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Abstract 

Transmission lines refer to a variety of electrical structures that transfer information or energy typically in the form of carrying 

electromagnetic waves. Examples of transmission lines include coaxial cables, telephone wires, microstrips, and optical fibers. 

Understanding the transmission and distribution of the electromagnetic waves across the line is critical for matching the load with the 

generator to deliver the energy or information with minimum losses. The flow of electromagnetic waves across the line is described 

based on the voltage and current using Partial Differential Equations (PDEs). In this paper we apply the Central Space Central Time 

(CSCT) finite difference numerical method to solve the transmission line PDEs. We present the numerical solution of the waveforms 

and compare it with the analytical solution to evaluate the accuracy of this numerical method in solving the transmission line problem. 

It is found that the numerical solution of the voltage waveform is very near the analytical result with small error margin. However, 

while the numerical solution of the current shows the same waveform as the analytical one, there is some quite significant error in the 

magnitude. The error is found to result from the fact that the waveform of the numerical solution has some phase shift from that of the 

analytical solution. Adjusting the phase shift of the current waveform results in having good agreement between numerical and 

analytical results. 
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Sonlu Fark Kullanarak İletim Hattı PDE'lerinin Sayısal Çözümü 
Öz 

İletim hatları, tipik olarak elektromanyetik dalgalar taşıma biçiminde bilgi veya enerji aktaran çeşitli elektrik yapılarını ifade eder. 

İletim hatlarına örnek olarak koaksiyel kablolar, telefon kabloları, mikro şeritler ve optik fiberler verilebilir. Elektromanyetik 

dalgaların hat boyunca iletimini ve dağıtımını anlamak, enerjiyi veya bilgiyi minimum kayıpla iletmek için yükü jeneratörle 

eşleştirmek için kritik öneme sahiptir. Hat boyunca elektromanyetik dalgaların akışı, Kısmi Diferansiyel Denklemler (PDE'ler) 

kullanılarak voltaj ve akıma dayalı olarak tanımlanır. Bu yazıda, iletim hattı PDE'lerini çözmek için Merkezi Uzay Merkezi Zaman 

(CSCT) sonlu farklar sayısal yöntemini uyguluyoruz. Dalga biçimlerinin sayısal çözümünü sunuyoruz ve bu sayısal yöntemin iletim 

hattı problemini çözmedeki doğruluğunu değerlendirmek için analitik çözümle karşılaştırıyoruz. Gerilim dalga biçiminin sayısal 

çözümünün, küçük hata payı ile analitik sonuca çok yakın olduğu bulunmuştur. Bununla birlikte, akımın sayısal çözümü analitik 

olanla aynı dalga biçimini gösterse de, büyüklükte oldukça önemli bazı hatalar vardır. 

Hatanın, sayısal çözümün dalga biçiminin analitik çözümden bir miktar faz kaymasına sahip olmasından kaynaklandığı bulunmuştur. 

Mevcut dalga formunun faz kaymasını ayarlamak, sayısal ve analitik sonuçlar arasında iyi bir uyum sağlar. 

Anahtar Kelimeler: İletim hattı, PDE'ler, CSCT, sonlu farklar, sayısal analiz, kararlılık analizi, elektromanyetik dalga formu. 
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1. Introduction 

The term transmission line is used to refer to a variety of 

structures that transfer information or energy but here the 

focus is on the analysis of transmission lines carrying 

electromagnetic waves. Examples of such transmission lines 

include coaxial cables, telephone wires, microstrips, and 

optical fibers (Transmission line theory, 2009) and (Ulaby, 

1994). Such transmission lines are used for carrying audio, 

video, and digital information to TVs, computers, phones, 

etc. (Korzeniewska, 2019). A transmission line is a two-port 

network where at one port there is a source sending some 

type of electromagnetic signal (generator) while at the other 

port a load is receiving that signal (Davoli, 2018). 

Understanding the transmission and distribution of the 

electromagnetic signal across the line is critical for matching 

the load with the generator to successfully deliver the energy 

or information with minimum losses. This understanding is 

also critical for the design of efficient transmission lines in 

terms of length, size, and materials. 

 The problem of electromagnetic waves inside 

transmission lines is typically solved in the complex domain 

using the notation of phasors. So, the equations describing 

the transmission line are typically written and solved in 

phasor notation and not in the usual time domain notation. 

After solving the problem, the solution is transformed into 

the time domain notation (Daafouz, 2014). So, it is 

interesting to approach this problem in a new way that is not 

explored in the textbooks on circuits and electromagnetics. It 

is interesting to see how this problem can be solved using 

numerical methods. This approach can help us see the 

problem from another perspective. In particular, we can get 

more insight about the role of boundary conditions and initial 

conditions in solving partial differential equations (PDEs). 

This is because in the usual way this problem is solved, the 

engineer is more concerned with applying the already 

obtained equations rather than deriving the solution from the 

fundamental PDEs. Also, we can get to compare the results 

of our numerical solution with the analytical solution and 

thus be able to judge the suitability of the numerical method 

with this type of problems. Simply, the problem is not 

approached using the typical time domain analytical 

approach nor the numerical approach and it is interesting to 

try to apply a relatively unusual numerical technique to solve 

this problem and compare the numerical solution with the 

analytical solution to investigate the accuracy of the 

technique and its suitability for this kind of problems. 

In order to analyze the behavior of the electromagnetic 

wave across the line, an appropriate electric circuit model of 

the line must be used. As it is well-known, a typical 

equivalent circuit model of the transmission line has four 

components: resistance, inductance, conductance, and 

capacitance (Ulaby, 1994) and (Wang, 2018). They can 

provide a very accurate model of all transmission lines 

carrying any form of electromagnetic signals (Ulaby, 1994). 

R' is the resistance per unit length measured in Ω/m. L' is the 

inductance per unit length measured in H/m. G' is the 

conductance per unit length measured in S/m. C' is the 

capacitance per unit length measured in F/m. The values of 

these parameters are unique characteristics of each 

transmission line that are determined by the type of the 

material of the line and its geometry. Based on this model, 

the propagation of electromagnetic signals along the line can 

be analyzed. 

2. Methodology  

Equations (1) and (2) are called the transmission line 

equations or the telegrapher’s equations (Ulaby, 1994). They 

are coupled linear first-order Partial Differential Equations 

(PDEs) of voltage and current with respect to time and 

spatial position. Since the equations have two derivatives 

with respect to position and two derivatives with respect to 

time, we need two boundary conditions and two initial 

conditions to solve the equations. These conditions are 

determined by the generator supply voltage, the nature of the 

load, specifically the impedance of the load, and the 

parameters of the transmission line. So, in order to solve the 

equations, we have to choose a specific transmission line 

scenario where the generator and load are known, and the 

values of the transmission line parameters are given. 

−
∂v(z, t)

∂z
= R′ ∗ i(z, t) + L′ ∗

∂i(z, t)

∂t
 

(1) 

−
∂i(z, t)

∂z
= G′ ∗ v(z, t) + C′ ∗

∂v(z, t)

∂t
 

(2) 

We assume that z = 0 at the load and z = l at the 

generator, where ‘l’ is the length of the transmission line. 

Assume for our problem that l = 1 m. Let the generator be 

connected to a load with negligible impedance, e.g., short-

circuited line with ZL=0 Ω, through a transmission line with 

the following parameters R′ = 10  Ω/m, L′= 1 μH/m, G′ = 

0.01 S/m, C′ = 1 pF/m. Then, we can plug in these values in 

Equations (1) and (2) to obtain the PDEs that describe this 

particular transmission line problem. Equations (3) and (4) 

are the PDEs that we are going to solve numerically. 

−
∂v(z, t)

∂z
= 10 ∗ i(z, t) + 10−6 ∗

∂i(z, t)

∂t
 

(3) 

−
∂i(z, t)

∂z
= 0.01 ∗ v(z, t) + 10−12 ∗

∂v(z, t)

∂t
 

(4) 

To fully define our problem, assume a typical scenario 

where the generator generates a sinusoidal source voltage 

signal given by (note: angles are in degree not radian) 

v(z, 0) = 20 ∗ sin(10π ∗ z) (5) 
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This is our first initial condition for the voltage at  t = 0. 

The frequency of the signal is 1 GHz as can be seen from the 

source voltage equation. Usually, the phase velocity of 

electromagnetic waves in media is lower than their wave 

velocity in vacuum (the speed of light ‘c’). So, assume that 

the phase velocity in this transmission line is equal to 2/3 c. 

It is always beneficial to calculate the wavelength of the 

electromagnetic wave and compare it to the length of the 

transmission line as it turns out to have many connections 

that help understand the physics of the problem. 

𝜆 =
𝑣

𝑓
=

2
3

∗ 3 ∗ 108

1 ∗ 109
= 0.2 𝑚 

 

(6) 

So, l = 5λ. Later we will comment on the implication of 

this relation between the line length and the wavelength. The 

current boundary condition at the load, voltage boundary 

condition at the load, and initial current are, respectively,  

i(0, t) = 3.18 ∗ 10−3 ∗ cos(2π ∗ 109 ∗ t
− 179.91)       

(7

) 

v(0, t) = 0 (8) 

i(z, 0)
= 0.00159 ∗ cos(10π ∗ z
− 179.91 )                                                         
+ 0.00159 ∗ cos(−10π ∗ z − 179.91) 

 

 

     (9) 

These equations provide the necessary boundary and 

initial conditions for the voltage and current that are needed 

to solve the PDEs. Now, with the PDEs set and initial/ 

boundary conditions given we can proceed with solving the 

PDEs numerically. Note that 0 ≤ z ≤ 1 m and 0 ≤ t ≤ 1 μs. 

This time is long enough compared with the frequency and 

speed of the wave with respect to the length of the 

transmission line; long enough for the system to have 

reached steady state and remained in it long enough. 

3. Solution and Results 

To solve these PDEs numerically, we apply the finite 

difference method. We use the central difference for both the 

time derivative and the space derivative (CSCT) so that the 

error be of second order in both ‘t’ and ‘z’. Applying the 

central difference on the PDEs and rearranging the terms to 

make them explicit (can be solved explicitly where we solve 

for the future value at a single node in terms of only past 

values), we obtain. 

i𝑖
𝑛+1 = −20 ∗ 106 ∗ ∆𝑡 ∗ i𝑖

𝑛 + i𝑖
𝑛−1 − 106 ∗

∆𝑡

∆𝑧

∗ v𝑖+1
𝑛 + 106 ∗

∆𝑡

∆𝑧
∗ v𝑖−1

𝑛  

      (10) 

v𝑖
𝑛+1 = −2 ∗ 1010 ∗ ∆𝑡 ∗ v𝑖

𝑛 + v𝑖
𝑛−1 − 1012 ∗

∆𝑡

∆𝑧

∗ i𝑖+1
𝑛 + 1012 ∗

∆𝑡

∆𝑧
∗ i𝑖−1

𝑛  

(11) 

In order to make sure that the PDEs can actually be 

solved using suitable space/ time discretizations, we have to 

check the stability of the numerical method for our problem. 

The method must be either unconditionally stable or 

conditionally stable. In the second case, we have to choose 

our discretizations based on the stability conditions so that 

we can ensure that we obtain a stable solution using our 

numerical method. Applying Von Neumann stability 

analysis, the solution is stable if the magnification factor 

(amplitude at next or current time step over amplitude at 

previous time step) of the wave amplitude for both the 

voltage and current at each time step is less than one. That is, 

|
Aie

jω(n+1)∆𝑡

−
2∆𝑡R′

 L′ ∗ Aie
jωn∆𝑡

| = |
1

−
2∆𝑡R′

 L′

| =
 L′

2∆𝑡R′
< 1 

 

     (12) 

|
Bie

jω(n+1)∆𝑡

−
2∆𝑡G ′

C′ ∗ Bie
jωn∆𝑡

| = |
1

−
2∆𝑡G ′

C′

| =
C′

2∆𝑡G ′
< 1 

 

     (13) 

So, the conditions for stability are 

 L′

2R′
< ∆𝑡 

      (14) 

C′

2G ′
< ∆𝑡 

      (15) 

Plugging in the values we have for the line parameters, 

5 ∗ 10−8 < ∆𝑡, 5 ∗ 10−11 < ∆𝑡. So, we have to choose ∆t to 

be larger than 5 ∗ 10−8 for stability. It is noted that the 

solution is unconditionally stable for any space 

discretization. That is, the stability does not depend on ∆z.  

Given that λ = 0.2, our ∆z has to be much less than 0.2. 

Generally, ∆z ≪ λ, because the wavelength is the 

characteristic spatial length of the wave, the wave variation 

in space happens in fractions of λ. So, if our space 

discretization is equivalent to λ, then we are missing 



European Journal of Science and Technology 

e-ISSN: 2148-2683  97 

information on the waveform of the wave. That’s the wave is 

hugely changing within our discretization step. This is 

obviously not acceptable and will result in failure of the 

numerical method since the wave would be much varying 

during our discretization step. So, we can choose ∆z = 

0.002λ = 4*10-4. Thus, given that the length of the 

transmission line is l = 5λ, we have 2500 nodes. For the time 

discretization, ∆𝑡 = 6.25 ∗ 10−8. So, we have 16 time steps 

in the interval 0 ≤ 𝑡 ≤ 1 𝜇𝑠. To do the actual computations, 

we make use of MATLAB. We have to develop a MATLAB 

program that solves the equations for each time step and 

saves the solution. 

The problem can be analytically solved in more than one 

way, here we used the usual electric circuit solution that 

makes use of the complex domain and phasors. The main 

step in the solution is to obtain the impedance of the circuit 

based on the model and the values of the parameters given 

before. Then after completing the solution and transforming 

the results from the complex domain to the real domain, the 

solution for the voltage and current was obtained as shown in 

Equations (16) and (17).  

𝑣(𝑧, 𝑡) = 10 [ sin(2𝜋 ∗ 109 ∗ 𝑡 + 10𝜋 ∗ 𝑧)
− sin(2𝜋 ∗ 109 ∗ 𝑡 − 10𝜋 ∗ 𝑧) ] 

  (16) 

𝑖(𝑧, 𝑡) = 0.00159 [ cos(2𝜋 ∗ 109 ∗ 𝑡 + 10𝜋 ∗ 𝑧
− 179.91)                              
+ cos(2𝜋 ∗ 109 ∗ 𝑡 − 10𝜋 ∗ 𝑧
− 179.91) ] 

Figure 1. Surface plot of the voltage waveform along 

the transmission line up to t= 10^-7. 

 (17) 

 

Figure 2. Surface plot of the current waveform. 

 

 

Figure 3. Voltage waveform analytical result and numerical 

result along the transmission line at t= 10^-7 s. 

 

 

Figure 4. Voltage waveform analytical result and numerical 

result at the middle of the transmission line. 
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4. Conclusion 

It can be seen that the numerical solution of the voltage is 

very near from the analytical result with small error that is 

hardly visible from the graphs. However, while the numerical 

solution of the current showed the same waveform as the 

analytical one, there was quite significant error between the 

magnitudes of both results. It appears that the waveform of 

the numerical solution has some phase shift from that of the 

analytical solution. So, when we compare them we get 

different magnitudes since we are not accounting for this 

potential phase shift that may have arose from accumulation 

of the errors. Adjusting the phase shift of the current 

waveform results in having good agreement between 

numerical and analytical results. One challenge is that the 

execution of the numerical code (the “for” loops in 

particular) takes a lot of time.  

Figure 5. Current waveform analytical result and numerical 

result at the middle of the transmission line. 

 

 

This is because the computations are very extensive since we 

are talking about roughly 250 million iterations. In fact, if we 

try to increase the time duration we are solving for by 10 

times, Matlab shows an overflow error message that it cannot 

store the resulting variable. We had to use “single” precision 

instead of “double” precision for our floating-point variables 

so that the code be executed withing an acceptable time limit. 

However, this will come at the expense of accuracy at some 

point.  
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