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Abstract

The Bochner-Schoenberg-Eberlein module property on commutative Banach algebras is
a property related to extensions of multipliers on Banach algebras to module morphisms
from Banach algebras into Banach modules. In this paper, we answer the problem (1)
raised in [J. Algebra Appl., 21(8) (2022), 2250155, DOI: 10.1142/S0219498822501559]. We
show that the Banach A x2-module X xY (X is a Banach A, 2l-module and Y is a Banach
2A-module) has a BSE-module property if and only if X is a BSE Banach A, 2-module and
Y is a BSE Banach 2-module.
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1. Introduction

Let A be a Banach algebra and X be a Banach A-bimodule. An A-module morphism of
A into X is called a multiplier of X and we denote it by M(A, X). If T" € M(A, X)), then

there exists a unique vector field T on A(A) such that T(a) = aT', for all @ € A. The notion
of multipliers from Banach algebras into Banach modules is thoroughly investigated by
Daws in [6]. A mapping T': A — A is a left (resp., right) multiplier of A if T'(ab) = aT'()
(T'(ab) = T'(a)b), for all a,b € A. We denote the set of all left (resp., right) multipliers
on A by M;(A) (resp., M,). Moreover, T is called a multiplier of A if it is both left and
right multiplier and the set of all multipliers of A is denoted by M(A), see [22], for more
details related to multipliers on various versions of Banach algebras. A Banach algebra A
is said to be without order if xA = {0} or Az = {0}, then x = 0. A bounded continuous
function o on A(A) is called a BSE-function if there exists a constant C' > 0 such that for
every finite number of ¢1,..., ¢, € A(A) and complex numbers cy, ..., ¢,, the inequality
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holds, where A is the first dual of A. The BSE-norm of o i. e., ||-||psE is defined to be the
infimum of all such C. The set of all BSE-functions is denoted by Cpsg(A(A)). A Banach
algebra A is called BSE-algebra if the BSE-functions on A(A) are precisely the Gel’fand

o —

transforms of the elements of M(A), i.e., M(A) = Cpse(A(A)). This notion is introduced
by Takahasi and Hatori in [25] and it is characterized by Kaniuth and Ulger in [21]. There
are many literatures that they have contained interesting results of BSE-algebras, see
[1-4,11,12,14-20, 26], for more details.

Takahasi in [24] generalized the BSE-property to Banach modules. Let A be a com-
mutative Banach algebra with a bounded approximate identity and X be a symmetric
Banach A-bimodule, ie., a-xz =z -a, for all a € A and x € X. Let ¢ € A(A). Denote
ker p by M, = {a € A: ¢(a) = 0}. There exists e, € A such that p(e,) = 1. Now, define

X? =5p{MpX + (1 - ep) X},
where Sp is the closed linear span. Note that X¥ is independent of choice of e,. Then
X% becomes a Banach A-submodule of X. Now define X, = X/X¥ and 2(¢) = = + X%,
for all z € X. Hence, X, becomes a Banach A-bimodule. Let [] X, be the class of all

functions o defined on A(A) such that o(¢) € X,. An element of [ X, is called a vector
field on A(A). The space [] X, is an A-module by the following action

(a-0)(9) = pla)oly), (aeApeAA),oe[[X,).
Set
b
H X, = {U c HX¢ Nlolleo = sup |lo(v)]] < oo} )
PEA(A)
For each ¢ € A(A), define m,(x) = Z(p), for all z € X. A vector field o € [[ X, is

called BSE if there exists 8 € RT such that for any finite number of ¢1,...,p, € A(A)
and the same number fi € (X,,)", ..., fn € (X,,)", we have

n n
D Aa(wi), fi) > fiomy,
i=1
where (X,,)" denotes the dual space of the Banach space X,,,. Moreover, set

=1
I1 .o Xo={o €[ Xs:0is BSE}.

A vector field o € [] X, is called continuous if it is continuous at every ¢ € A(A). The
class of all continuous vector fields in [][ X, is denoted by [] CXSO and set [[ggp Xp =
[Ipse X, NII¢ X, Let X = {# : 2 € X} and M(A, X) = {T : T € M(A,X)}. A
Banach A-module X is called BSE if M(A,X) = [[ggg Xy, for all ¢ € A(A). In [24],
some examples of Banach algebras that have BSE module property such group algebras
on locally compact groups are given and in [2] authors characterized module property of
module extensions of Banach algebras.

Let A and 2 be two Banach algebras such that A is a Banach 2-bimodule with the left
and right compatible actions of 2 on A, i.e., for all a,b € A and «a € ,

a-(ab) = (a-a)b, (ab)-a=a(b-a) and a(a-b)=(a-a)b.

Also, A is called a commutative Banach 2-bimodule if a - a« = « - a, for all a € A and
«a € 2. The amalgamated duplication of A along 2, denoted by A x 2l is defined as the
Cartesian product A x 2 with the algebra product

(a,a)(b,f) = (ab+a-b+a- B, ap),

and with the norm ||(a, )| = |lal| g + ||a/lg(, for all a,b € A and a, 3 € . The Banach
algebra A x 2 is introduced by Javanshiri and Nemati in [13] in light of D’Anna and
Fontana work related to amalgamated duplication of a ring along an ideal [5]. Some
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results related to these algebras are given in [7,8,10]. In this paper we need the following
results on A x 2:

Lemma 1.1. [13, Lemma 3.1] If ¢ € A(A), then there exists a unique linear functional
@ in A(2A) U {0} such that

pla-B) =9 a)=pl)p(B) (acABe).
In particular, if either (A -2y = A or (A-A) = A, then ¢ # 0.
Proposition 1.2. [13, Proposition 3.3] Let

E={(p,9):p e AA)} and F:={(0,¢):¢ e AR)}.
Set E =0 (respectively, F = () if A(A) =0 (respectively, A(2A) = (). Then E and F
are disjoint and A(A x2A) = EUF.

According to [13, Remark 3.1], A x 2 is a commutative Banach algebra if and only if
A, 2 are commutative Banach algebras and A is a symmetric Banach 2-bimodule. In [9],
authors investigated BSE property of A x 2 in a special case that A possess a nonzero
idempotent that does not lie in the kernel of any character of A. Authors in [9] asked the
following problems:

(1) Let X and Y be Banach A and A-modules, respectively. Under which conditions
X x Y is BSE Banach A x 2-module?
(2) Under which conditions A x 2 is BSE Banach A x 2-module?

We answer the problem (1) in the next section and problem (2) remains open because
it is complicated and at this time we could not answer it.

2. BSE-module property of Banach A x 2-modules

In this section, we investigate the BSE-module property of A x 2-modules. Through-
out this section, A and 2 are commutative Banach algebras with bounded approximate
identities such that A is a symmetric 2-bimodule and (A -A) = A, by FE and F, we mean
the sets are obtained in Proposition 1.2 and X and Y are Banach A-2l and 2-modules,
respectively. We consider X x Y as a Banach A x 2-module by the following module
action:

(a.0) - (2,y) = (a-z+a-z,a-y),

for all (a,a) € A x A and (z,y) € X x Y. Moreover, we consider X as a Banach A x -
module by the module action (a,)-x =a-x+a-x, for all (a,a) € AxA and x € X. The
existence of a bounded approximate identity for A x 2 is investigated in [8, Proposition
2.2 (ii)] and it was shown that (aw,8%)w is a bounded approximate identity of A x A
if and only if |aw| g4 — 0, (Bw)w is a bounded approximate identity of A in 21 i. e.,
a- Bs — a, for every a € A, in norm of A. So, in the rest of this section we have assume
that A x 2 has a bounded approximate identity. The proof of the following result is clear
and so we have omitted it.

Lemma 2.1. For any ¢ € E and ¢ € F', My y) = My and

M, 5 = (My x {0} U ({0} x Mz) U (M, x M) U{(a,a) : ¢(a) = —@(a)}.

By Homg (A, X'), we mean the space of all continuous linear maps such as T': A — X
such that T'(a-a) = a- T'(a), for all « € A and a € A.

Lemma 2.2. T € M(A x 20, X x Y) if and only if there exist Ty , € M(A,X) N
Homgy (A, X), Ty v € M(A, X) and Ty, € M(2,Y) such that

T((a,0)) = (T x (@) + Ty x (), Ty (@) (2.1)
for all (a,a) € A x 2.
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Proof. Consider the mappings 24 : A — A x 2 by 2 4(a) = (a,0), 19 : A — A x A by
() = (0,a), px : X XY — X by px(z,y) =rand py : X xY — Y by py(z,y) =¥,
foralla € A, a €2, z € X and y € Y. Clearly, the above defined maps are linear. Now,
we define Ty = pxoToiy, Ty, = pyoTouy, TQL,X = pxoTorx and TQ(,Y = pyoTouy.
It is easy to check that these ma{ppings are linear. Then

T((a,a)) = (TAX(@) + Ty y (), Ty y(a) + Tgl’y(a)) , (2.2)
for all (a,a0) e A2 If T € M(A x A, X xY), then
T((a, ) (b, 8)) = (T)g y(ab+a-B+a-b)+Ty x(af), Ty y(ab+a-Bta-b)+Ty (b)) (2.3)
and

(a,a) -T((b,B)) =(a-Tax(b)+a-Tyx(B)+a- -Thx(®d)+a- Tyx(B),a- Tsyd)
+a-Tyy(B)), (24)

for all (a, ), (b, 5) € A x 2. Letting a = b =0 in (2.3) and (2.4) implies that
TQLX(O[['}) =a- TQ[,X(B) and Tmyy(aﬁ) =a- TQ[,Y(m'

Thus, Ty € M(2(, X), because 2 has a bounded approximate identity and Ty €
M(2(,Y). Similarly, letting « = =0 in (2.3) and (2.4) implies that

Ty x(ab) =a-Ty (b).
Therefore, T.A,X € M(A, X). Letting b = 0 and o = 0 imply that
T.A,Y(a -8) =0.
Moreover, letting a = 0 and 8 = 0, imply that
Ty x(a-b)=a-Ty () and Ty (a-b)=a Ty, ()

Then the above equalities together with 2 has a bounded approximate identity and
continuity of 7'q ,  imply that Ty, = 0 and T4 , € Homg (A, X). The proof of the
converse is clear. g

Lemma 2.3. Let X be a Banach A-module and Y be a Banach A-module. Then

(i) (X x Y)( PP — = X(9) % Y“" for every (p,p) € E.
(i) (X x Y)( ¥) — =YY, for every (0,9) € F.
(iii) (X x Y)( 5 = X(pp) X Yz, for every (p,9) € E.
(iv) (X X Y) 0,4y = Yy, for every (0,4) € F.

(vi) Hjgp(X x Y)((W,) = I{gpYy, for every , for every (0,v) € F.

Proof. Let e, € A and f; € 2 such that ¢(ey) =1 and ¢(f5) =1.

(i) Let (z,y) € (X x Y)(‘P’;). Then, for any £ > 0, there exist (a1, 1), .., (an, o) €

M,z and (z1,41), -, (Zn, Yn), (11, 51), - -5 (", 5m) € X X Y, such that

(7,y) — Z(%ai) (i, yi) — ( ew, ) i (15,55)
; i
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Then (2.5) implies that

(x—Z(ai-zi—kai-xi) 6@, eray Zaz Yi — 1_f$)ZSJ>H

i=1 Jj=1

n

m n m
=z = (an i) -xi = (L= (ep, ) D il + [y = D_ci-yi — (1= f3) Z
i=1 j=1 i=1 j=1
<e.
Thus,
n
T — Z(ai, a;) -z — (1= (ep, f ZT] <e
i=1
and

_Zai‘yi_ (1—f5)zsg
=1 j=1

Then by the above inequalities we have z € X (%) and y € Y. Hence, (X x Y)? C
X(@9) x Y®. Now, let (z,y) € X(©%) x Y% Then for every £ > 0, there exist (a1,01),...,

(an,om) € M, 5y, By, B € A, 21, 1, € Xand g, o Y 81, 5 €Y
such that
n t c m k c
x_Z(aiaai)'xZ 1_61,07 Z ia y_ZBi'yi_ 1_f~2 5
i=1 j=1 i=1 j=1
(2.6)
If m > n, then we assume that a1 = --- = a;, = 0 and similarly we do it for ¢ and

k: Set n1 = max{n,m} and t; = max{t,k}. For any (p,9) € E, M, 5 (X x {0}) +
5 ({0} xY) € M, 5 (X xY). Then by this fact and by (2.6), we have

3

1 t1

(2,9) = Y (@i o) - (23,0) + (a5, B) - (0,0)) = (1= (e £)) (s 85)

i=1 j=1
=|(z,y) (i: a; - T + o - :v,)—( (€p, f )ZTJ,Z@ Yi — 1—f~)i:sj) H
i=1 i= j=1
= ||(x,y) — (Z(Gz,%) T — ( (ep, f ) er, ZBZ yi — (1 — f~) ZS])
i=1 i= j=1

_l’_

= x—Z(ai,ai)-xi—( egoa )ZTJ

k
Y- Z/B’L Yi — 1_f~)zsj|

Thus, (z,y) € (X x Y)(®#). Hence, (i) holds.
(ii) By Lemma 2.1 and similar argument in (i), we conclude that (ii) holds.

(iii) Define A : X xY — X5 x Y5 by A(z,y) = (x—i—X(‘f’“’),y—i—Yg), for all
(z,y) € X x Y. Clearly, A is a continuous homomorphism between Banach spaces and,
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by applying (i),

kerA:{(x,y)EXxY:A(x,y):() ~:X(‘P’$)XY$}

X(2:0) xY®
=X x VP = (X x V)9

Then

XxY
(v.%) (X x Y)(WZ) = Xipp) X Yo

12

(X xY)

Hence, (iii) holds. Similarly, one can show that (iv) holds.

(v) Define 77(); 5)(:1:) = i‘(gp ¢) and Tr;»;(y) = 9(p), for all z € X and y € Y. More-
over, define 7, > (z,y) = ( )( x), ™ ( )), for all (z,y) € X x Y. Suppose that ox €

Igse X, 5 ov € HispY5 and (p1,9 ) .. (¢n,Pn) € E. Then, there exist 1,82 € RT
such that for all f; € ( (%7%)) seeosfn € (X(%’%Q and g1 € (Y%) yeeesGn €

()"

> lox (i @i)s fi)| < B Zfz %(pl (2.7)
i=1 P
and
Z<UY(@),9¢> < B2 Zgioﬂé (2.8)
=1 =1 Y *

Set f = 2max{f1, S2}. We consider (X X Y~ ) =X -~ X Y~ with the maximum

( 7.S01)
norm, i.e., |[(f,9) } for all (f,g) € X* ~ . X Y~. Let F €

( 79075)

~

(XXY);, )i Fn € (Xxy)al;a S Then, there exist f1 € Xt - ,...,fneX*w 5
and g1 € Y ,..., 9, € Y, such that F; = (fi,9:), for i =1,...,n. Now (2.7) and (2.8)
imply that

> Alox,ov) (¢i, @i) (Fi))

=1

((ox (i, @i) oy (@:)) (fi, 9i))

) ‘

Il

@
I
—

n
(ox (0, i), fi) + > _{ov

I

i=1 i=1
<> {ox (i, @), fi)| + D _(oy
i=1 i=1
<p Zfloﬂ-cp@) + 'O7T§i
X Y+
Sﬁmax{ ‘ -owéi,@) -wr%i }
— v+
=p (2:]207r Zgzoﬂ~>
(X xY)*
- s X oY
_/8 Z (fl)gl) o (W(S@iﬁDi)’ﬂ-S@i)
i=1 (X xY)*
=B | 2T o)
=1 (X xY)*
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Since, ox is continuous on E and oy is continuous on {¢ € A(RA) : ¢ € A(A)},
(0x,0y) is continuous on E. Thus (ox,0y) € Hjgr(X x Y) This implies that
HICSSEX(%@) x HigpYs; € Hgp(X x Y, 5.

Now, let o € Ijgp(X x V), 5, for any (¢,¢) € E. Then there exists 3 € RT such

= = * *
that for any (¢1,01), ..., (on, Pn) € E and F; € (X X Y)(¢1,<p~1)’ oy Fn € (X x Y)(%@:),

;fﬂ © M(s.50)

(p,p)"

n

Z(U(Qpia /@)7 Stl>

=1

<5 (2.9)

(XxY)*

Moreover, since o(p, ) € (X xY),, 5, by employing (iii), there exist ox € X( ?) and

PP
oy € Y7 such that o(p,9) = (ox (p,9),0v($)). We now show that ox € HICBSEX(WZ)
and oy € lggpYs.

* * Jp— .
Let f1 € X(%@), ooy fn € X(%h%) and g1 € Y~ ce s On € Y%' We define, F; = (f;,0)

and §; = (0,¢;), for i = 1,...,n. It is easy to Verlfy that 5,,G; € (A x Ql)(%_ Zn- By
employing (2.9), we have

n

> (ox(pi, @), fi)

=1

n

= > {o(ei, i), Fs)

=1

n
<p Z Fi0 (4050

(X xY)*

=p Z(fza ) ( %,%)7 Y

=1

(XxY)*

:ﬁ Z fl (‘sz‘Pz

X*

Moreover, ox is continuous on E, because o is continuous on A(A x 2(). This implies
that ox € lIgpX,. By a similar argumentation one can show that

n

Z<UY @z

=1

O7T~

Y*

This means that oy 6 MR Y5 Thus oc (Jx,oy) € Hjgp Xy x Y. Therefore,
By the above argument the proof of (v1) is clear. O

Theorem 2.4. X XY is a BSE Banach A x A-module if and only if X is a BSE Banach
A, A-module and Y is a BSE Banach 2A-module.

Proof. Let X x Y is a BSE Banach A x 2A-module. Let ox € HCBSEX(%;) and define
0 : AA X A) — Ugur(A x A)y as follows:

(p,p) € E
(w)eF

Let ¢1,...,6p € EUF and F1 € (X xY)g,,...,F1 € (X xY)y,. Then there exist
fi€ X3, and g; € Y7, whenever ¢; = (pi, @i) € E such that F; = (fi,9;) and there exists

o'(qS) :{ (UX(‘P)70)7 z
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hj € Y}, such that F; = (0, h;), whenever ¢; = (0,v;). Then

> Fi(o (¢i))| =/ Y Filo (¢i))‘
=1 i=1,p,€E

= >, Fi(o (%@-))‘
i=1,(¢i,pi)EE

n

= > filox (%‘,@))‘

i=1,p;EA(A)
ComX
S/B Z f’L ° ﬂ-(@iﬁpi)
i=1,p,€A(A) -
=B X TFiemeg
1=1,(pi,pi)EE (XxY)*

Thus, o € Ipsgp(X xY)4, for all ¢ € EUF. From the continuity of ox on E, we obtain
that o is continuous on E. Moreover, for any (0,v) € F, 0(0,v) = 0, so o is continuous
on F. Thus, o is continuous on F U F' and consequently, it is in II§qp(X % Y)4, for all
peEUF.

According to X xY is a BSE Banach A x2-module, so there exists ' € M(AxA, X xY')
such that o = T. Hence, T(a,a) = (a,a)T, for all (a,a) € A x 2A. By Lemma 2.2,
Ty x € M(A, X) N Homgy (A, X), there exist Ty € M(, X) and Ty, € M(A,Y) such
that

T(a,0) = (T x(a) + Ty x(0), Ty (@) , (2.10)

for all (a,a) € A x 2. Then,

(a,0) -0 =(a,a)T = T(a,a)

(T 1.0) (211)
for all a € A. Moreover, for all a € A and ¢ € A(A),

((CL, O) : O')((p, 95) :(907 @)(a’ 0)0(907 95) = QO(CL) (O-X(Sov @, O)
=(p(a)ox(p,#),0) = (a-ox)(p, 9). (2.12)

Then (2.11) and (2.12) imply that a - ox = afAX, for all @ € A. Thus, ox = fAX €

M(A, X). Hence, I X, 5 € M(A, X).
Let ox € HjspX(, 5 and oy € IljgpY5 and define o @ A(A x A) — Upyp(A x Ay
as follows:
O_(¢) — { (UX(¢7¢)7UY(90)) ¢ i ((107 95) S
0, 6= (0,0) € F.
Then by a similar argumentation, one can verify that o € Hjgp(X x Y)( 5. Lhus,
there exists T' € M(A x A, X x Y) satisfies (2.10) and o = T. Then, (0,«a) -0 = (O,a)f,
for all @ € 2. By similar argumentations (2.11) and (2.12), we conclude that TQ[,X =
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ox € MQFQTX) and IA“Q[’Y =0y € Mm) This means that Ilggp X, 5 € Mm)

and IfgpY5 C Mm) Similar argumentations hold for (0,v) € F'.

Let T € JV[(X x Y). Then by Lemma 2.3, T is as in (2.10). Since X x Y is BSE as
Banach A x 2-module, there exists o € [[pgp(X X Y)( ?) such that o = 7. By employing
Lemma 2.3(v), 0 = (0x,0y), where ox € [[3sp X(wp)’ oy € [Igse Y5 and (¢,9) € E.
Let e, € A and f € %A such that ¢ (ep) =1/2 and cﬁ(f;;) = 1/2. Then (¢, 9) (e¢,f ) =1
and so

(0x,0v) (2, @) = o2, @) = T, & —T(e@,f;)

(T.AX (ep) + T x( f<p Ty y (ﬁ,a))

_ (:rﬁj(@,) + Ty (F3): Ty (ﬁ)) (¢,9)

—
—

Ty (e () + T@~)(¢) + Ty (f;) ()
= 5 (f.A,X + fﬁ,X’fm,Y> ((10? 95)

Hence, %<fA,X+fQLX> = ox € [Ipsg X(, ;) and fQ[,Y = oy € [lgseY; These

follow that M(A, X) + M, X) C [Thee X, 5 and M(,Y) C [IhspYs. Thus, X is a
BSE Banach A, 2-module and Y is a BSE Banach 2[-module.

Conversely, suppose that X is a BSE Banach A,2-module and Y is a BSE Banach
A-module. Let o € [[psp(X x Y), 5, where ¢ € A(A) By Lemma 2.3(v), we have o =

(0x,0v), where ox € [Igsg X(, 5 ov € IIgse Y- Then there exist Ty € M(A, X),
Ty x € M(2, X) and Ty, € M(2,Y) such that ox = T.AX +TQ{X and oy = TQ[Y

Now define T : A x 2 — X x Y by T(a,a) = (TAX( 0) + Ty x (@), Ty y-(a)), for
all (a,a) € A x . Then by Lemma 2.2, T € M(A x 24, X x Y) This implies that
o=TeMAXAX x Y). Hence, [Igsp(4 @1 X)5 C M(A x (A X x Y).

Now, let T € M(A %20, X x Y). Thus, T = (Ty x + Ty x+Tyy), where Tg €
M(A, X), Ty y € M(RA, X) and Ty, € M(R,Y). Since X is a BSE Banach A, 2-module
and X is a BSE Banach 2-module, there exist ox € [[psp X(, ;) and oy € [[psp Y5

=N

such that TA x T le yx = 04 and T vy = oy. Then by a similar argument, we have

T = (ox.0v) € [Tgn(X x Y), 5 Thus M(A % 2, X x V) C [[gp(X x Y),, 5. Hence,
X x Y is a BSE Banach A x A-module. O

Corollary 2.5. Let 2 be a without order Banach algebra. Then A x 2 is a BSE Banach
A X A-module if and only if A is a BSE A,A-module and 2 is a BSE A-module.

Proof. Clearly, if 2 is a without order Banach algebra. Thus, by Theorem 2.4, the proof
holds. g

Corollary 2.6. Let G be an abelian compact group and 1 < p < co. Then LP(G) x C(G)
is a BSE Banach L'(G) x L'(G)-module.

Proof. Since L'(G) is a BSE Banach algebra [23] and every BSE Banach algebra is a
BSE Banach module over itself [24], LP(G) and C(G) are BSE Banach L!(G)-modules
[24, Theorem 3.3]. Then by Theorem 2.4 the proof holds. O
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