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Abstract. In this paper, we establish that the sequence of the new iteration converges to endpoints of generalized
α-nonexpansive multivalued mappings in 2-uniformly convex hyperbolic space. We present some strong and ∆-
convergence theorems for such operator in a hyperbolic metric space. The results presented in this paper extend
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2020 AMS Classification: 47H10, 47H09

Keywords: Generalized α-nonexpansive mapings, strong and ∆-convergence, hyperbolic space, multivalued map-
pings.

1. Introduction

Fixed point theory contributes significantly to the theory of nonlinear functional analysis. The fixed points of a
nonlinear mapping under suitable set of control conditions is constituted with metric fixed point theory. So, fixed point
problems associated with a class of mappings in a suitable nonlinear structure have been studied. The metric spaces
don’t have a such convex structure. Therefore, there is need to introduce convex structure in the metric space. We
work in hyperbolic spaces presented by Kohlenbach [7]. Let Y be a metric space. Let K be a nonempty subset of Y and
κ ∈ Y . The radius of K relative to κ is defined by

r := R (κ,K) := sup {d (κ, ω) : ω ∈ K} .

The diameter of K is defined by
diam(K) := sup {d (κ, ω) : κ, ω ∈ K} .

We show by CB(K) the set of all nonempty closed bounded subets of K. Then, the Hausdorff distance H between À
and Ñ is defined

H
(
À, Ñ

)
:= max

sup
a∈À

d
(
a, Ñ

)
, sup

b∈Ñ
d(b, À)

 for all À,Ñ ∈ CB(K).

A mapping Γ : K → CB(K) is said to be multivalued nonexpansive if H (Γ(κ),Γ(ω)) ≤ d (κ, ω) for all κ, ω ∈ K and is
said to be multivalued quasi-nonexpansive if for each κ ∈ K and a ∈ F(Γ) if H (Γ(κ),Γ (a)) ≤ d (κ, a).

A point a ∈ K is called an endpoint (strict fixed point) of Γ if Γ (a) = {a}.We show the sets of endpoints of Γ by
End(Γ) and the sets of fixed points of Γ by F(Γ). Notice that for each mapping Γ, End(Γ) ⊆ F(Γ). Many researchers
have given the results with existence of endpoints for mappings in Banach spaces [13, 15, 17–20, 24]. Panyanak [14],
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Kudtha and Panyanak [8], Laokul and Panyanak [9], Ullah et al. [23], Abdeljawad et al. [1], Ullah et al. [25] have used
different iteration process to approximating endpoints of multivalued nonexpansive mappings.

Lemma 1.1 ( [14]). Let Γ : K → CB(K) be a multivalued mapping. The following statements hold:
(i) End(Γ) ⊆ F(Γ),
(ii) κ ∈ F(Γ) if and only if dist(κ,Γ(κ)) = 0,
(iii) κ ∈ End(Γ) if and only if R(κ,Γ(κ)) = 0.

Suzuki [21] introduced generalized nonexpansive mappings which is named condition (C). In 2017, Pant and Shukla
[12] presented the class of generalized α- nonexpansive mappings.

Abkar and Eslamian [2] modified Suzuki’s condition to incorporate multivalued mappings. They called these map-
pings generalized multivalued nonexpansive mappings or mappings satisfying the condition (C). In 2019, Igbal et
al. [5] expended the new class of α-nonexpansive mapping to the multivalued generalized α-nonexpansive mappings.

Definition 1.2 ( [2]). A multivaled mapping Γ : K → CB (K) is said to satisfy the Condition (C) if for all κ, ω ∈ K the
following condition holds:

1
2

d (κ,Γ(κ)) ≤ d (κ, ω)⇒ H (Γ(κ),Γ(ω)) ≤ d (κ, ω) .

Definition 1.3 ( [5]). A mapping Γ : K → CB (K) is said to be a generalized α-nonexpansive multivalued mapping if
there exists an α ∈ [0, 1) such that for each κ, ω ∈ K;

1
2

d (κ,Γ(κ)) ≤ d (κ, ω)⇒ H (Γ(κ),Γ(ω)) ≤ αd (κ,Γ(ω)) + αd (ω,Γ(κ)) + (1 − 2α) ∥κ − ω∥ . (1.1)

Proposition 1.4 ( [16]). Let Γ : K → CB (K) be a multivalued mapping. Then, the followings hold.

i: If Γsatisfies condition (C), then Γ is a generalized α− nonexpansive multivalued mapping for some α ∈ [0, 1).
ii: If Γ is a generalized α−nonexpansive mapping and F(Γ) , ∅, then Γ is quasi-nonexpansive.

Proposition 1.5 ( [16]). Let Γ : K → CB (K) be a mapping fulfilling (1.1). For ω, t ∈ K,

(1) H(Γ(ω),Γ(z)) ≤ ∥z − ω∥, ∀z ∈ Γ(ω).
(2) Either 1

2 d (ω,Γ(ω)) ≤ ∥ω − t∥ or 1
2 d (z,Γ(z)) ≤ ∥z − t∥ for z ∈ Γ(ω).

(3) Either H (Γ(ω),Γ(t)) ≤ αd (ω,Γ(t))+αd (t,Γ(ω))+(1 − 2α) ∥ω − t∥ or H (Γ(z),Γ(t)) ≤ αd (z,Γ(t))+αd (t,Γ(z))+
(1 − 2α) ∥z − t∥, ∀z ∈ Γ(ω).

Lemma 1.6 ( [5]). Let Γ : K → CB (K) be a mapping fulfilling (1.1). For ω, t ∈ K and z ∈ Γ(ω), we have

d (ω,Γ(t)) ≤
(

3 + α
1 − α

)
d (ω,Γ(ω)) + ∥ω − t∥ .

Definition 1.7 ( [9]). Let (Y, d) be a metric space, then (Y, d,W) will be hyperbolic metric space if W : Y2 × [0, 1]→ Y
fulfilling (i) d (ν,W (κ, ω, φ)) ≤ (1 − φ) d (ν, κ) + φd (ν, ω) ;

(ii) d (W (κ, ω, φ) ,W (κ, ω, γ)) = |φ − γ| d (κ, ω) ;
(iii) W (κ, ω, φ) = W (ω, κ, 1 − φ) ;
(iv) d (W (κ, ν, φ) ,W (ω,w, φ)) ≤ φd (κ, ω) + (1 − φ) d (ν,w)
for all κ, ω, ν,w ∈ Y and φ,γ ∈ [0, 1].
If κ, ω ∈ Y and φ ∈ [0, 1], we use the notation (1 − φ) κ ⊕ φω for W (κ, ω, φ). It follows from (i) that

d (κ, (1 − φ) κ ⊕ φω) = φd (κ, ω) ,
d (ω, (1 − φ) κ ⊕ φω) = (1 − φ) d (κ, ω) .

A subset K of a hyperbolic space Y is convex if W (κ, ω, φ) ∈ K for all x, ω ∈ K and φ ∈ [0, 1]. The class of
hyperbolic spaces contains normed spaces and their convex subsets as subclasses and CAT(0) spaces form a very
special subclass of the class of hyperbolic spaces with unique geodesic paths. CAT(0) spaces are uniformly convex
hyperbolic spaces with modulus of uniform convexity. Uniformly convex hyperbolic spaces are a natural generalization
of both uniformly convex Banach spaces and CAT(0) spaces.
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Definition 1.8 ( [10]). Let Y be a hyperbolic metric space. Then, Y is uniformly convex if for any t, κ, ω ∈ Y , for
every l > 0 and for each ε > 0

δ (l, ε) = inf
{

1 −
1
l

d
(
W

(
κ, ω,

1
2

)
, t
)

: d (κ, t) ≤ l, d (ω, t) ≤ l and d (κ, ω) ≥ εl
}
> 0.

Definition 1.9 ( [9]). Let (Y, d) be a uniformly convex hyperbolic space. For all k ∈ (0,∞) and ε ∈ (0, 2], we define

Ψ (k, ε) := inf
{

1
2

d2 (y, z) +
1
2

d2 (ω, z) − d2
(
W

(
y,w,

1
2

)
, z

)}
,

such that d (y, z) ≤ k, d (ω, z) ≤ k and d (y, ω) ≥ kε for all y, ω, z ∈ Y . Then, (Y, d) is 2- uniformly convex if

cM := inf
{
Ψ (k, ε)

k2ε2 : k ∈ (0,∞) , ε ∈ (0, 2]
}
> 0.

Lemma 1.10 ( [9]). Let (Y, d) be a 2- uniformly convex hyperbolic space. Then,

d2 ((1 − k) κ ⊕ kω, z) ≤ (1 − k) d2 (κ, z) + kd2 (ω, z) − 4cMk (1 − k) d2 (κ, ω) ,

for all κ, ω, z ∈ Y and k ∈ [0, 1].

Definition 1.11. Let {κn} be any bounded sequence in Y and ∅ , K ⊆ Y . An asymptotic radius of {κn} relative to

K is defined by r (K, {κn}) = inf
{

lim sup
n→∞

d (κn, κ) : κ ∈ K
}

and an asymptotic center of {κn} relative to K is defined by

A = A (K, {κn}) =
{
κ ∈ K : lim sup

n→∞
d (κn, κ) = r (K, {κn})

}
.

Lemma 1.12 ( [4]). Let K be a nonmepty closed convex subset of Y and {xn} is a bounded sequence in Y. If A (K, {xn}) =
{x} and {un} is a subsequence of {xn} with A (K, {un}) = {u} and the sequence {d (xn, u)} converges, then x = u.

Definition 1.13 ( [11]). If every subsequence
{
κni

}
of {κn} ⊆ Y has an unique asymptotic center κ ∈ Y , then we say

{κn}∆−converges to κ. It is writen as ∆ − lim κn = κ.

Definition 1.14 ( [3]). A sequence {xm} in Y is called a Fejĕr monotone with respect to K if ∥κm+1 − b∥ ≤ ∥κm − b∥ for
all b ∈ K and m ∈ N.

Lemma 1.15 ( [15]). Let {αn},{γn} ∈ [0, 1) be such that limn→∞γn = 0 and
∑
αnγn = ∞. Let {δn} be a positive real

sequence such that
∑
αnγn (1 − γn) δn < ∞. Then {δn} has a subsequence which converges to zero.

The purpose of this study is to extend the strong and ∆− convergence results of endpoints for generalized α-
nonexpansive multivalued mappings from the class of uniformly convex Banach spaces and CAT(0) spaces to a wider
class of 2-uniformly convex hyperbolic space.We use here the new iterative process (1.2), which was introduced by
Kaplan in [6].

Let D be a nonempty convex subset of Y , Γ : D→ CB(D) and {αn},{βn} , {γn} are sequences in
[
e, f

]
⊂ [0, 1].

Define a sequence {κn} as follows:

zn = (1 − γn) κn ⊕ γnvn, n ∈ N, (1.2)

where vn ∈ Γ (κn) such that d (κn, vn) = R (κn,Γ(κn)),

yn = (1 − βn) vn ⊕ βnwn,

where wn ∈ Γ (zn) such that d (zn,wn) = R (zn,Γ(zn)),

xn+1 = (1 − αn) vn ⊕ αnun,

where un ∈ Γ (yn) such that d (yn, un) = R (yn,Γ(yn)).
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2. Main Results

Lemma 2.1. Let Y be a complete 2-uniformly convex hyperbolic space, D be a nonempty closed convex and bounded
subset of Y. Assume that Γ : D→ CB (D) is a generalized α-nonexpansive multivalued mapping and End(Γ) , ∅. Let
{xn} be sequence defined by (1.2 ). Then, {κn} is Fejěr monotone according to End(Γ).

Proof. Let a ∈ End (Γ). As Γ is generalized α-nonexpansive multivalued mapping, by Proposition 1.4 (ii) for each
n ∈ N we have

1
2

d (a,Γ (a)) = 0 ≤ d (a, κn) .

Then,
d (a,Γ (κn)) ≤ H (Γ (κn) ,Γ (a)) ≤ αd (κn,Γ(a)) + αd (a,Γ(κn)) + (1 − 2α) d (κn, a) .

This implies that
(1 − α) d (Γ(κn), a) ≤ (1 − α) d (κn, a) .

Since (1 − α) > 0, then we have
H (Γ (κn) ,Γ (a)) ≤ d (κn, a) .

Similarly, for any a ∈ End (Γ), we have

H (Γ (yn) ,Γ (a)) ≤ d (yn, a) ,
H (Γ (zn) ,Γ (a)) ≤ d (zn, a) .

Now by (1.2), we have

d (zn, a) = d ((1 − γn) κn ⊕ γnvn, a)

≤ (1 − γn) d (κn, a) + γnd (vn, a)

≤ (1 − γn) d (κn, a) + γnd
(
vn,Γ (a)

)
≤ (1 − γn) d (κn, a) + γnH (Γ (κn) ,Γ (a))

≤ (1 − γn) d (κn, a) + γnd (κn, a) = d (κn, a) , (2.1)

and with (2.1), we have

d (yn, a) = d ((1 − βn) vn ⊕ βnwn, a)

≤ (1 − βn) d (vn, a) + βnd (wn, a)

≤ (1 − βn) d
(
vn,Γ(a)

)
+ βnd

(
wn,Γ(a)

)
≤ (1 − βn) H (Γ (κn) ,Γ (a)) + βnH (Γ (zn) ,Γ (a))

≤ (1 − βn) d (κn, a) + βnd (zn, a)

≤ d (κn, a) . (2.2)

In view of (2.2), we have

d (κn+1, a) = d ((1 − αn) vn ⊕ αnun, a)

≤ (1 − αn) d (vn, a) + αnd (un, a)

≤ (1 − αn) dist
(
vn,Γ(a)

)
+ αndist

(
un,Γ(a)

)
≤ (1 − αn) H (Γ (κn) ,Γ (a)) + αnH

(
Ť (yn) ,Γ (a)

)
≤ (1 − αn) d (κn, p) + αnd (yn, a)

≤ d (κn, a) .

From thus, d (κn, a) is nonincreasing sequence, which implies limn→∞ d (κn, a) exists for every a ∈ End(Γ). □

Theorem 2.2. Let Y,D and Γ be as in Lemma 2.1. Let {κn} be sequence generated by (1.2). Then, {κn} ∆−converges
to an element in End(Γ)
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Proof. Let a ∈ End(Γ). From Lemma 1.10, we write

d2 (zn, a) ≤ (1 − γn) d2 (κn, a) + γnd2 (vn, a) − 4cMγn (1 − γn) d2 (κn, vn)

≤ (1 − γn) d2 (κn, a)+γnH2 (Γ (κn) ,Γ (a)) − 4cMγn (1 − γn) d2 (κn, vn)

≤ d2 (κn, a) − 4cMγn (1 − γn) d2 (κn, vn) ,

and

d2 (yn, a) ≤ (1 − βn) d2 (vn, a) + βnd2 (wn, a) − 4cMβn (1 − βn) d2 (vn,wn)

≤ (1 − βn) H2 (Γ (κn) ,Γ (a))+βnH2 (Γ (zn) ,Γ (a)) − 4cMβn (1 − βn) d2 (vn,wn)

≤ (1 − βn) d2 (κn, a) + βnd2 (zn, a)

≤ (1 − βn) d2 (κn, a) + βnd2 (κn, a) − 4cMβnγn (1 − γn) d2 (κn, vn)

= d2 (κn, a) − 4cMβnγn (1 − γn) d2 (κn, vn) .

It means that

d2 (κn+1, a) ≤ (1 − αn) d2 (vn, a) + αnd2 (un, a) − 4cMαn (1 − αn) d2 (vn, un)

≤ (1 − αn) H2 (Γ (κn) ,Γ (a))+αnH2 (Γ (yn) ,Γ (a)) − 4cMαn (1 − αn) d2 (vn, un)

≤ (1 − αn) d2 (κn, a) + αnd2 (yn, a)

≤ (1 − αn) d2 (κn, a) + αnd2 (κn, a) − 4cMαnβnγn (1 − γn) d2 (κn, vn)

= d2 (κn, a) − 4cMαnβnγn (1 − γn) d2 (κn, vn)

4cMαnβnγn (1 − γn) d2 (κn, vn) ≤ d2 (κn, a) − d2 (κn+1, a) .

Since cM > 0 and 0 < e ≤ fn ≤ f < 1, by Lemma 1.15, it follows that
∞∑

n=1

e3 (1 − f ) d2 (κn, vn) ≤
∞∑

n=1

αnβnγn (1 − γn) d2 (κn, vn) < ∞. (2.3)

Thus, limn→∞ d2 (xn, vn) = 0, and hence

lim
n→∞

R (κn,Γ(κn)) = lim
n→∞

d (κn, vn) = 0. (2.4)

By Lemma 2.1, {d (κn, a)} converges for all a ∈ End(Γ).
To prove that {κn} ∆− converges to an element in End(Γ), it is sufficient to demonstrate that {κn} has a unique

asymptotic center in End(Γ). For this one, we assume that there are subsequences in
{
κni

}
and

{
κmi

}
of {κn} with

A
(
κni

)
= κ1 and A

(
κmi

)
= κ2. Since diam

(
Γκni

)
= 0, it follows that κ1 ∈ End(Γ). Similarly, we can get κ2 ∈ End(Γ).

Now, to prove κ1 = κ2.
On contrary, suppose that κ1 , κ2.

lim
n→∞

d (κn, κ1) = lim
i→∞

d
(
κni , κ1

)
< lim

i→∞
d
(
κni , κ2

)
= lim

n→∞
d (κn, κ2) = lim

i→∞
d
(
κmi , κ2

)
< lim

i→∞
d
(
κmi , κ1

)
= lim

n→∞
d (κn, κ1) ,

which is a contradiction. Hence, {κn} ∆− converges to an element in End(Γ). □

Definition 2.3 ( [22]). A mapping Γ : D → CB (D) is semicompact if for any bounded sequence {κn} satisfying
limn→∞ R (κn,Γ(κn)) = 0 has a convergent subsequence. A mapping Γ implies condition (J) if there is a nondecreasing
function h : [0,∞) → [0,∞) with h (0) = 0, h (r) > 0 for r ∈ (0,∞) such that R (κn,Γ(κn)) ≥ h(d(κn, End(Γ)) for each
κ ∈ D.

Theorem 2.4. Let Y,D, Γ and {κn} be as in Lemma 2.1. If Γ satisfies condition (J), then {κn} converges strongly to an
element in End(Γ).

Proof. From (2.4), we have limn→∞ R (κn,Γ(κn)) = 0. As Γ satisfies condition (J), we have R (κn,Γ(κn)) ≥ h(d(κn, End(Γ)).
So, limn→∞ d (κn, End(Γ)) = 0. From Propsition 1.4(ii) Γ is quasi-nonexpansive, End(Γ) is closed. By Lemma 2.1, {κn}

is Fejer monotone according to End(Γ). So, {κn} converges strongly to an element in End(Γ). □
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Theorem 2.5. Let Y,D, Γ and {κn} be as in Lemma 2.1. If Γ is semicompact, then {κn} converges strongly to an element
in End(Γ).

Proof. From (2.3), we get
αnβnγn (1 − γn) d2 (κn, vn) < ∞ .

From Lemma 1.15, there exist subsequences
{
vnk

}
and

{
κnk

}
of {vn} and {κn} respectively, such that limk→∞ d2 (

κnk , vnk

)
=

0. So
lim
k→∞

R
(
xnk ,Γ(xnk

)
) = lim

k→∞
d
(
xnk , vnk

)
= 0. (2.5)

Since Γ is semicompact, one can find a strongly convergent sequence
{
κnk

}
of {κn} with the strong limit, i.e., b. We shall

show that b ∈ End(Γ). From Lemma 1.6 ,

d(b,Γ(b)) ≤ d
(
b, κnk

)
+ d

(
κnk ,Γ (b)

)
≤ d

(
b, κnk

)
+

(
3 + α
1 − α

)
d
(
κnk ,Γ

(
κnk

))
+ d

(
κnk , b

)
→ 0 as k → ∞.

Hence, b ∈ Γ(b). From Proposition 1.4 (ii),

H
(
Γ
(
κnk

)
,Γ(b

)
) ≤ d

(
b, κnk

)
→ 0 as k → ∞. (2.6)

Let a ∈ Γ(b) and select vnk ∈ Γ
(
κnk

)
so that d

(
a, vnk

)
= d

(
a,Γ

(
κnk

))
. By (2.5) and (2.6) we obtain

d(b, p) ≤ d
(
b, κnk

)
+ d

(
κnk , vnk

)
+ d

(
vnk , a

)
= d

(
b, κnk

)
+ d

(
κnk , vnk

)
+ d

(
Γ
(
κnk

)
, a

)
≤ d

(
b, κnk

)
+ R

(
κnk ,Γ

(
κnk

))
+ H

(
Γ
(
κnk

)
,Γ(b

)
)

→ 0 as k → ∞.

Hence, a = b for all a ∈ Γ(b), that is b = Γ(b). So b ∈ End(Γ). From Lemma 2.1, limn→∞ d (κn, b) exists and for that
reason b is the strong limit of {κn}. □

3. Conclusion

We proved the results of endpoint convergence for generalized α-multivalued nonexpansive mappings in a hy-
perbolic metric space. Our results extend the endpoints of multivalued Suzuki mappings in Kaplan [6](Theorem 1,
Theorem 2, Theorem 3) to a wider class of uniformly convex hyperbolic spaces, which is more general than Banach
spaces, CAT(0) spaces and some CAT(κF) spaces. Also, the class of multivalued generalized α-nonexpansive map-
pings is in larger than that the class of generalized nonexpansive multivalued mappings properly includes the class of
nonexpansive multivalued mappings.
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