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Abstract
The Bochner-Schoenberg-Eberlein module property on commutative Banach algebras is
a property related to extensions of multipliers on Banach algebras to module morphisms
from Banach algebras into Banach modules. In this paper, we answer the problem (1)
raised in [J. Algebra Appl., 21(8) (2022), 2250155, DOI: 10.1142/S0219498822501559]. We
show that the Banach AoA-module X×Y (X is a Banach A,A-module and Y is a Banach
A-module) has a BSE-module property if and only if X is a BSE Banach A,A-module and
Y is a BSE Banach A-module.
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1. Introduction
Let A be a Banach algebra and X be a Banach A-bimodule. An A-module morphism of

A into X is called a multiplier of X and we denote it by M(A, X). If T ∈ M(A, X), then
there exists a unique vector field T̂ on ∆(A) such that T̂ (a) = aT̂ , for all a ∈ A. The notion
of multipliers from Banach algebras into Banach modules is thoroughly investigated by
Daws in [6]. A mapping T : A −→ A is a left (resp., right) multiplier of A if T (ab) = aT (b)
(T (ab) = T (a)b), for all a, b ∈ A. We denote the set of all left (resp., right) multipliers
on A by Ml(A) (resp., Mr). Moreover, T is called a multiplier of A if it is both left and
right multiplier and the set of all multipliers of A is denoted by M(A), see [22], for more
details related to multipliers on various versions of Banach algebras. A Banach algebra A

is said to be without order if xA = {0} or Ax = {0}, then x = 0. A bounded continuous
function σ on ∆(A) is called a BSE-function if there exists a constant C > 0 such that for
every finite number of φ1, . . . , φn ∈ ∆(A) and complex numbers c1, . . . , cn, the inequality∣∣∣∣∣

n∑
i=1

ciσ(φi)
∣∣∣∣∣ ≤ C

∥∥∥∥∥
n∑
i=1

ciφi

∥∥∥∥∥
A
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holds, where A∗ is the first dual of A. The BSE-norm of σ i. e., ∥·∥BSE is defined to be the
infimum of all such C. The set of all BSE-functions is denoted by CBSE(∆(A)). A Banach
algebra A is called BSE-algebra if the BSE-functions on ∆(A) are precisely the Gel’fand
transforms of the elements of M(A), i.e., M̂(A) = CBSE(∆(A)). This notion is introduced
by Takahasi and Hatori in [25] and it is characterized by Kaniuth and Ülger in [21]. There
are many literatures that they have contained interesting results of BSE-algebras, see
[1–4,11,12,14–20,26], for more details.

Takahasi in [24] generalized the BSE-property to Banach modules. Let A be a com-
mutative Banach algebra with a bounded approximate identity and X be a symmetric
Banach A-bimodule, i.e., a · x = x · a, for all a ∈ A and x ∈ X. Let φ ∈ ∆(A). Denote
kerφ by Mφ = {a ∈ A : φ(a) = 0}. There exists eφ ∈ A such that φ(eφ) = 1. Now, define

Xφ = sp{MφX + (1 − eφ)X},
where sp is the closed linear span. Note that Xφ is independent of choice of eφ. Then
Xφ becomes a Banach A-submodule of X. Now define Xφ = X/Xφ and x̂(φ) = x+Xφ,
for all x ∈ X. Hence, Xφ becomes a Banach A-bimodule. Let

∏
Xφ be the class of all

functions σ defined on ∆(A) such that σ(φ) ∈ Xφ. An element of
∏
Xφ is called a vector

field on ∆(A). The space
∏
Xφ is an A-module by the following action

(a · σ)(φ) = φ(a)σ(φ), (a ∈ A,φ ∈ ∆(A), σ ∈
∏

Xφ).

Set ∏ b
Xφ =

{
σ ∈

∏
Xφ : ∥σ∥∞ = sup

φ∈∆(A)
∥σ(φ)∥ < ∞

}
.

For each φ ∈ ∆(A), define πφ(x) = x̂(φ), for all x ∈ X. A vector field σ ∈
∏
Xφ is

called BSE if there exists β ∈ R+ such that for any finite number of φ1, . . . , φn ∈ ∆(A)
and the same number f1 ∈ (Xφ1)∗ , . . . , fn ∈ (Xφn)∗, we have∣∣∣∣∣

n∑
i=1

⟨σ(φi), fi⟩
∣∣∣∣∣ ≤ β

∥∥∥∥∥
n∑
i=1

fi ◦ πφi

∥∥∥∥∥
X∗

,

where (Xφi)
∗ denotes the dual space of the Banach space Xφi . Moreover, set∏

BSE
Xφ =

{
σ ∈

∏
Xφ : σ is BSE

}
.

A vector field σ ∈
∏
Xφ is called continuous if it is continuous at every φ ∈ ∆(A). The

class of all continuous vector fields in
∏
Xφ is denoted by

∏ c
Xφ and set

∏c
BSE Xφ =∏

BSE Xφ
⋂∏c Xφ. Let X̂ = {x̂ : x ∈ X} and M̂(A, X) = {T̂ : T ∈ M(A, X)}. A

Banach A-module X is called BSE if M̂(A,X) =
∏c

BSEXφ, for all φ ∈ ∆(A). In [24],
some examples of Banach algebras that have BSE module property such group algebras
on locally compact groups are given and in [2] authors characterized module property of
module extensions of Banach algebras.

Let A and A be two Banach algebras such that A is a Banach A-bimodule with the left
and right compatible actions of A on A, i.e., for all a, b ∈ A and α ∈ A,

α · (ab) = (α · a)b, (ab) · α = a(b · α) and a(α · b) = (a · α)b.
Also, A is called a commutative Banach A-bimodule if a · α = α · a, for all a ∈ A and

α ∈ A. The amalgamated duplication of A along A, denoted by A o A is defined as the
Cartesian product A × A with the algebra product

(a, α)(b, β) = (ab+ α · b+ a · β, αβ),
and with the norm ∥(a, α)∥ = ∥a∥A + ∥α∥A, for all a, b ∈ A and α, β ∈ A. The Banach
algebra A o A is introduced by Javanshiri and Nemati in [13] in light of D’Anna and
Fontana work related to amalgamated duplication of a ring along an ideal [5]. Some
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results related to these algebras are given in [7,8,10]. In this paper we need the following
results on Ao A:

Lemma 1.1. [13, Lemma 3.1] If φ ∈ ∆(A), then there exists a unique linear functional
φ̃ in ∆(A) ∪ {0} such that

φ(a · β) = φ(β · a) = φ(a)φ̃(β) (a ∈ A, β ∈ A).
In particular, if either ⟨A · A⟩ = A or ⟨A · A⟩ = A, then φ̃ ̸= 0.

Proposition 1.2. [13, Proposition 3.3] Let
E := {(φ, φ̃) : φ ∈ ∆(A)} and F := {(0, ψ) : ψ ∈ ∆(A)}.

Set E = ∅ (respectively, F = ∅) if ∆(A) = ∅ (respectively, ∆(A) = ∅). Then E and F
are disjoint and ∆(Ao A) = E ∪ F .

According to [13, Remark 3.1], A o A is a commutative Banach algebra if and only if
A, A are commutative Banach algebras and A is a symmetric Banach A-bimodule. In [9],
authors investigated BSE property of A o A in a special case that A possess a nonzero
idempotent that does not lie in the kernel of any character of A. Authors in [9] asked the
following problems:

(1) Let X and Y be Banach A and A-modules, respectively. Under which conditions
X × Y is BSE Banach Ao A-module?

(2) Under which conditions Ao A is BSE Banach Ao A-module?
We answer the problem (1) in the next section and problem (2) remains open because

it is complicated and at this time we could not answer it.

2. BSE-module property of Banach Ao A-modules
In this section, we investigate the BSE-module property of A o A-modules. Through-

out this section, A and A are commutative Banach algebras with bounded approximate
identities such that A is a symmetric A-bimodule and ⟨A ·A⟩ = A, by E and F , we mean
the sets are obtained in Proposition 1.2 and X and Y are Banach A-A and A-modules,
respectively. We consider X × Y as a Banach A o A-module by the following module
action:

(a, α) · (x, y) = (a · x+ α · x, α · y),
for all (a, α) ∈ Ao A and (x, y) ∈ X o Y . Moreover, we consider X as a Banach Ao A-
module by the module action (a, α) ·x = a ·x+α ·x, for all (a, α) ∈ AoA and x ∈ X. The
existence of a bounded approximate identity for A o A is investigated in [8, Proposition
2.2 (ii)] and it was shown that (aϖ, βϖ)ϖ is a bounded approximate identity of A o A
if and only if ∥aϖ∥A −→ 0, (βϖ)ϖ is a bounded approximate identity of A in A i. e.,
a · βϖ → a, for every a ∈ A, in norm of A. So, in the rest of this section we have assume
that AoA has a bounded approximate identity. The proof of the following result is clear
and so we have omitted it.

Lemma 2.1. For any φ ∈ E and ψ ∈ F , M(0,ψ) = Mψ and

M(φ,φ̃) = (Mφ × {0}) ∪
(
{0} ×Mφ̃

)
∪
(
Mφ ×Mφ̃

)
∪ {(a, α) : φ(a) = −φ̃(α)}.

By HomA(A, X), we mean the space of all continuous linear maps such as T : A −→ X
such that T (α · a) = α · T (a), for all α ∈ A and a ∈ A.

Lemma 2.2. T ∈ M(A o A, X × Y ) if and only if there exist TA,X ∈ M(A, X) ∩
HomA(A, X), TA,X ∈ M(A, X) and TA,Y ∈ M(A, Y ) such that

T ((a, α)) =
(
TA,X(a) + TA,X(α), TA,Y (α)

)
, (2.1)

for all (a, α) ∈ Ao A.
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Proof. Consider the mappings ıA : A −→ Ao A by ıA(a) = (a, 0), ıA : A −→ Ao A by
ıA(α) = (0, α), ρX : X×Y −→ X by ρX(x, y) = x and ρY : X×Y −→ Y by ρY (x, y) = y,
for all a ∈ A, α ∈ A, x ∈ X and y ∈ Y . Clearly, the above defined maps are linear. Now,
we define TA,X = ρX ◦T ◦ıA, TA,Y = ρY ◦T ◦ıA, TA,X = ρX ◦T ◦ıX and TA,Y = ρY ◦T ◦ıY .
It is easy to check that these mappings are linear. Then

T ((a, α)) =
(
TA,X(a) + TA,X(α), TA,Y (a) + TA,Y (α)

)
, (2.2)

for all (a, α) ∈ Ao A. If T ∈ M(Ao A, X × Y ), then

T ((a, α)(b, β)) = (TA,X(ab+a·β+α·b)+TA,X(αβ), TA,Y (ab+a·β+α·b)+TA,Y (αβ)) (2.3)

and

(a, α) · T ((b, β)) =(a · TA,X(b) + a · TA,X(β) + α · TA,X(b) + α · TA,X(β), α · TA,Y (b)
+ α · TA,Y (β)), (2.4)

for all (a, α), (b, β) ∈ Ao A. Letting a = b = 0 in (2.3) and (2.4) implies that

TA,X(αβ) = α · TA,X(β) and TA,Y (αβ) = α · TA,Y (β).

Thus, TA,X ∈ M(A, X), because A has a bounded approximate identity and TA,Y ∈
M(A, Y ). Similarly, letting α = β = 0 in (2.3) and (2.4) implies that

TA,X(ab) = a · TA,X(b).

Therefore, TA,X ∈ M(A, X). Letting b = 0 and α = 0 imply that

TA,Y (a · β) = 0.

Moreover, letting a = 0 and β = 0, imply that

TA,X(α · b) = α · TA,X(b) and TA,Y (α · b) = α · TA,Y (b).

Then the above equalities together with A has a bounded approximate identity and
continuity of TA,Y imply that TA,Y = 0 and TA,X ∈ HomA(A, X). The proof of the
converse is clear. □

Lemma 2.3. Let X be a Banach A-module and Y be a Banach A-module. Then
(i) (X × Y )(φ,φ̃) = X(φ,φ̃) × Y φ̃, for every (φ, φ̃) ∈ E.
(ii) (X × Y )(0,ψ) = Y ψ, for every (0, ψ) ∈ F .
(iii) (X × Y )(φ,φ̃)

∼= X(φ,φ̃) × Yφ̃, for every (φ, φ̃) ∈ E.
(iv) (X × Y )(0,ψ)

∼= Yψ, for every (0, ψ) ∈ F .
(v) Πc

BSE(X × Y )(φ,φ̃) = Πc
BSEX(φ,φ̃) × Πc

BSEYφ̃, for every (φ, φ̃) ∈ E.
(vi) Πc

BSE(X × Y )(0,ψ) = Πc
BSEYψ, for every , for every (0, ψ) ∈ F .

Proof. Let eφ ∈ A and fφ̃ ∈ A such that φ(eφ) = 1 and φ̃(fφ̃) = 1.
(i) Let (x, y) ∈ (X × Y )(φ,φ̃). Then, for any ε > 0, there exist (a1, α1), . . . , (an, αn) ∈

M(φ,φ̃) and (x1, y1), . . . , (xn, yn), (r1, s1), . . . , (rm, sm) ∈ X × Y , such that∥∥∥∥∥∥(x, y) −
n∑
i=1

(ai, αi) · (xi, yi) −
(
1 − (eφ, fφ̃)

) m∑
j=1

(rj , sj)

∥∥∥∥∥∥ < ε. (2.5)
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Then (2.5) implies that∥∥∥∥∥∥
x−

n∑
i=1

(ai · xi + αi · xi) − (1 − (eφ, fφ̃))
m∑
j=1

rj , y −
n∑
i=1

αi · yi − (1 − fφ̃)
m∑
j=1

sj

∥∥∥∥∥∥
=

∥∥∥∥∥∥x−
n∑
i=1

(ai, αi) · xi − (1 − (eφ, fφ̃))
m∑
j=1

rj

∥∥∥∥∥∥+

∥∥∥∥∥∥y −
n∑
i=1

αi · yi − (1 − fφ̃)
m∑
j=1

sj

∥∥∥∥∥∥
<ε.

Thus, ∥∥∥∥∥∥x−
n∑
i=1

(ai, αi) · xi − (1 − (eφ, fφ̃))
m∑
j=1

rj

∥∥∥∥∥∥ < ε

and ∥∥∥∥∥∥y −
n∑
i=1

αi · yi − (1 − fφ̃)
m∑
j=1

sj

∥∥∥∥∥∥ < ε.

Then by the above inequalities we have x ∈ X(φ,φ̃) and y ∈ Y φ̃. Hence, (X × Y )φ ⊆
X(φ,φ̃) ×Y φ̃. Now, let (x, y) ∈ X(φ,φ̃) ×Y φ̃. Then for every ε > 0, there exist (a1, α1), . . . ,
(an, αn) ∈ M(φ,φ̃), β1, . . . , βm ∈ A, x1, . . . , xn, r1, . . . , rt ∈ X and y1, . . . , ym, s1, . . . , sk ∈ Y

such that∥∥∥∥∥∥x−
n∑
i=1

(ai, αi) · xi − (1 − (eφ, fφ̃))
t∑

j=1
rj

∥∥∥∥∥∥ < ε

2
and

∥∥∥∥∥∥y −
m∑
i=1

βi · yi − (1 − fφ̃)
k∑
j=1

sj

∥∥∥∥∥∥ < ε

2
.

(2.6)
If m ≥ n, then we assume that an+1 = · · · = am = 0 and similarly we do it for t and

k. Set n1 = max{n,m} and t1 = max{t, k}. For any (φ, φ̃) ∈ E, M(φ,φ̃) (X × {0}) +
M(φ,φ̃) ({0} × Y ) ⊆ M(φ,φ̃) (X × Y ). Then by this fact and by (2.6), we have∥∥∥∥∥∥(x, y) −

n1∑
i=1

((ai, αi) · (xi, 0) + (ai, βi) · (0, yi)) −
(
1 − (eφ, fφ̃)

) t1∑
j=1

(rj , sj)

∥∥∥∥∥∥
=

∥∥∥∥∥∥(x, y) −

 n1∑
i=1

(ai · xi + αi · xi) −
(
1 − (eφ, fφ̃)

) t1∑
j=1

rj ,
n1∑
i=1

βi · yi − (1 − fφ̃)
t1∑
j=1

sj

∥∥∥∥∥∥
=

∥∥∥∥∥∥(x, y) −

 n∑
i=1

(ai, αi) · xi −
(
1 − (eφ, fφ̃)

) t∑
j=1

rj ,
m∑
i=1

βi · yi − (1 − fφ̃)
k∑
j=1

sj

∥∥∥∥∥∥
=

∥∥∥∥∥∥
x−

n∑
i=1

(ai, αi) · xi −
(
1 − (eφ, fφ̃)

) t∑
j=1

rj , y −
m∑
i=1

βi · yi − (1 − fφ̃)
k∑
j=1

sj

∥∥∥∥∥∥
=

∥∥∥∥∥∥x−
n∑
i=1

(ai, αi) · xi −
(
1 − (eφ, fφ̃)

) t∑
j=1

rj

∥∥∥∥∥∥+

∥∥∥∥∥∥y −
m∑
i=1

βi · yi − (1 − fφ̃)
k∑
j=1

sj

∥∥∥∥∥∥
<
ε

2
+ ε

2
= ε.

Thus, (x, y) ∈ (X × Y )(φ,φ̃). Hence, (i) holds.
(ii) By Lemma 2.1 and similar argument in (i), we conclude that (ii) holds.
(iii) Define Λ : X × Y −→ X(φ,φ̃) × Yφ̃ by Λ(x, y) =

(
x+X(φ,φ̃), y + Y φ̃

)
, for all

(x, y) ∈ X × Y . Clearly, Λ is a continuous homomorphism between Banach spaces and,
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by applying (i),

ker Λ =
{

(x, y) ∈ X × Y : Λ(x, y) = 0
X(φ,φ̃)×Y φ̃

= X(φ,φ̃) × Y φ̃
}

=X(φ,φ̃) × Y φ̃ = (X × Y )(φ,φ̃) .

Then
(X × Y )(φ,φ̃)

∼=
X × Y

(X × Y )(φ,φ̃)
∼= X(φ,φ̃) × Yφ̃.

Hence, (iii) holds. Similarly, one can show that (iv) holds.
(v) Define πX(φ,φ̃)(x) = x̂(φ, φ̃) and πY

φ̃
(y) = ŷ(φ̃), for all x ∈ X and y ∈ Y . More-

over, define π(φ,φ̃)(x, y) = (πX(φ,φ̃)(x), πY
φ̃

(y)), for all (x, y) ∈ X × Y . Suppose that σX ∈
Πc

BSEX(φ,φ̃), σY ∈ Πc
BSEYφ̃ and (φ1, φ̃1), . . . , (φn, φ̃n) ∈ E. Then, there exist β1, β2 ∈ R+

such that for all f1 ∈
(
X(φ1,φ̃1)

)∗
, . . . , fn ∈

(
X(φn,φ̃n)

)∗
and g1 ∈

(
Yφ̃1

)∗
, . . . , gn ∈(

Yφ̃n

)∗
, ∣∣∣∣∣

n∑
i=1

⟨σX(φi, φ̃i), fi⟩
∣∣∣∣∣ ≤ β1

∥∥∥∥∥
n∑
i=1

fi ◦ πX(φ1,φ̃1)

∥∥∥∥∥
X∗

(2.7)

and ∣∣∣∣∣
n∑
i=1

⟨σY (φ̃i), gi⟩
∣∣∣∣∣ ≤ β2

∥∥∥∥∥
n∑
i=1

gi ◦ πY
φ̃i

∥∥∥∥∥
Y ∗

. (2.8)

Set β = 2 max{β1, β2}. We consider
(
Xφ × Yφ̃

)∗
= X∗

(φi,φ̃i)
× Y ∗

φ̃
with the maximum

norm, i.e., ∥(f, g)∥ = max{∥f∥X∗
(φi,φ̃i)

, ∥g∥Y ∗
φ̃

}, for all (f, g) ∈ X∗
(φi,φ̃i)

× Y ∗
φ̃

. Let F ∈

(X×Y )∗
(φ1,φ̃1), . . . ,Fn ∈ (X×Y )∗

(φn,φ̃n). Then, there exist f1 ∈ X∗
(φi,φ̃i)

, . . . , fn ∈ X∗
(φn,φ̃n)

and g1 ∈ Y ∗
φ1 , . . . , gn ∈ Y ∗

φn
such that Fi = (fi, gi), for i = 1, . . . , n. Now, (2.7) and (2.8)

imply that∣∣∣∣∣
n∑
i=1

⟨(σX , σY ) (φi, φ̃i) (Fi)⟩
∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

⟨(σX (φi, φ̃i) , σY (φ̃i)) (fi, gi)⟩
∣∣∣∣∣

=
∣∣∣∣∣
n∑
i=1

⟨σX (φi, φ̃i) , fi⟩ +
n∑
i=1

⟨σY (φ̃i) , gi⟩
∣∣∣∣∣

≤
∣∣∣∣∣
n∑
i=1

⟨σX (φi, φ̃i) , fi⟩
∣∣∣∣∣+

∣∣∣∣∣
n∑
i=1

⟨σY (φ̃i) , gi⟩
∣∣∣∣∣

≤β1

∥∥∥∥∥
n∑
i=1

fi ◦ πX(φi,φ̃i)

∥∥∥∥∥
X∗

+ β2

∥∥∥∥∥
n∑
i=1

gi ◦ πY
φ̃i

∥∥∥∥∥
Y ∗

≤βmax
{∥∥∥∥∥

n∑
i=1

fi ◦ πX(φi,φ̃i)

∥∥∥∥∥
X∗

,

∥∥∥∥∥
n∑
i=1

gi ◦ πY
φ̃i

∥∥∥∥∥
Y ∗

}

=β
∥∥∥∥∥
(

n∑
i=1

fi ◦ πX(φi,φ̃i),
n∑
i=1

gi ◦ πY
φ̃i

)∥∥∥∥∥
(X×Y )∗

=β
∥∥∥∥∥
n∑
i=1

(fi, gi) ◦
(
πX(φi,φ̃i), π

Y
φ̃i

)∥∥∥∥∥
(X×Y )∗

=β
∥∥∥∥∥
n∑
i=1

Fi ◦ π(φi,φ̃i)

∥∥∥∥∥
(X×Y )∗

.
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Since, σX is continuous on E and σY is continuous on {φ̃ ∈ ∆(A) : φ ∈ ∆(A)},
(σX , σY ) is continuous on E. Thus (σX , σY ) ∈ Πc

BSE(X × Y )(φ,φ̃). This implies that
Πc

BSEX(φi,φ̃i) × Πc
BSEYφ̃ ⊆ Πc

BSE(X × Y )(φ,φ̃).
Now, let σ ∈ Πc

BSE(X × Y )(φ,φ̃), for any (φ, φ̃) ∈ E. Then there exists β ∈ R+ such
that for any (φ1, φ̃1), . . . , (φn, φ̃n) ∈ E and F1 ∈ (X × Y )∗

(φ1,φ̃1), . . . ,Fn ∈ (X × Y )∗
(φn,φ̃n),∣∣∣∣∣

n∑
i=1

⟨σ(φi, φ̃i),Fi⟩
∣∣∣∣∣ ≤ β

∥∥∥∥∥
n∑
i=1

Fi ◦ π(φi,φ̃i)

∥∥∥∥∥
(X×Y )∗

. (2.9)

Moreover, since σ(φ, φ̃) ∈ (X×Y )(φ,φ̃), by employing (iii), there exist σX ∈ X(φ,φ̃) and
σY ∈ Yφ̃ such that σ(φ, φ̃) = (σX (φ, φ̃) , σY (φ̃)). We now show that σX ∈ Πc

BSEX(φ,φ̃)
and σY ∈ Πc

BSEYφ̃.
Let f1 ∈ X∗

(φ1,φ̃1), . . . , fn ∈ X∗
(φn,φ̃n) and g1 ∈ Y ∗

φ̃1
, . . . , gn ∈ Y ∗

φ̃n
. We define, Fi = (fi, 0)

and Gi = (0, gi), for i = 1, . . . , n. It is easy to verify that Fi,Gi ∈ (A o A)(φi,φ̃i). By
employing (2.9), we have∣∣∣∣∣

n∑
i=1

⟨σX(φi, φ̃i), fi⟩
∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

⟨σ(φi, φ̃i),Fi⟩
∣∣∣∣∣

≤β
∥∥∥∥∥
n∑
i=1

Fi ◦ π(φi,φ̃i)

∥∥∥∥∥
(X×Y )∗

=β
∥∥∥∥∥
n∑
i=1

(fi, 0) ◦ (πX(φi,φ̃i)
, πY

φ̃

∥∥∥∥∥
(X×Y )∗

=β
∥∥∥∥∥
n∑
i=1

fi ◦ πX(φi,φ̃i)

∥∥∥∥∥
X∗

.

Moreover, σX is continuous on E, because σ is continuous on ∆(A o A). This implies
that σX ∈ Πc

BSEXφ. By a similar argumentation one can show that∣∣∣∣∣
n∑
i=1

⟨σY (φ̃i), gi⟩
∣∣∣∣∣ ≤ β

∥∥∥∥∥
n∑
i=1

gi ◦ πY
φ̃i

∥∥∥∥∥
Y ∗

.

This means that σY ∈ Πc
BSEYφ̃. Thus, σ ∈ (σX , σY ) ∈ Πc

BSEXφ × Πc
BSEYφ̃. Therefore,

Πc
BSE(X × Y )(φ,φ̃) ⊆ Πc

BSEXφ × Πc
BSEYφ̃. Hence, (v) holds.

By the above argument, the proof of (vi) is clear. □

Theorem 2.4. X ×Y is a BSE Banach AoA-module if and only if X is a BSE Banach
A,A-module and Y is a BSE Banach A-module.

Proof. Let X × Y is a BSE Banach A o A-module. Let σX ∈ Πc
BSEX(φ,φ̃) and define

σ : ∆(Ao A) −→
⋃
E∪F (Ao A)ϕ as follows:

σ(ϕ) =
{

(σX(φ), 0), ϕ = (φ, φ̃) ∈ E
0, ϕ = (0, ψ) ∈ F.

Let ϕ1, . . . , ϕn ∈ E ∪ F and F1 ∈ (X × Y )ϕ1 , . . . ,F1 ∈ (X × Y )ϕn . Then there exist
fi ∈ X∗

φi
and gi ∈ Yφ̃i

, whenever ϕi = (φi, φ̃i) ∈ E such that Fi = (fi, gi) and there exists
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hj ∈ Y ∗
ψ such that Fj = (0, hj), whenever ϕj = (0, ψj). Then∣∣∣∣∣

n∑
i=1

Fi (σ (ϕi))
∣∣∣∣∣ =

∣∣∣∣∣∣
n∑

i=1,ϕi∈E
Fi (σ (ϕi))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1,(φi,φ̃i)∈E

Fi (σ (φi, φ̃i))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
n∑

i=1,φi∈∆(A)

fi (σX (φi, φ̃i))

∣∣∣∣∣∣
≤β

∥∥∥∥∥∥
n∑

i=1,φi∈∆(A)

fi ◦ πX(φi,φ̃i)

∥∥∥∥∥∥
X∗

=β

∥∥∥∥∥∥
n∑

i=1,(φi,φ̃i)∈E

Fi ◦ π(φi,φ̃i)

∥∥∥∥∥∥
(X×Y )∗

.

Thus, σ ∈ ΠBSE(X×Y )ϕ, for all ϕ ∈ E∪F . From the continuity of σX on E, we obtain
that σ is continuous on E. Moreover, for any (0, ψ) ∈ F , σ(0, ψ) = 0, so σ is continuous
on F . Thus, σ is continuous on E ∪ F and consequently, it is in Πc

BSE(X × Y )ϕ, for all
ϕ ∈ E ∪ F .

According to X×Y is a BSE Banach AoA-module, so there exists T ∈ M(AoA, X×Y )
such that σ = T̂ . Hence, T̂ (a, α) = (a, α)T̂ , for all (a, α) ∈ A o A. By Lemma 2.2,
TA,X ∈ M(A, X) ∩ HomA(A, X), there exist TA,X ∈ M(A, X) and TA,Y ∈ M(A, Y ) such
that

T (a, α) =
(
TA,X(a) + TA,X(α), TA,Y (α)

)
, (2.10)

for all (a, α) ∈ Ao A. Then,

(a, 0) · σ =(a, α)T̂ = T̂ (a, α)

= ̂(
TA,X + TA,X , TA,Y

)
(a, α)

=
(

̂TA,X(a), 0
)

=
(
aT̂A,X , 0

)
(2.11)

for all a ∈ A. Moreover, for all a ∈ A and φ ∈ ∆(A),

((a, 0) · σ)(φ, φ̃) =(φ, φ̃)(a, 0)σ(φ, φ̃) = φ(a)(σX(φ, φ̃), 0)
=(φ(a)σX(φ, φ̃), 0) = (a · σX)(φ, φ̃). (2.12)

Then (2.11) and (2.12) imply that a · σX = aT̂A,X , for all a ∈ A. Thus, σX = T̂A,X ∈
M̂(A, X). Hence, Πc

BSEX(φ,φ̂) ⊆ M̂(A, X).
Let σX ∈ Πc

BSEX(φ,φ̂) and σY ∈ Πc
BSEYφ̂ and define σ : ∆(A o A) −→

⋃
E∪F (A o A)ϕ

as follows:

σ(ϕ) =
{

(σX(φ, φ̃), σY (φ)) ϕ = (φ, φ̃) ∈ E
0, ϕ = (0, ψ) ∈ F.

Then by a similar argumentation, one can verify that σ ∈ Πc
BSE(X × Y )(φ,φ̂). Thus,

there exists T ∈ M(Ao A, X × Y ) satisfies (2.10) and σ = T̂ . Then, (0, α) · σ = (0, α)T̂ ,
for all α ∈ A. By similar argumentations (2.11) and (2.12), we conclude that T̂A,X =
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σX ∈ ̂MA(A, X) and T̂A,Y = σY ∈ M̂(A, Y ). This means that Πc
BSEX(φ,φ̂) ⊆ M̂(A, X)

and Πc
BSEYφ̂ ⊆ M̂(A, Y ). Similar argumentations hold for (0, ψ) ∈ F .

Let T ∈ M(X × Y ). Then by Lemma 2.3, T is as in (2.10). Since X × Y is BSE as
Banach AoA-module, there exists σ ∈

∏c
BSE(X×Y )(φ,φ̃) such that σ = T̂ . By employing

Lemma 2.3(v), σ = (σX , σY ), where σX ∈
∏c

BSEX(φ,φ̃), σY ∈
∏c

BSE Yφ̃ and (φ, φ̃) ∈ E.
Let eφ ∈ A and fφ̃ ∈ A such that φ (eφ) = 1/2 and φ̃(fφ̃) = 1/2. Then (φ, φ̃)

(
eφ, fφ̃

)
= 1

and so

(σX , σY ) (φ, φ̃) = σ(φ, φ̃) = T̂ (φ, φ̃) = ̂
T
(
eφ, fφ̃

)
(φ, φ̃)

= ̂(
TA,X (eφ) + TA,X(fφ̃), TA,Y

(
fφ̃

))
(φ, φ̃)

=
(

̂TA,X (eφ) + ̂TA,X(fφ̃), ̂
TA,Y

(
fφ̃

))
(φ, φ̃)

= ̂TA,X (eφ)(φ) + ̂TA,X(fφ̃)(φ̃) + ̂
TA,Y

(
fφ̃

)
(φ̃)

= 1
2

(
T̂A,X(φ) + T̂A,X(φ̃) + T̂A,Y (φ̃)

)
= 1

2

(
T̂A,X + T̂A,X , T̂A,Y

)
(φ, φ̃).

Hence, 1
2

(
T̂A,X + T̂A,X

)
= σX ∈

∏c
BSEX(φ,φ̃) and T̂A,Y = σY ∈

∏c
BSE Yφ̃. These

follow that M̂(A, X) + M̂(A, X) ⊆
∏c

BSEX(φ,φ̃) and M̂(A, Y ) ⊆
∏c

BSE Yφ̃. Thus, X is a
BSE Banach A,A-module and Y is a BSE Banach A-module.

Conversely, suppose that X is a BSE Banach A,A-module and Y is a BSE Banach
A-module. Let σ ∈

∏c
BSE(X × Y )(φ,φ̃), where φ ∈ ∆(A). By Lemma 2.3(v), we have σ =

(σX , σY ), where σX ∈
∏c

BSEX(φ,φ̃), σY ∈
∏c

BSE Yφ̃. Then there exist TA,X ∈ M(A, X),
TA,X ∈ M(A, X) and TA,Y ∈ M(A, Y ) such that σX = T̂A,X + T̂A,X and σY = T̂A,Y .

Now define T : A o A −→ X × Y by T (a, α) =
(
TA,X(a) + TA,X(α), TA,Y (α)

)
, for

all (a, α) ∈ A × A. Then by Lemma 2.2, T ∈ M(A o A, X × Y ). This implies that
σ = T̂ ∈ ̂M(Ao A, X × Y ). Hence,

∏c
BSE(A⊕1 X)φ̃ ⊆ ̂M(Ao A, X × Y ).

Now, let T̂ ∈ ̂M(Ao A, X × Y ). Thus, T = (TA,X + TA,X , TA,Y ), where TA,X ∈
M(A, X), TA,X ∈ M(A, X) and TA,Y ∈ M(A, Y ). Since X is a BSE Banach A,A-module
and X is a BSE Banach A-module, there exist σX ∈

∏c
BSEX(φ,φ̃) and σY ∈

∏c
BSE Yφ̃

such that T̂A,X + T̂A,X = σA and T̂U,Y = σY . Then by a similar argument, we have
T̂ = (σX , σY ) ∈

∏c
BSE(X × Y )(φ,φ̃). Thus ̂M(Ao A, X × Y ) ⊆

∏c
BSE(X × Y )(φ,φ̃). Hence,

X × Y is a BSE Banach Ao A-module. □

Corollary 2.5. Let A be a without order Banach algebra. Then A × A is a BSE Banach
Ao A-module if and only if A is a BSE A,A-module and A is a BSE A-module.

Proof. Clearly, if A is a without order Banach algebra. Thus, by Theorem 2.4, the proof
holds. □

Corollary 2.6. Let G be an abelian compact group and 1 ≤ p < ∞. Then Lp(G) ×C(G)
is a BSE Banach L1(G) o L1(G)-module.

Proof. Since L1(G) is a BSE Banach algebra [23] and every BSE Banach algebra is a
BSE Banach module over itself [24], Lp(G) and C(G) are BSE Banach L1(G)-modules
[24, Theorem 3.3]. Then by Theorem 2.4 the proof holds. □
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