_2 \left\| \sum_{i=1}^{n} g_i \circ \pi_{\widetilde{\varphi}_i}^X \right\|_{Y^*} \n\leq \beta \max \left\{ \left\| \sum_{i=1}^{n} f_i \circ \pi_{(\varphi_i, \widetilde{\varphi}_i)}^X \right\|_{X^*}, \left\| \sum_{i=1}^{n} g_i \circ \pi_{\widetilde{\varphi}_i}^X \right\|_{Y^*} \right\} \n= \beta \left\| \sum_{i=1}^{n} (f_i, g_i) \circ \left(\pi_{(\varphi_i, \widetilde{\varphi}_i)}^X \right) \right\|_{(X \times Y)^*} \n= \beta \left\| \sum_{i=1}^{n} (f_i, g_i) \circ \left(\pi_{(\varphi_i, \widetilde{\varphi}_i)}^X \right) \right\|_{(X \times Y)^*} \n= \beta \left\| \sum_{i=1}^{n} \mathcal{F}_i \circ \pi_{(\varphi_i, \widetilde{\varphi}_i)} \right\|_{(X \times Y)^*}.
$$

Since, σ_X is continuous on *E* and σ_Y is continuous on $\{\tilde{\varphi} \in \Delta(\mathfrak{A}) : \varphi \in \Delta(A)\}\,$ (σ_X, σ_Y) is continuous on *E*. Thus $(\sigma_X, \sigma_Y) \in \Pi_{BSE}^c(X \times Y)_{(\varphi, \widetilde{\varphi})}$. This implies that $\Pi_{BSE}^c(X \times Y) \times \Pi_{BSE}^c(Y \times Y) \times \widetilde{\varphi}$ $\Pi_{\text{BSE}}^c X_{(\varphi_i, \widetilde{\varphi}_i)} \times \Pi_{\text{BSE}}^c Y_{\widetilde{\varphi}} \subseteq \Pi_{\text{BSE}}^c (X \times Y)_{(\varphi, \widetilde{\varphi})}.$
Now let $\tau \in \Pi_c^c Y \times Y$ for any

 $\begin{aligned} \text{SSE}^{\mathcal{X}}(\varphi_i, \widetilde{\varphi}_i) &\wedge \text{H}_{\text{BSE}}^{\mathcal{X}} \mathcal{F} \cong \text{H}_{\text{BSE}}^{\mathcal{X}}(\mathcal{X} \times Y)_{(\varphi, \widetilde{\varphi})}, \text{ for any } (\varphi, \widetilde{\varphi}) \in E. \text{ Then there exists } \beta \in \mathbb{R}^+ \text{ such that for any } (\varphi_1, \widetilde{\varphi}_1) \qquad (\varphi_2, \widetilde{\varphi}_2) \in E \text{ and } \mathfrak{F}_1 \in (X \times Y)^* \qquad \math$ that for any $(\varphi_1, \tilde{\varphi}_1), \ldots, (\varphi_n, \tilde{\varphi}_n) \in E$ and $\mathfrak{F}_1 \in (X \times Y)^*_{(\varphi_1, \tilde{\varphi}_1)}, \ldots, \mathfrak{F}_n \in (X \times Y)^*_{(\varphi_n, \tilde{\varphi}_n)},$

$$
\left| \sum_{i=1}^{n} \langle \sigma(\varphi_i, \widetilde{\varphi_i}), \mathcal{F}_i \rangle \right| \leq \beta \left\| \sum_{i=1}^{n} \mathcal{F}_i \circ \pi_{(\varphi_i, \widetilde{\varphi}_i)} \right\|_{(X \times Y)^*}.
$$
\n(2.9)

Moreover, since $\sigma(\varphi, \tilde{\varphi}) \in (X \times Y)_{(\varphi, \tilde{\varphi})}$, by employing (iii), there exist $\sigma_X \in X_{(\varphi, \tilde{\varphi})}$ and $(\sigma_X, \tilde{\varphi})$ and $\sigma_Y(\tilde{\varphi}) = (\sigma_X(\tilde{\varphi}, \tilde{\varphi}) \cdot \sigma_Y(\tilde{\varphi}))$. We now show that $\sigma_X \in \Pi^c$, $Y_{(\varphi, \tilde{\varphi})}$ $\sigma_Y \in Y_{\widetilde{\varphi}}$ such that $\sigma(\varphi, \widetilde{\varphi}) = (\sigma_X(\varphi, \widetilde{\varphi}), \sigma_Y(\widetilde{\varphi}))$. We now show that $\sigma_X \in \Pi_{BSE}^c \check{X}_{(\varphi, \widetilde{\varphi})}$
and $\sigma_X \in \Pi^c$. Y_{\sim} and $\sigma_Y \in \Pi_{\text{BSE}}^c Y_{\widetilde{\varphi}}$.

d $\sigma_Y \in \Pi_{\text{BSE}}^c Y_{\widetilde{\varphi}}$.

Let $f_1 \in X^*_{(\varphi_1, \widetilde{\varphi}_1)}, \ldots, f_n \in X^*_{(\varphi_n, \widetilde{\varphi}_n)}$ and $g_1 \in Y^*_{\widetilde{\varphi}_1}, \ldots, g_n \in Y^*_{\widetilde{\varphi}_n}$. We define, $\mathcal{F}_i = (f_i, 0)$

d $\mathcal{G}_i = (0, a)$, for $i = 1$, and the goasy to va and $G_i = (0, g_i)$, for $i = 1, ..., n$. It is easy to verify that $\mathcal{F}_i, \mathcal{G}_i \in (\mathcal{A} \rtimes \mathfrak{A})_{(\varphi_i, \widetilde{\varphi}_i)}$. By
employing (2.9) we have employing (2.9), we have

$$
\left| \sum_{i=1}^{n} \langle \sigma_{X}(\varphi_{i}, \widetilde{\varphi}_{i}), f_{i} \rangle \right| = \left| \sum_{i=1}^{n} \langle \sigma(\varphi_{i}, \widetilde{\varphi}_{i}), \mathcal{F}_{i} \rangle \right|
$$

$$
\leq \beta \left\| \sum_{i=1}^{n} \mathcal{F}_{i} \circ \pi_{(\varphi_{i}, \widetilde{\varphi}_{i})} \right\|_{(X \times Y)^{*}}
$$

$$
= \beta \left\| \sum_{i=1}^{n} (f_{i}, 0) \circ (\pi_{(\varphi_{i}, \widetilde{\varphi}_{i})}^{X}, \pi_{\widetilde{\varphi}}^{Y} \right\|_{(X \times Y)^{*}}
$$

$$
= \beta \left\| \sum_{i=1}^{n} f_{i} \circ \pi_{(\varphi_{i}, \widetilde{\varphi}_{i})}^{X} \right\|_{X^{*}}.
$$

Moreover, σ_X is continuous on *E*, because σ is continuous on $\Delta(\mathcal{A} \rtimes \mathfrak{A})$. This implies that $\sigma_X \in \Pi_{\text{BSE}}^c X_{\varphi}$. By a similar argumentation one can show that

$$
\left|\sum_{i=1}^n \langle \sigma_Y(\widetilde{\varphi}_i), g_i \rangle \right| \leq \beta \left\| \sum_{i=1}^n g_i \circ \pi_{\widetilde{\varphi}_i}^Y \right\|_{Y^*}.
$$

This means that $\sigma_Y \in \Pi_{\text{BSE}}^c Y_{\widetilde{\varphi}}$. Thus, $\sigma \in (\sigma_X, \sigma_Y) \in \Pi_{\text{BSE}}^c X_{\varphi} \times \Pi_{\text{BSE}}^c Y_{\widetilde{\varphi}}$. Therefore, $\Pi_{\text{BSE}}^{c}(X \times Y)_{(\varphi,\widetilde{\varphi})} \subseteq \Pi_{\text{BSE}}^{c} X_{\varphi} \times \Pi_{\text{BSE}}^{c} Y_{\widetilde{\varphi}}$. Hence, (v) holds.
By the above argument, the proof of (vi) is clear

By the above argument, the proof of (vi) is clear. \Box

Theorem 2.4. $X \times Y$ *is a BSE Banach* $A \rtimes \mathfrak{A}$ -module if and only if X is a BSE Banach A*,* A*-module and Y is a BSE Banach* A*-module.*

Proof. Let *X* \times *Y* is a BSE Banach *A* \times **2***module.* Let $\sigma_X \in \Pi_{BSE}^c X_{(\varphi,\widetilde{\varphi})}$ and define $\sigma : \Delta(A \rtimes \mathfrak{A}) \longrightarrow \Pi_{B \rtimes B}(A \rtimes \mathfrak{A})$ as follows: $\sigma : \Delta(\mathcal{A} \rtimes \mathfrak{A}) \longrightarrow \bigcup_{E \cup F} (\mathcal{A} \rtimes \mathfrak{A})_{\phi}$ as follows:

$$
\sigma(\phi) = \begin{cases}\n(\sigma_X(\varphi), 0), & \phi = (\varphi, \widetilde{\varphi}) \in E \\
0, & \phi = (0, \psi) \in F.\n\end{cases}
$$

Let $\phi_1, \ldots, \phi_n \in E \cup F$ and $\mathcal{F}_1 \in (X \times Y)_{\phi_1}, \ldots, \mathcal{F}_1 \in (X \times Y)_{\phi_n}$. Then there exist $f_i \in X_{\varphi_i}^*$ and $g_i \in Y_{\widetilde{\varphi}_i}$, whenever $\phi_i = (\varphi_i, \widetilde{\varphi}_i) \in E$ such that $\mathcal{F}_i = (f_i, g_i)$ and there exists $h_j \in Y^*_{\psi}$ such that $\mathcal{F}_j = (0, h_j)$, whenever $\phi_j = (0, \psi_j)$. Then

$$
\left| \sum_{i=1}^{n} \mathcal{F}_{i} \left(\sigma \left(\phi_{i} \right) \right) \right| = \left| \sum_{i=1, \phi_{i} \in E}^{n} \mathcal{F}_{i} \left(\sigma \left(\phi_{i} \right) \right) \right|
$$
\n
$$
= \left| \sum_{i=1, (\varphi_{i}, \widetilde{\varphi}_{i}) \in E}^{n} \mathcal{F}_{i} \left(\sigma \left(\varphi_{i}, \widetilde{\varphi}_{i} \right) \right) \right|
$$
\n
$$
= \left| \sum_{i=1, \varphi_{i} \in \Delta(\mathcal{A})}^{n} f_{i} \left(\sigma_{X} \left(\varphi_{i}, \widetilde{\varphi}_{i} \right) \right) \right|
$$
\n
$$
\leq \beta \left| \sum_{i=1, \varphi_{i} \in \Delta(\mathcal{A})}^{n} f_{i} \circ \pi_{(\varphi_{i}, \widetilde{\varphi}_{i})}^{X} \right|
$$
\n
$$
= \beta \left| \sum_{i=1, (\varphi_{i}, \widetilde{\varphi}_{i}) \in E}^{n} \mathcal{F}_{i} \circ \pi_{(\varphi_{i}, \widetilde{\varphi}_{i})} \right|
$$
\n
$$
(X \times Y)^{*}
$$

Thus, $\sigma \in \Pi_{\text{BSE}}(X \times Y)_{\phi}$, for all $\phi \in E \cup F$. From the continuity of σ_X on *E*, we obtain that σ is continuous on *E*. Moreover, for any $(0, \psi) \in F$, $\sigma(0, \psi) = 0$, so σ is continuous on *F*. Thus, σ is continuous on $E \cup F$ and consequently, it is in $\Pi_{BSE}^{c}(X \times Y)_{\phi}$, for all ϕ ∈ $E \cup F$.

According to *X* × *Y* is a BSE Banach $A \rtimes \mathfrak{A}$ -module, so there exists $T \in \mathcal{M}(A \rtimes \mathfrak{A}, X \times Y)$ such that $\sigma = \hat{T}$. Hence, $T(a, \alpha) = (a, \alpha)\hat{T}$, for all $(a, \alpha) \in \mathcal{A} \rtimes \mathfrak{A}$. By Lemma 2.2, $T_{\mathcal{A},X} \in \mathcal{M}(\mathcal{A},X) \cap \text{Hom}_{\mathfrak{A}}(\mathcal{A},X)$, there exist $T_{\mathfrak{A},X} \in \mathcal{M}(\mathfrak{A},X)$ and $T_{\mathfrak{A},Y} \in \mathcal{M}(\mathfrak{A},Y)$ such that

$$
T(a,\alpha) = \left(T_{\mathcal{A},X}(a) + T_{\mathfrak{A},X}(\alpha), T_{\mathfrak{A},Y}(\alpha)\right),\tag{2.10}
$$

.

for all $(a, \alpha) \in \mathcal{A} \rtimes \mathfrak{A}$. Then,

$$
(a,0) \cdot \sigma = (a,\alpha)\hat{T} = \hat{T}(a,\alpha)
$$

\n
$$
= (\hat{T}_{\mathcal{A},X} + \hat{T}_{\mathfrak{A},X}, \hat{T}_{\mathfrak{A},Y}) (a,\alpha)
$$

\n
$$
= (\hat{T}_{\mathcal{A},X}(a),0)
$$

\n
$$
= (\hat{a}\hat{T}_{\mathcal{A},X},0)
$$
 (2.11)

for all $a \in \mathcal{A}$. Moreover, for all $a \in \mathcal{A}$ and $\varphi \in \Delta(\mathcal{A}),$

$$
((a,0)\cdot\sigma)(\varphi,\tilde{\varphi}) = (\varphi,\tilde{\varphi})(a,0)\sigma(\varphi,\tilde{\varphi}) = \varphi(a)(\sigma_X(\varphi,\tilde{\varphi}),0)
$$

=
$$
(\varphi(a)\sigma_X(\varphi,\tilde{\varphi}),0) = (a\cdot\sigma_X)(\varphi,\tilde{\varphi}).
$$
 (2.12)

Then (2.11) and (2.12) imply that $a \cdot \sigma_X = aT_{\mathcal{A},X}$, for all $a \in \mathcal{A}$. Thus, $\sigma_X = T_{\mathcal{A},X} \in$

 $\widetilde{\mathcal{M}}(\mathcal{A},\overline{X})$. Hence, $\Pi_{\text{BSE}}^c X_{(\varphi,\widehat{\varphi})} \subseteq \widetilde{\mathcal{M}}(\mathcal{A},\overline{X})$ $\Pi_{\text{BSE}}^c X_{(\varphi,\widehat{\varphi})} \subseteq \widetilde{\mathcal{M}}(\mathcal{A},\overline{X})$ $\Pi_{\text{BSE}}^c X_{(\varphi,\widehat{\varphi})} \subseteq \widetilde{\mathcal{M}}(\mathcal{A},\overline{X})$.

Let $\sigma_X \in \Pi_{\text{BSE}}^c X_{(\varphi,\widehat{\varphi})}$ and $\sigma_Y \in \Pi_{\text{BSE}}^c Y_{\widehat{\varphi}}$ and define $\sigma : \Delta(\mathcal{A} \rtimes \mathfrak{A}) \longrightarrow \bigcup_{E \cup F} (\mathcal{A} \rtimes \mathfrak{A})_{\phi}$
 as follow[s:](#page-7-0)

$$
\sigma(\phi) = \begin{cases}\n(\sigma_X(\varphi, \widetilde{\varphi}), \sigma_Y(\varphi)) & \phi = (\varphi, \widetilde{\varphi}) \in E \\
0, & \phi = (0, \psi) \in F.\n\end{cases}
$$

Then by a similar argumentation, one can verify that $\sigma \in \Pi_{BSE}^{c}(X \times Y)_{(\varphi,\widehat{\varphi})}$. Thus, (*φ,φ*b) there exists $T \in \mathcal{M}(A \rtimes \mathcal{A}, X \times Y)$ satisfies (2.10) and $\sigma = T$. Then, $(0, \alpha) \cdot \sigma = (0, \alpha)T$, for all $\alpha \in \mathfrak{A}$. By similar argumentations (2.11) and (2.12), we conclude that $T_{\mathfrak{A},X} =$ $\sigma_X \in \mathcal{M}_{\mathfrak{A}}(\mathfrak{A}, X)$ and $\widehat{T}_{\mathfrak{A}, Y} = \sigma_Y \in \widehat{\mathcal{M}}(\mathfrak{A}, Y)$. This means that $\Pi_{\text{BSE}}^c X_{(\varphi, \widehat{\varphi})} \subseteq \widehat{\mathcal{M}}(\mathfrak{A}, X)$ and $\Pi_{\text{BSE}}^c Y_{\hat{\varphi}} \subseteq \mathcal{M}(\mathfrak{A}, Y)$. Similar argumentations hold for $(0, \psi) \in F$.
Let $T \in \mathcal{M}(X \times Y)$ Then by Lemma 2.3 T is as in (2.10) Sim

Let $T \in \mathcal{M}(X \times Y)$. Then by Lemma 2.3, *T* is as in (2.10). Since $X \times Y$ is BSE as Banach $A \rtimes \mathfrak{A}$ -module, there exists $\sigma \in \prod_{\text{BSE}}^c (X \times Y)_{(\varphi, \widetilde{\varphi})}$ such that $\sigma = \widehat{T}$. By employing Danach $A \rtimes 3$ -module, there exists $\theta \in \Pi_{\text{BSE}}(A \rtimes T)_{(\varphi,\varphi)}$ such that $\theta = T$. By employing
Lemma 2.3(v), $\sigma = (\sigma_X, \sigma_Y)$, where $\sigma_X \in \Pi_{\text{BSE}}^c X_{(\varphi,\varphi)}$, $\sigma_Y \in \Pi_{\text{BSE}}^c Y_{\widetilde{\varphi}}$ and $(\varphi, \widetilde{\varphi}) \in E$. Let $e_{\varphi} \in \mathcal{A}$ and $f_{\widetilde{\varphi}} \in \mathfrak{A}$ such that $\varphi(e_{\varphi}) = 1/2$ $\varphi(e_{\varphi}) = 1/2$ $\varphi(e_{\varphi}) = 1/2$ and $\widetilde{\varphi}(f_{\widetilde{\varphi}}) = 1/2$ $\widetilde{\varphi}(f_{\widetilde{\varphi}}) = 1/2$ $\widetilde{\varphi}(f_{\widetilde{\varphi}}) = 1/2$. Then $(\varphi, \widetilde{\varphi}) (e_{\varphi}, f_{\widetilde{\varphi}}) = 1$ and so

$$
(\sigma_X, \sigma_Y) (\varphi, \tilde{\varphi}) = \sigma(\varphi, \tilde{\varphi}) = \hat{T} (\varphi, \tilde{\varphi}) = T (\overline{e_{\varphi}, f_{\tilde{\varphi}}}) (\varphi, \tilde{\varphi})
$$

\n
$$
= (T_{\mathcal{A}, X} (e_{\varphi}) + T_{\mathfrak{A}, X} (f_{\tilde{\varphi}}), T_{\mathfrak{A}, Y} (f_{\tilde{\varphi}})) (\varphi, \tilde{\varphi})
$$

\n
$$
= (T_{\mathcal{A}, X} (e_{\varphi}) + T_{\mathfrak{A}, X} (f_{\tilde{\varphi}}), T_{\mathfrak{A}, Y} (f_{\tilde{\varphi}})) (\varphi, \tilde{\varphi})
$$

\n
$$
= T_{\mathcal{A}, X} (e_{\varphi}) (\varphi) + T_{\mathfrak{A}, X} (f_{\tilde{\varphi}}) (\tilde{\varphi}) + T_{\mathfrak{A}, Y} (f_{\tilde{\varphi}}) (\tilde{\varphi})
$$

\n
$$
= \frac{1}{2} (\hat{T}_{\mathcal{A}, X} (\varphi) + \hat{T}_{\mathfrak{A}, X} (\tilde{\varphi}) + \hat{T}_{\mathfrak{A}, Y} (\tilde{\varphi}))
$$

\n
$$
= \frac{1}{2} (\hat{T}_{\mathcal{A}, X} + \hat{T}_{\mathfrak{A}, X}, \hat{T}_{\mathfrak{A}, Y}) (\varphi, \tilde{\varphi}).
$$

Hence, $\frac{1}{2} \left(\hat{T}_{\mathcal{A},X} + \hat{T}_{\mathfrak{A},X} \right) = \sigma_X \in \prod_{\text{BSE}}^c X_{(\varphi,\widetilde{\varphi})}$ and $\hat{T}_{\mathfrak{A},Y} = \sigma_Y \in \prod_{\text{BSE}}^c Y_{\widetilde{\varphi}}$. These follow that $\widehat{\mathcal{M}}(\mathcal{A}, \widehat{X}) + \widehat{\mathcal{M}}(\mathfrak{A}, \widehat{X}) \subseteq \prod_{\beta \in \mathcal{B}}^c X_{(\varphi, \widetilde{\varphi})}$ and $\widehat{\mathcal{M}}(\mathfrak{A}, \widehat{Y}) \subseteq \prod_{\beta \in \mathcal{B}}^c Y_{\widetilde{\varphi}}$. Thus, *X* is a BSE *Ranach* 24-module. BSE Banach A , $\mathfrak A$ -module and Y is a BSE Banach $\mathfrak A$ -module.

Conversely, suppose that *X* is a BSE Banach A*,* A-module and *Y* is a BSE Banach $\mathfrak{A}\text{-module.}$ Let $\sigma \in \prod_{\text{BSE}}^{c}(X \times Y)_{(\varphi,\widetilde{\varphi})}$, where $\varphi \in \Delta(A)$. By Lemma 2.3(v), we have $\sigma =$ (σ_X, σ_Y) , where $\sigma_X \in \prod_{\text{BSE}}^{\text{c}} X \wedge T$ $(\varphi, \tilde{\varphi})$, where $\varphi \in \Delta(A)$. By Behina 2.5(v), we have $\sigma = (\sigma_X, \sigma_Y)$, where $\sigma_X \in \prod_{\text{BSE}}^{\text{c}} X_{(\varphi, \tilde{\varphi})}$, $\sigma_Y \in \prod_{\text{BSE}}^{\text{c}} Y_{\tilde{\varphi}}$. Then there exist $T_{A,X}$ $T_{\mathfrak{A},X} \in \mathcal{M}(\mathfrak{A},X)$ and $T_{\mathfrak{A},Y} \in \mathcal{M}(\mathfrak{A},Y)$ such that $\sigma_X = T_{\mathcal{A},X} + T_{\mathfrak{A},X}$ and $\sigma_Y = T_{\mathfrak{A},Y}$.

Now define $T: \mathcal{A} \rtimes \mathfrak{A} \longrightarrow X \times Y$ by $T(a, \alpha) = (T_{\mathcal{A}, X}(a) + T_{\mathfrak{A}, X}(\alpha), T_{\mathfrak{A}, Y}(\alpha)),$ $T(a, \alpha) = (T_{\mathcal{A}, X}(a) + T_{\mathfrak{A}, X}(\alpha), T_{\mathfrak{A}, Y}(\alpha)),$ $T(a, \alpha) = (T_{\mathcal{A}, X}(a) + T_{\mathfrak{A}, X}(\alpha), T_{\mathfrak{A}, Y}(\alpha)),$ for all $(a, \alpha) \in \mathcal{A} \times \mathfrak{A}$. Then by Lemma 2.2, $T \in M(\mathcal{A} \times \mathfrak{A}, X \times Y)$. This implies that $\sigma = \hat{T} \in \mathcal{M}(\mathcal{A} \times \mathcal{A}, \overline{X} \times Y)$. Hence, $\prod_{\text{BSE}}^c (A \oplus_1 X)_{\widetilde{\varphi}} \subseteq \mathcal{M}(\mathcal{A} \times \mathcal{A}, \overline{X} \times Y)$.

Now, let $\hat{T} \in \mathcal{M}(\mathcal{A} \times \widehat{\mathcal{A}}, X \times Y)$. Thus, $T = (T_{\mathcal{A},X} + T_{\mathfrak{A},X}, T_{\mathfrak{A},Y})$, where $T_{\mathcal{A},X} \in$ $\mathcal{M}(\mathcal{A}, X), T_{\mathfrak{A},X} \in \mathcal{M}(\mathfrak{A}, X)$ $\mathcal{M}(\mathcal{A}, X), T_{\mathfrak{A},X} \in \mathcal{M}(\mathfrak{A}, X)$ $\mathcal{M}(\mathcal{A}, X), T_{\mathfrak{A},X} \in \mathcal{M}(\mathfrak{A}, X)$ and $T_{\mathfrak{A},Y} \in \mathcal{M}(\mathfrak{A}, Y)$. Since X is a BSE Banach $\mathcal{A}, \mathfrak{A}$ -module and *X* is a BSE Banach $\mathfrak{A}\text{-module}$, there exist $\sigma_X \in \prod_{S\to S}^c X_{(\varphi,\widetilde{\varphi})}$ and $\sigma_Y \in \prod_{S\to S}^c Y_{\widetilde{\varphi}}$
guab that $\widehat{T} = \sigma$ and $\widehat{T} = \sigma$. Then by a similar argument, we have such that $T_{A,X} + T_{\mathfrak{A},X} = \sigma_A$ and $T_{U,Y} = \sigma_Y$. Then by a similar argument, we have $\widehat{T} = (\sigma_X, \sigma_Y) \in \prod_{\text{BSE}}^c (X \times Y)_{(\varphi, \widetilde{\varphi})}$. Thus $\mathcal{M}(\mathcal{A} \rtimes \mathfrak{A}, \widetilde{X} \times Y) \subseteq \prod_{\text{BSE}}^c (X \times Y)_{(\varphi, \widetilde{\varphi})}$. Hence, $X \times Y$ is a BSE Banach $\mathcal{A} \rtimes \mathfrak{A}$ -module. $X \times Y$ is a BSE Banach $A \rtimes \mathfrak{A}$ -module. □

Corollary 2.5. Let $\mathfrak A$ be a without order Banach algebra. Then $A \times \mathfrak A$ is a BSE Banach $A \rtimes \mathfrak{A}$ -module if and only if A is a BSE A, \mathfrak{A} -module and \mathfrak{A} is a BSE \mathfrak{A} -module.

Proof. Clearly, if $\mathfrak A$ is a without order Banach algebra. Thus, by Theorem 2.4, the proof holds. \Box

Corollary 2.6. *Let G be an abelian compact group and* $1 \leq p < \infty$ *. Then* $L^p(G) \times C(G)$ *is a BSE Banach* $L^1(G) \rtimes L^1(G)$ -module.

Proof. Since $L^1(G)$ is a BSE Banach algebra [23] and every BSE Banach algebra is a BSE Banach module over itself [24], $L^p(G)$ and $C(G)$ are BSE Banach $L^1(G)$ -modules [24, Theorem 3.3]. Then by Theorem 2.4 the proof holds. \Box Acknowledgment. The authors would like to thank the referee for the careful reading of the paper and for his/her useful comments.

References

- [1] F. Abtahi, Z. Kamali and M. Toutounchi, *The Bochner-Schoenberg-Eberlein property for vector-valued Lipschitz algebras*, J. Math. Anal. Appl. **479** (1), 1172-1181, 2019.
- [2] N. Alizadeh, S. Ostadbashi, A. Ebadian and A. Jabbari, *The BochnerSchoenbergEberlain property of extensions of Banach algebras and Banach modules*, Bull. Aust. Math. Soc. **105** (1), 134-145, 2022.
- [3] P.A. Dabhi, *Multipliers of perturued Cartesian product with an application to BSEproperty*, Acta Math. Hungar. **149** (1), 58-66, 2016.
- [4] P.A. Dabhi and R.S. Upadhyay, *The Semigroup Algebra* $\ell^1(\mathbb{Z}^2, \text{max})$ *is a Bochner-SchoenbergEberlein (BSE) Algebra*, Mediterr. J. Math. **16** (1), 12, 2019.
- [5] M. D'Anna and M. Fontana, *An amalgamated duplication of a ring along an ideal: The basic properties*, J. Algebra Appl. **6**, 443-459, 2007.
- [6] M. Daws, *Multipliers, self-induced and dual Banach algebras*, Dissert. Math. **470**, 1-62, 2010.
- [7] A. Ebadian and A. Jabbari, *Biprojectivity and biflatness of amalgamated duplication of Banach algebras*, J. Algebra Appl. **19** (7), 2050132, 2020.
- [8] A. Ebadian and A. Jabbari, *C ∗ -algebras defined by amalgamated duplication of C ∗ algebras*, J. Algebra Appl. **20** (2), 2150019, 2021.
- [9] A. Ebadian and A. Jabbari, *The BochnerSchoenbergEberlein property for amalgamated duplication of Banach algebras*, J. Algebra Appl. **21** (8), 2250155, 2022.
- [10] M. Essmaili, A. Rejali and A. Salehi Marzijarani, *Biprojectivity of generalized module extension and second dual of Banach algebras*, J. Algebra Appl. **21** (4), 2250070, 2022.
- [11] M. Fozouni and M. Nemati, *BSE-property for some certain Segal and Banach algebras*, Mediterr. J. Math. **16** (2), 38, 2019.
- [12] J. Inoue and S.E. Takahasi, *Segal algebras in commutative Banach algebras*, Rocky Mountain J. Math. **44**, 539-589, 2014.
- [13] H. Javanshiri and M. Nemati, *Amalgamated duplication of the Banach algebra* A *along a* A*-bimodule* A, J. Algebra Appl. **17** (9), 1850169-1-1850169-21, 2018.
- [14] Z. Kamali and F. Abtahi, *The BochnerSchoenbergEberlein property for vector-valued ℓ p -spaces*, Mediterr. J. Math. **17** (3), 94, 2020.
- [15] Z. Kamali and M. Lashkarizadeh Bami, *Bochner-Schoenberg-Eberlein property for abstract Segal algebras*, Proc. Jpn. Acad. (Ser A) **89**, 107-110, 2013.
- [16] Z. Kamali and M. Lashkarizadeh Bami, *The multiplier algebra and BSE property of the direct sum of Banach algebras*, Bull. Aust. Math. Soc. **88**, 250-258, 2013.
- [17] Z. Kamali and M. Lashkarizadeh, *The BochnerSchoenbergEberlein property for L* 1 (R ⁺), J. Fourier Anal. Appl. **20** (2), 225-233, 2014.
- [18] Z. Kamali and M. Lashkarizadeh, *A characterization of the L∞-representation algebra R*(*S*) *of a foundation semigroup and its application to BSE algebras*, Proc. Jpn. Acad. Ser. A Math. Sci. **92** (5), 59-63, 2016.
- [19] Z. Kamali and M. Lashkarizadeh, *The BochnerSchoenbergEberlein property for totally ordered semigroup algebras*, J. Fourier Anal. Appl. **22** (6), 1225-1234, 2016.
- [20] E. Kaniuth, *The Bochner-Schoenberg-Eberlein property and spectral synthesis for certain Banach algebra products*, Canad. J. Math. **67**, 827-847, 2015.
- [21] E. Kaniuth and A. Ülger, *The BochnerSchoenbergEberlein property for commutative Banach algebras, especially Fourier and FourierStieltjes algebras*, Trans. Amer. Math. Soc. **362**, 4331-4356, 2010.
- [22] R. Larsen, *An Introduction to the Theorey of Multipliers*, Springer, New York, 1971.
- [23] W. Rudin, *Fourier Analysis on Groups*, Interscience, New York, 1962.
- [24] S.-E. Takahasi, *BSE Banach modules and multipliers*, J. Funct. Anal. **125**, 67-68, 1994.
- [25] S.-E. Takahasi and O. Hatori, *Commutative Banach algebras which satisfy a BochnerSchoenbergEberlein-type theorem*, Proc. Amer. Math. Soc. **110**, 149158, 1990.
- [26] S.-E. Takahasi and O. Hatori, *Commutative Banach algebras and BSE-inequalities*, Math. Japonica **37**, 47-52, 1992.