
Monitoring Blood Pressure Variability via Chaotic
Global Metrics using Local Field Potential Oscillations
David M. Garner ID α,β,1, Shouyan Wang ID §,2, Ashley L.B. Raghu ID §,3, Vitor E. Valenti ID β,4, Tipu Z. Aziz ID §,5 and Alexander L.
Green ID §,6

αCardiorespiratory Research Group, Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University,
Headington Campus, Gipsy Lane, Oxford OX3 0BP, United Kingdom, βAutonomic Nervous System Center, Sao Paulo State University, UNESP, Marilia, SP,
Brazil, §Nuffield Department of Surgical Sciences, Level 6, West Wing, John Radcliffe Hospital, Oxford University, Oxford OX3 9DU, United Kingdom.

ABSTRACT
The intention was to associate blood pressure (BP) variability (BPV) measurements to Local field potentials
(LFPs). Thus, assessing how LFPs can co-vary with BPV to permit implantable brain devices (via LFPs) to
control output. Elevated BPV is a considerable cardiovascular disease risk factor. Often patients are resistant
to pharmacotherapies. An alternative treatment is Deep Brain Stimulation (DBS). Mathematical techniques
based on nonlinear dynamics assessed their correlation of BPV chaotic global metrics to LFPs. Chaos Forward
Parameter (CFP6) was computed for LFPs, at three electrode depths in the mid-brain and sensory thalamus.
Mean, root mean square of the successive differences (RMSSD) and the chaotic global metrics (CFP1 to
CFP7) were computed for the BP signal. The right ventroposterolateral (RVPL) nucleus provided a substantial
correlation via CFP6 for BP with R-squared up to approximately 79% by means of LFP gamma oscillations.
Investigation of BPV via LFPs as a proxy marker might allow therapies to be attuned in a closed-loop system.
Whilst all patients were chronic pain patients the chaotic global relationship should be unperturbed. LFPs
correlation does not unconditionally predict its causation. There is no certainty DBS in these locations would
be therapeutic but can be used as an assessment tool.
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INTRODUCTION

Monitoring deep brain local field potentials (LFPs) can provide
wide-ranging information. They show oscillatory behaviour in
several frequency bands. The frequency ranges explored here
are delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30
Hz), gamma (30-100 Hz) and fast (100-200 Hz) (McAfee 2017).
They seed the electroencephalograms (EEGs) that are recorded
non-invasively; so are clinically relevant. LFPs reflect the totalled
synaptic activity from a local neuronal population within a region
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of about 100 micrometres located around the recording electrode.
Implanted Deep Brain Stimulation (DBS) electrodes can be used to
record their activity from precise areas of the brain. They have been
targeted to within sub-millimetric accuracy. Such oscillations are
relevant to the neurophysiological and neuropathological aspects
of neuropathic pain (Ploner et al. 2017), dystonia (Whitmer et al.
2013) and Parkinson’s disease (Dauer and Przedborski 2003; Lang
and Lozano 1998; Stoco-Oliveira et al. 2021), amongst others. LFP
oscillations in the different frequency ranges are created by distinct
mechanisms but, are all related to neural synchrony.

Concentrating on blood pressure (BP) variability (BPV); ele-
vated levels of BP and BPV are interesting because of their cor-
relation with adverse cardiovascular and cerebrovascular events
(Appiah et al. 2021). The cause of BPV fluctuations versus the
LFPs from deep brain areas could provide a therapeutic solution
using DBS, pharmacotherapies and so forth. These associations
are upheld throughout all age and ethnic groups (Mancia et al.
2013). Despite numerous pharmacotherapies, fewer than 50% of

CHAOS Theory and Applications 65

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
RESEARCH ARTICLE

Vol.5 / No.2 / 2023 / pp.65-77
https:/ /doi .org/10.51537/chaos.1262839

https://orcid.org/0000-0002-8114-9055
https://orcid.org/0000-0002-9776-8539
https://orcid.org/0000-0002-3866-3833
https://orcid.org/0000-0001-7477-3805
https://orcid.org/0000-0001-9128-8668
https://orcid.org/0000-0002-7262-7297


hypertensive patients regulate their BP and variabilities effectively.
Approximately 0.5% are refractory to treatment, implying uncon-
trollability despite taking up to five categories of anti-hypertensive
medication (Calhoun et al. 2014).

Whilst mainstream clinical studies focus on intermittently mea-
sured, static BP measurements, BP is not a constant variable. It
oscillates, exhibiting short-term (seconds to minutes), mid-term
(hours to days) and long-term (between seasons) fluctuations
(Parati et al. 2018; Webb et al. 2021). Likewise, it varies with circa-
dian cycles (Frank et al. 1966). Clinical studies have established
an independent relationship between both short and long term
BPV (Parati et al. 2008) to cardiovascular events, regardless of their
mean BP levels. These mentioned cardiovascular events and mean
BP associations to the chaotic global techniques (discussed later)
are expected to initiate from different areas of the midbrain. BPV
deviations have been related to target organ damage, such as ar-
terial stiffness (Kim et al. 2016; Zhou et al. 2018), left ventricular
hypertrophy (Mustafa et al. 2016), risk of developing diabetic foot
ulcers (Palatini 2018) and risk of pre- and post- surgical complica-
tions (Henriques et al. 2019; Jinadasa et al. 2018; Packiasabapathy
et al. 2020; Rangasamy et al. 2020).

Treatment using antihypertensive medications may reduce BPV.
Consequently, this is linked with optimal cardiovascular protection
(Appiah et al. 2021; Corrao et al. 2011). This may have implications
for stroke (Appiah et al. 2021; Rothwell et al. 2010), myocardial
infarction, heart failure, peripheral artery disease, end-stage renal
disease (Parati et al. 2012) and explicitly the dynamical diseases
(Mackey and Milton 1987). Dynamical diseases are categorized
by unexpected aberrations in the qualitative dynamics of physio-
logical processes (Bernardo et al. 2014; Chang 2010). This causes
irregular dynamics and pathological states. Accordingly, there is
an association between the mathematical niche of nonlinear dy-
namics and complexity theory with clinical medicine (Belair et al.
1995).

Initially, we focussed on LFPs in six bandwidths: delta (0.5-4
Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz), gamma (30-
100 Hz) and fast (100-200 Hz) in four anatomical locations and at
three electrode depths. We computed the chaotic global metrics
(Chaos Forward Parameter, CFP1 to CFP7) that assess the chaotic
response and irregularities of datasets, as described by Garner
and Ling in 2014 (Garner and Ling 2014). These methods were
later advanced to investigate high spectral variants and applied
them to mathematical inverse problems in 2021 (Garner and Ling
2021). They had already been applied to forward problems (Garner
et al. 2020a, 2017). We computed the spectral multi-Taper Method
(sMTM) for the LFPs. Then, we concurrently logged the mean, root
mean square of the successive differences (RMSSD) (Nazaraghaei
and Bhat 2020; Schmitt et al. 2015) and the non-trivial permutations
of three chaotic global metrics of BP. We are assessing its BPV via
the somewhat sinusoidally oscillating BP signal. This is analogous
to the Duffing (Bonatto et al. 2008), Brusselator (Osipov and Poni-
zovskaya 2000) and Lorenz (Jeppesen et al. 2015) signals in Garner
and Ling (Garner and Ling 2021).

BPV fluctuates highly irregularly and conceivably chaotically.
So, algorithms that assess this property are appropriate. BPV
arises as a result of the cross-talk between several cardiovascular
and physiological regulatory systems. These include but are not
limited to the baroreceptor reflex, the renin-angiotensin system,
the vascular myogenic response and release of nitric oxide from
the endothelium (Hocht 2013).

Up until now, the most sophisticated techniques applied to mea-
sure BPV have been their mean, standard deviation (Parati et al.

2013) and, Detrended Fluctuation Analysis (DFA) (Peng et al. 1995)
in rats. Nonetheless, whilst DFA has been studied previously (Gal-
hardo et al. 2009) it necessitates enforcement on the BP interpeak
intervals not the periodic signal described here. Consequently, we
later apply high spectral Detrended Fluctuation Analysis (hsDFA)
as CFP5 instead. The chaotic global techniques implemented here
(Barreto et al. 2014) are anticipated to have elevated responses to
those changes than the linear time-domain descriptive statistics
and DFA. Here, mean and RMSSD are set as benchmarks.

Some antihypertensive medications such as Calcium Channel
Blockers (Rothwell et al. 2010; Silke et al. 1987) have been demon-
strated to be effective in reducing BPV, either as monotherapy, or
in combination with other therapies. Since diminishing BPV might
avert the risk of cardiovascular mortality (Dolan and O’Brien 2010),
under circumstances of refractory hypertension (Bacan et al. 2022;
Matanes et al. 2022), an alternative treatment might be effective.
Whilst not without significant risk, a potential substitute is DBS.
DBS can effectively lower the absolute mean BP when stimulation
is enforced to the ventral columns of the Periaqueductal grey area
(PAG) (Green et al. 2005). BPV can fluctuate with chronic pain
(Spallone 2018). So far, even if we can monitor the BPV levels via
the LFPs; it is not inevitably the case that correlation implies causa-
tion. DBS in identical regions could be ineffective. Yet, additional
pharmacotherapies should be analysed using these chaotic global
techniques.

Anatomically, the periaqueductal grey matter (PAG) and ros-
trally contiguous periventricular grey (PVG) are located in the
mid-brain and organized into functionally distinct and opposite
columns (Carrive and Bandler 1991). These columns receive af-
ferents from the sympathetic chain (Farkas et al. 1998), the ros-
tral raphe (Marcinkiewicz et al. 1989), anterior hypothalamus
(Cameron et al. 1995), thalamus (Krout and Loewy 2000) and cor-
tex (Newman et al. 1989). In sequence, the PAG/PVG projects to
sympathetic premotor neurons in the hypothalamus, pons and
medulla. These projections influence sympathetic outflow that
alter cardiovascular output (Farkas et al. 1998). Moreover, the
PAG/PVG projects to vagal preganglionic neurons (Farkas et al.
1997). Assuming that the neurocircuitry of the PAG/PVG and their
cross-talk components perform a pivotal role in cardiovascular con-
trol the central question of this study is whether the mathematical
measures of complexity of this neural activity, in the appropriate
region, correlate with BPV. Neuromodulation has the potential to
reduce BPV and therefore reduce morbidity associated with this
elevated BPV. The necessary neuromodulation may occur in very
specific, sub-millimetric locations of the mid-brain and sensory
thalamus.

MATERIAL AND METHODS

Twenty-two human patients underwent DBS for neuropathic pain;
all were chronic pain. All DBS implantations were performed at
the John Radcliffe Hospital, Oxford, United Kingdom. The surgical
procedures for the targeting and implantation of DBS electrodes
(Model 3387, Medtronic, Minneapolis, MN, United States of Amer-
ica) have been described previously (Bittar et al. 2005). All subjects
provided their informed written consent and confidentiality rights
observed. This study was approved by the Oxford Local Ethics
Committee (OxRecB): study number 05 Q1605 47 and conformed
to the declaration of Helsinki.
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Data Acquisition & Experimental Procedures

The DBS electrodes were temporarily externalized for one week of
trial stimulation. This delay was to ascertain if there was a clinical
effect prior to implanting the battery. We recorded three bipolar
recording signals in four different locations with each electrode
situated either in the mid-brain or sensory thalamus (see Figure
1). Electrode contacts are labelled such that ’0’ is the deepest and
’3’ the most rostral so that bipolar channel (M23) was the most
superficial, (M12) the middle depth and, (M01) the deepest of the
recordings. The mid-brain regions were left and right periaque-
ductal/periventricular grey (LPVG & RPVG respectively). The
thalamic areas were right and left ventroposterolateral nucleus
(RVPL & LVPL respectively). In subjects with facial pain, their tar-
get was slightly medial and termed ’ventroposteromedial’ nucleus
or ’VPL’ for simplicity as there is no structural or functional dif-
ference. This sensory thalamic location is ordered somatotopically
with face medial and leg lateral (arm in between).

The researchers’ ensured synchronisation between the BP signal
and LFP measurements. The two outputs were logged simulta-
neously, aligned on the same clock and displayed online whilst
recorded onto a hard disk in Spike2 (Cambridge Electronic Design,
United Kingdom).

Datasets were acquired at two sampling frequencies; 4 kHz
and 5 kHz. Those at 5 kHz were down-sampled to 4kHz so that
all datasets could be manipulated identically. All signals were
linearly detrended; the mean of the signal subtracted from the
signal itself. The LFPs were bandpass filtered in accordance with
delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30 Hz),
gamma (30-100 Hz) and fast (100-200 Hz). They were screened
so that all values above and below four standard deviations were
excluded from the time-series. This had the beneficial effect of
removing the most extreme outliers without compromising the
signal information. The blood pressure signal was Butterworth
notch filtered to eliminate the 50 Hz UK mains noise. The width
of the notch was defined by the 49 to 51 Hz frequency interval.
This notch filter provided up to 24 dB of attenuation. The LFPs
were not filtered in this way since they are only used to compute
the sMTM (CFP6) which is contingent on the area between the
power spectrum and the baseline, not the signal itself. (See later
for elucidation on sMTM & CFP6). Next, all signals were down-
sampled to 1 kHz so not too computer processor intensive when
further processed. All time-series were 200 seconds long. To
achieve correlations with LFP electrode recordings, we logged
the concurrent blood pressure signals from the subjects. The LFPs
and blood pressure signals had their power spectra computed for
supplementary analysis. (See Figure 2).

An elevated level of chaotic global response is correlated with
optimal physiological performance (Bernardo et al. 2014; De Souza
et al. 2015). If the level of chaotic global response is lowered this
is usually (there are exceptions) associated with the purported
dynamical diseases (Belair et al. 1995; Mackey and Milton 1987;
Pezard et al. 1996). These include cardiac arrhythmias and res-
piratory failures and are potentially fatal. Psychiatric disorders
such as Schizophrenia (Bar et al. 2010, 2007) and bipolar disorder
(Voss et al. 2006) are other examples. Chaotic global techniques
have previously detected irregularities of the Heart Rate Variability
(HRV) in attention deficit hyperactivity disorder (ADHD) (Wajn-
sztejn et al. 2016), type 1 diabetes mellitus (T1DM) (De Souza et al.
2015; Garner et al. 2017) and chronic obstructive pulmonary disease
(COPD) (Bernardo et al. 2014). The restoration of HRV levels have
been confirmed in subjects who have undergone Bariatric surgery
(Benjamim et al. 2021). These novel chaotic global techniques to

scrutinize BPV have not been applied to blood pressure signals
prior to this study.

Signal Processing of Data Regarding further analysis we enforced
100 seconds of time-series. This is since we evaluate half of the 200
second time-series by implementing a sliding window 20 times.
Generally, by means of the standard techniques based on nonlin-
ear dynamics such as Shannon Entropy (Shannon 2001) and DFA
to assess HRV we require as a minimum of 5 to 20 minutes of
time-series (Camm et al. 1996). Yet, with the use of chaotic global
techniques an ultra-short time series has been proven to be ade-
quate (Garner et al. 2019b). The high spectral chaotic global metrics
are very sensitive and therefore further responsive to chaotic and
irregular signals (Garner and Ling 2021).

Each recorded time-series was disconnected into 20 comparable
epochs. This attained 20 values. This was to substantiate that
if the measures of the linear regression increased. This would
indicate that the two samples are more highly correlated. Each
epoch incorporated half of the time-series with subsequent epochs
being shifted forward by 2.5%. Therefore, the first epoch was
measured from 0 to 50%, second from 2.5 to 52.5% and so on until
the 20th epoch measured from 50 to 100%. We recorded three
bipolar signals (M01 deepest, M12 middle, M23 most superficial)
in four different locations of the mid-brain and sensory thalamus.
This gave us 20 sections for each bipolar recording signal which
were taken per data set.

With regards the LFPs, the sMTM (CFP6) of the 20 phases was
taken for each section. This gave 20 values for (M01), 20 values
for (M12) and 20 values for (M23) recordings for each of the four
regions. The last channel of data to be processed was the blood
pressure which was monitored concurrently with the bipolar elec-
trode recordings. We separated this into 20 phases synchronously
with the bipolar recordings. For the blood pressure, we computed
the mean, RMSSD and the seven non trivial chaotic global metric
combinations (CFP1 to CFP7). For a full chaotic global analysis
all seven permutations are necessary. It is not sufficient to just
equate the signal chaotic global values CFP5, CFP6 and CFP7. This
corresponded to 20 for mean, 20 for RMSSD, 20 for CFP1 and so
on up to and including 20 for CFP7.

The Multi-Taper Method (MTM) power spectrum provided the
foundation for all calculations regarding CFP1 to CFP7 parame-
ters. In this study the parameters for MTM are set at: (i) 1Hz for
sampling frequency; (ii) time bandwidth for the DPSS is set to
4; (iii) FFT is the larger of 256 and the next power of two greater
than the length of the segment (iv) Thomson’s ’adaptive’ nonlinear
combination method to combine individual spectral estimates.

CFP1 =
[

n (hsEntropy)2 + n (sMTM)2 + (1 − [n (hsDFA)])2
] 1

2

CFP2 =
[

n (hsEntropy)2 + (1 − [n (hsDFA)])2
] 1

2

CFP3 =
[

n (hsEntropy)2 + n (sMTM)2
] 1

2

CFP4 =
[

n (sMTM)2 + (1 − [n (hsDFA)])2
] 1

2

CFP5 =
[
(1 − [n (hsDFA)])2

] 1
2

CFP6 =
[

n (sMTM)2
] 1

2

CFP7 =
[

n (hsEntropy)2
] 1

2

.
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Figure 1 A 3-Dimensional image of the electrode locations. One electrode is PAG/PVG and the other is in the sensory thalamus. These signify
a ’mean’ position for the cohort described. The coordinates are the mean target (middle 2 contact points) from the mid-commissural point in
millimetres (mm). anterior commissure (AC) - posterior commissure (PC) coordinates. PAG array centre : X = 5mm, Y = -16mm, Z = -2mm.
Thalamic electrode: X = 16mm, Y = -9mm, Z = 4mm. [PAG = periaqueductal grey, MRF = midbrain reticular formation, ML = medial lemniscus,
Vcp = Ventro-caudalis parvocell, VPL = ventral posterolateral, VPM = ventral posteromedial].

Multi-Taper Method Power Spectrum The MTM power spectrum
is preferred and implemented as it has been established to statisti-
cally outperform several other power spectra (Alkan and Yilmaz
2007; Subasi 2007) when calculating chaotic global metrics (Garner
et al. 2020a, 2017). MTM (Ghil 1997) is advantageous for spectral
estimation and signal reconstruction, of a time-series of a spectrum
that may contain broadband and line components. MTM is non-
parametric as it does not enforce an a priori, parameter dependent
model of the process that generated the time-series under analysis.
It lessens the variances of spectral estimates by using a small set
of tapers. Data is pre-multiplied by orthogonal tapers created to
minimize the spectral leakage on account of the finite length of
the time series. A set of independent approximations of the power
spectrum is calculated. Functions identified as discrete prolate
spheroidal sequences (DPSS) or Slepian sequences (Day et al. 2020;
Slepian 1978) are a set of functions which optimize these tapers.
They are defined as eigenvectors of a Rayleigh-Ritz minimization
problem (Gould 1995). For further information consult Thomson
(Thomson 1982) or Percival and Walden (Percival and Walden
1993).

Statistical Assessments: Mean, RMSSD & Chaotic Global Vari-
ants Firstly, the sMTM (or CFP6) of the pre-processed (linearly
detrended and bandpass filtered) LFPs signal was computed. This
was for all three depths of electrode (M01, M12, M23), and at the
four locations of the mid-brain (LPVG, LVPL, RPVG and RVPL).
Secondly, we measured the mean and RMSSD of the blood pressure
signal. These were the linear time-domain measurements. They are
the simplest to compute, least computer processor intensive and
are applied directly to the time-series. These two measurements
could then be compared against the chaotic global metrics; key to
this investigation. The linear metrics are applied as benchmarks to
which all other chaotic global parameters are compared.

The motivation for implementing techniques founded on non-
linear dynamics is that they measure the chaos and irregularity
of responses in slightly different ways. The initial chaotic global
metrics by Garner and Ling (2014) (Garner and Ling 2014) were
later distinguished into their high spectral variants (Garner and
Ling 2021), namely high spectral Entropy (hsEntropy) and hsDFA.
These were demonstrated to be more responsive and influential on
the basis of a multivariate statistical technique termed Principal
Component Analysis (PCA) (Jolliffe 2005). They are functional
with ultra-short time-series (Garner et al. 2019b). Here the time-
series assessed are 100 seconds which is well within the range
of the aforementioned study. Thus, the statistical hazards in the
application of one are potentially compensated by the others in
the CFP1 to CFP7 combinations. This is standard procedure when
assessing chaotic global metrics (Bernardo et al. 2014; De Souza
et al. 2015; Garner et al. 2022, 2020a, 2017).

hsEntropy is a function of the irregularity of amplitude and
frequency of the power spectrums peaks. It is derived by applying
Shannon entropy (Shannon 2001) to the MTM (Ghil 1997; Vautard
et al. 1992) power spectrum. Such variability and introduction of
errors from spectral leakage in the time-series and its mathematical
relationships over the duration of the datasets are minimised by
using the MTM power spectrum, as opposed to that of the Welch
(Alkan and Kiymik 2006; Alkan and Yilmaz 2007) power spectrum,
which has been applied previously (Bernardo et al. 2014; De Souza
et al. 2015).

DFA (Peng et al. 1995) can be implemented to datasets where
statistics such as mean, variance and autocorrelation fluctuate with
time. To obtain the hsDFA the spectral adaptation is computed
precisely as for hsEntropy. But, this time DFA is enforced onto
the MTM power spectrum which has settings identified above.
hsDFA responds to chaos and irregularities in the reverse way, so
we subtract its value from unity; hence we enforce (1-hsDFA) when
making comparisons.
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Figure 2 Right ventroposterolateral (RVPL): Three bipolar electrode recording signals; linearly detrended by subtracting the mean of the signal
from the signal itself. Then, bandpass filtered in the gamma region (30 to 100 Hz); Electrode M01 (a:upper left) Electrode M12 (b:upper middle)
and Electrode M23 (c:upper right) all in units of microVolts. Next, Multi-Taper Method (MTM) Power Spectrum of RVPL linearly detrended
Gamma M01 with sMTM (or CFP6) illustrated as the area under the vertical downwards pointing arrow of the power spectrum yet above the
baseline (d:lower left) with power in arbitrary units; Blood Pressure signal (e:lower middle) in arbitrary units and time in seconds. MTM power
spectrum of the Blood Pressure signal only with sMTM (or CFP6) again illustrated as the area under the vertical arrow of the power spectrum
but above the baseline. High spectral Entropy (hsEntropy) and high spectral Detrended Fluctuation Analysis (hsDFA) labelled by enforcing
Shannon Entropy and DFA onto the power spectrum, respectively as indicated by the horizontal arrow. Power in arbitrary units (f:lower right).

sMTM (CFP6) is the area between the MTM power spectrum
and the baseline. MTM of a clean sinusoidal signal in continuous
time and infinite length has zero area beneath it (Dirac 1939). For
totally uniformly distributed random variables the spectrum is
essentially flat. These lesser chaotic and irregular responses offer
lower values and totally random data has a value of zero. Within
these extremes, chaotic responses are often present with a contin-
uous broadband spectrum. Broadband noise lifts peaks and the
trend of the spectrum up and above the baseline, and so chaotic
sets have greater values of sMTM. All three chaotic global metrics
have identical weightings of unity throughout.

Optimal bandwidth We assessed oscillatory performance using
linear regressions during six frequency bands. These frequency
ranges were delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta
(12-30 Hz), gamma (30-100 Hz) and fast (100-200 Hz). (See Fig-
ure 3). These regressions were also for the mean of the depth of
electrodes (M01, M12, M23) for the four locations of the six afore-
said bandwidths. The gamma region achieved the highest level
of linear regression. Therefore, indicating the strongest correla-
tion. Accordingly, we enforce the 30 to 100 Hz bandwidth in all
succeeding analysis.

Goodness-of-Fit Assessments: Gamma region (30-100Hz) R-
squared (Miles 2005) is referred to as the coefficient of multiple
determination for multiple regression. It is a statistical method to
assess the proportion of variance in the dependant variable that
can be explained by an independent variable. Namely, how good
does the data fit the regression model. R-squared is the variation
divided by its total variation. R-squared is always between 0 and
1; or as a percentage, 0% and 100%. 0% percent indicates that the
model explains none of the variability of the response data about

its mean. Whilst, 100% specifies that the model explains all the
variability of the response data about its mean.

Whilst R-squared delivers an insight into the assessment of
the statistical model it ought not be relied upon alone. Further
procedures need enforcement besides this technique. Moreover, it
does not reveal information about the causal connection between
the independent and dependent variables.

Residuals (Cook and Weisberg 1982; Gourieroux et al. 1987;
Pierce and Schafer 1986) are useful for detecting outlying y values.
They verify the linear regression expectations in regard to the error
term in the regression model. High-leverage values have smaller
residuals as they often shift the regression line nearer to them.
They can detect types of autocorrelations and heteroscedasticity.

Studentized residuals (Gray and Woodall 1994) provide an alter-
nate measure for identifying outliers. They are more discriminative
than the Raw, Pearson or Standardized residuals. The notion is
to delete certain values in turn; each time refitting the regression
model on the remaining (n-1) values. So, comparing the observed
response values to their fitted values based on the models with the
appropriate value deleted. Standardizing these deleted residuals
attain the Studentized residuals. They are more effective at detect-
ing outlying y values than the other above-mentioned residuals.

We computed the mean of the standard deviation of the modulus
of the Studentized Residuals and the mean of the maximum of
the modulus of the Studentized Residuals. There were 20 residuals
per regression. Residuals can be positive or negative and would
cancel each other out if the mean was applied here just as they
are. Consequently, we compute the modulus of the Studentized
Residuals which indicates that all the negative values are made
positive. Their individual magnitudes are unchanged. Then, since
the outliers have greater values; be it the standard deviation or the
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maximum; lower values indicate a better fit of regression.
Mean squared error (MSE) (Das et al. 2004; Tuchler et al. 2002;

Wang and Bovik 2009) of an estimator calculates the mean of the
squares of the errors. Intrinsically, the mean squared difference
between the estimated values and the actual value. MSE is a
function of risk, consistent with the expected value of the squared
error loss. MSE is always above zero as there is always some
randomness or noise inherent in the system. Again, lower values
signify a better fit of regression.

RESULTS

The objective is to obtain the highest R-squared. In Figure 3 we
are considering the regressions between the LFPs sMTM (or CFP6)
and one of the nine metrics; the mean, RMSSD and chaotic global
metrics (CFP1 to CFP7) of BP. For each measure of the BP, we have
four areas of mid-brain. When the location for the best regressions
has been attained, we explore those with a positive y-intercept and
a significant slope. These are for the LFPs in the gamma region
(30-100Hz) and at three electrode depths (see Table 1). Negative y-
intercepts indicate a negative chaotic response which is forbidden
by the non-equilibrium laws of thermodynamics (Prigogine 1962).
A significant slope is required for an adequate recorded response.
A slope of zero would indicate a flat response, hence unresponsive
and futile. With regards the standard deviation and maximum of
the mean of modulus for the studentized residuals (see Figure 4a &
Figure 4b); a lower value indicates a better fitted regression. MSE
is also lowest for the optimal regression (see Figure 4c).

LPVG: Left Periventricular Grey

CFP2 (39-59%), CFP4 (31-55%), CFP6 (31-55%) and CFP7 (36-
60%) are significant with R-squared between 31% and 60%. The
slopes are fairly weak and unresponsive to the electrode depths.
CFP2, CFP4, CFP6 and CFP7 all have positive y-intercepts.

CFP1 (19-35%), CFP3 (22-35%) and CFP5 (25-50%) have low
values for R-squared. None of the CFPs cited are consistent with
positive or negative slopes at all electrode depths.

CFP2, CFP4, CFP6 and CFP7 have very high standard devi-
ation (0.5844-0.8060) and maximum (2.2352-3.1660) Studentized
residuals and MSEs (0.0055-0.0083).

RMSSD at M23 has high standard deviation (0.6659-0.7264) and
maximum (2.3182-2.6788). Studentized residuals and quite high
MSEs (0.0072-0.0091). It is rejected on the basis of a flat response
and these low goodness-of-fit values.

So, the regressions for LPVG are confirmed to be lower than
most of the other locations.

LVPL: Left Ventroposterolateral

Mean (30-32%) and RMSSD (30-38%) values for R-squared are
all low at 30% to 38%. CFP1 (16-32%), CFP2 (28-39%), CFP3 (17-
32%) and CFP7 (30-39%) are rejected as they have low R-squared
across all electrode depths.

CFP4 (32-47%) and CFP6 (33-47%) have quite low R-squared
at 32% to 47%. Yet, CFP5 is rejected as it has negative y-intercepts
throughout. Then, CFP4 and CFP6 slopes are fairly weak and so
unresponsive to electrode depths. They give a flat response. None
of the CFPs are consistent with positive or negative slopes at all
electrode depths

CFP4 and CFP6 have very high standard deviation (0.6478-
0.7790) and maximum (2.4447-2.9734) Studentized residuals and
quite high MSEs (0.0016-0.0114).

Overall for LVPL, the regressions are low and the responses
when the regression are high are flat and unresponsive.

RPVG: Right Periventricular Grey

Mean (not RMSSD) gives two robust values for R-squared at
M01 (63%) and M12 (55%). CFP1 gives one strong value for R-
squared of 54% at electrode location M01. But, the response is
relatively flat too.

CFP2 (20-43%) and CFP7 (21-44%) are rejected as they give a
low value for R-squared across all electrode depths. There are
moderately significant values for R-squared CFP3 (39-58%), CFP4
(46-54%), CFP5 (55% only) and CFP6 (43-52%) are significant for
R-squared at 39% to 58%. Yet, the slopes are steeper and are so are
responsive with respect to all electrode depths. The Mean is consis-
tent in that it has all y-intercepts positive for all electrode depths
and very steep negative slopes. None of the CFPs or RMSSD
are consistent as they respond with positive or negative slopes
throughout at all electrode depths. Mean responds with all nega-
tive slopes.

All those with high R-squared CFP3, CFP4, CFP5 and CFP6
have moderately high standard deviation (0.6010-0.6377) and max-
imum (2.1023-2.4154) Studentized residuals and exceptionally low
MSEs (<0.0001-0.0002).

RVPL: Right Ventroposterolateral

RMSSD (not mean) presents robust values for R-squared at
M12 (66%) and M23 (56%). Nevertheless, they give low slopes so
unresponsive with regards to the electrode depths. The response is
flat and so rejected. CFP1 (16-36%) and CFP3 (19-41%) are rejected
as they give a low value for R-squared across all electrode depths.
CFP5 (39%) for M01 electrode only. All other electrodes gave a
y-intercept which was negative and so forbidden.

CFP2 (44-57%), CFP4 (55-80%) and CFP6 (55-79%) gave strong
R-squared and all positive y-intercepts throughout. Slopes are
consistently negative for CFP2 and constantly positive for CFP4
and CFP6. CFP4 and CFP6 have the best R-squared at 55% to 80%
and all slopes are similarly positive at all electrode depths.

CFP2 has high standard deviation (0.6062-0.6418) and maxi-
mum (2.2266-2.4339) Studentized residuals and relatively high
MSE (0.0002-0.0021) compared to CFP4 and CFP6, later. CFP4
(SD 0.5307-0.6380; Max 2.0569-2.3452) and CFP6 (SD 0.5317-0.6364;
Max 2.0349-2.3813) have low Studentized residuals and the low
MSEs (0.0002-0.0008).

CFP7 (44-58%) for R-squared consistently negative slopes and
always positive y-intercepts. CFP7 (SD 0.6009-0.6320; Max 2.2180-
2.4339) have low Studentized residuals and the moderately low
MSEs (0.0002-0.0021).

DISCUSSION

The principal aim is to assess the relationship between BPV and
LFPs using chaotic global metrics. A relationship between them
has clinical implications in that (a) it may allow us to monitor
LFPs via DBS electrodes and imply a specific BPV state that may
be useful for monitoring or guiding therapy (b) it may imply (if
causative) that DBS can be used to clinically alter BPV, and (c)
whether DBS confirms suitable pharmacotherapies effective in
absence of other designated techniques.

When assessing the regressions of CFP6 for the LFPs versus the
mean, RMSSD and CFP1 to CFP7 for the BP signal, we established
that the gamma region (30 to 100 Hz) had the highest R-squared
which inferred the strongest correlation (See Figure 3).

LPVG and particularly LVPL have the weakest regressions
throughout. This is the case for the mean, RMSSD and CFP1 to
CFP7. Their slopes are weak and so their responses are flat. Their
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Figure 3 Regressions (R-squared) of sMTM (CFP6) for Local Field Potentials (LFPs) in the delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz),
beta (12-30 Hz), gamma (30-100 Hz) and fast (100-200 Hz) ranges for the mean of electrodes contacts [M01 (deepest depth), M12 (middle
depth) and M23 (most superficial)] at four locations [LPVG (n=5), LVPL (n=5), RPVG (n=8) and RVPL (n=4)] versus the two linear descriptive
(Mean & RMSSD) and the seven non-trivial permutations of the three high spectral chaotic global variant metrics (high spectral Entropy, high
spectral Detrended Fluctuation Analysis (hsDFA) and spectral Multi-Taper Method (sMTM)) of the blood pressure signal (CFP1 to CFP7). The
four symbols (circle, square, triangle and diamond) represent the level of R-squared for the LPVG, LVPL, RPVG and RVPL. There are three
symbols describing the electrode contacts [M01, M12, M23]. The upper symbol is the maximum R-squared, the lower symbol the minimum
R-squared and finally the middle symbol the median R-squared. The horizontal line between the maximum and minimum symbols represents
their mean value.
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■ Table 1 Multi-Taper Method (MTM) Power Spectrum: Mean Regressions (R-squared), Mean Slopes and Mean Y-Intercepts of CFP6
for Local Field Potentials (LFPs) in the gamma range (30Hz to 100Hz) for the electrode contacts [M01 (deepest depth), M12 (middle
depth) and M23 (most superficial)] versus the two linear descriptive (Mean and RMSSD) and the seven non-trivial permutations of the
three high spectral chaotic global variant metrics (high spectral Entropy, high spectral Detrended Fluctuation Analysis and spectral Multi-
Taper Method (sMTM)) of blood pressure (CFP1 to CFP7) for recordings from the mid-brain and sensory thalamus locations, namely
LPVG (n=5), LVPL (n=5), RPVG (n=8) and RVPL (n=4).

Gamma
MTM

CFP
(MTM)

Mean R-squared (Regression) Mean Slope Mean Y-Intercept
M01 M12 M23 M01 M12 M23 M01 M12 M23

LPVG
(n=5)

Mean 0.3189 0.3525 0.2449 -0.0720 -0.0155 0.0594 0.0686 0.0124 -0.0583
RMSSD 0.3116 0.4435 0.5523 0.0000 -0.0003 0.0005 0.0065 0.0067 0.0061

CFP1 0.2410 0.3450 0.1896 -0.5489 -0.0774 0.3674 1.4466 0.9777 0.5778
CFP2 0.4359 0.5928 0.3919 -1.0948 0.0418 0.4259 1.8926 0.7694 0.4505
CFP3 0.2502 0.3531 0.2217 -0.5537 -0.0874 0.4114 1.4481 0.9837 0.5330
CFP4 0.3177 0.5467 0.3906 -0.1441 -0.2564 0.2839 1.0639 1.1678 0.6629
CFP5 0.2476 0.4947 0.4075 -1.4032 4.1011 4.0996 1.9084 -3.4154 -3.6113
CFP6 0.3132 0.5492 0.4113 -0.1534 -0.2787 0.3772 1.0659 1.1819 0.5677
CFP7 0.4431 0.5979 0.3597 -1.1093 0.0220 0.5019 1.9072 0.7877 0.3801

LVPL
(n=5)

Mean 0.3222 0.3082 0.3015 -0.0111 0.0368 -0.0064 0.0055 -0.0329 0.0086
RMSSD 0.3768 0.3650 0.3001 -0.0001 -0.0009 -0.0005 0.0064 0.0072 0.0067

CFP1 0.2736 0.3194 0.1644 0.5669 -0.5029 -0.0449 0.3576 1.3904 0.9170
CFP2 0.3481 0.3855 0.2834 1.1999 -0.9483 0.0159 -0.3325 1.7033 0.7151
CFP3 0.2812 0.3173 0.1651 0.5730 -0.5084 -0.0493 0.3482 1.3935 0.9184
CFP4 0.3215 0.4722 0.4298 0.0855 -0.3483 -0.1469 0.8465 1.2939 1.0808
CFP5 0.3995 0.5500 0.3962 3.1834 7.6659 3.0033 -2.3982 -7.0839 -2.4554
CFP6 0.3296 0.4715 0.4263 0.0900 -0.3570 -0.1575 0.8347 1.2972 1.0850
CFP7 0.3757 0.3891 0.2976 1.2406 -0.9806 0.0075 -0.3724 1.7352 0.7213

RPVG
(n=8)

Mean 0.6332 0.5532 0.4144 -17.3424 -3.4684 -35.1832 16.2967 2.5193 34.2220
RMSSD 0.4248 0.2557 0.3664 -0.1180 2.0073 -1.7408 0.8548 -1.2691 2.4785

CFP1 0.5438 0.3699 0.3650 0.1079 -2.5581 1.7963 0.8440 3.5045 -0.8619
CFP2 0.4326 0.2024 0.3948 -0.2817 -24.9221 15.1715 1.1101 25.7363 -14.3729
CFP3 0.5773 0.3853 0.4315 0.1508 -4.1633 2.8160 0.7966 5.1043 -1.8856
CFP4 0.5428 0.3251 0.4554 0.0834 20.3526 -14.4953 0.8200 -19.4365 15.3966
CFP5 0.5818 0.3833 0.5508 4.0876 68.1583 -30.3918 -3.3819 -67.4462 31.1401
CFP6 0.5216 0.3043 0.4340 0.1343 18.7723 -13.5547 0.7770 -17.8495 14.4640
CFP7 0.4429 0.2134 0.4072 -0.2136 -28.9885 17.4886 1.0320 29.7911 -16.6985

RVPL
(n=4)

Mean 0.2692 0.3813 0.2958 11.3574 -3.2315 -1.4466 -11.0458 3.0903 1.5040
RMSSD 0.4570 0.6589 0.5576 -0.1824 0.1025 0.0459 1.0476 0.7686 0.8224

CFP1 0.3622 0.1597 0.2765 -0.1647 0.0466 0.0496 1.1374 0.9384 0.9325
CFP2 0.4902 0.4407 0.5731 -0.7910 -0.1683 -0.3987 1.7010 1.1084 1.3244
CFP3 0.4055 0.1861 0.3069 -0.1954 0.0284 0.0188 1.1657 0.9546 0.9610
CFP4 0.5458 0.6197 0.7973 0.4875 0.2878 0.5411 0.4723 0.6671 0.4227
CFP5 0.3918 0.7319 0.7723 -0.1385 2.1030 3.3639 0.5431 -1.7147 -2.9434
CFP6 0.5474 0.6179 0.7930 0.4483 0.2641 0.5013 0.5140 0.6938 0.4651
CFP7 0.4880 0.4426 0.5750 -0.8580 -0.2064 -0.4636 1.7627 1.1422 1.3842
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Figure 4 (a: upper left) Mean of the Standard Deviation of the modulus of the Studentized Residuals (b: upper right) Mean of the Maximum
of the modulus of the Studentized Residuals (c:lower left) Mean of the mean squared error (MSE); of spectral Multi-Taper Method (or CFP6)
for LFPs in the gamma range (30 to 100Hz) for the electrode contacts at three depths [M01 (deepest), M12 (middle) and M23 (superficial)]
versus the two linear descriptive (Mean & RMSSD) and the seven non-trivial permutations of the three high spectral chaotic global variant
metrics (hsEntropy, hsDFA and sMTM) of blood pressure (CFP1 to CFP7) for recordings in the four areas, specifically LPVG (n=5), LVPL (n=5),
RPVG (n=8) and RVPL (n=4). Again as with Figure 3. The four symbols (circle, square, triangle and diamond) represent appropriate values
for the LPVG, LVPL, RPVG and RVPL. There are three symbols describing the electrode contacts [M01, M12, M23]. The upper symbol is the
maximum, the lower symbol the minimum and finally the middle symbol the median. The horizontal line between the maximum and minimum
symbols represents their mean value.
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slopes are inconsistent throughout for both locations. Some slopes
are negative, some positive. Their slopes are such that when the
electrodes are surgically implanted for monitoring the different
depths they give radically different results. Their goodness-of-fits
via their Studentized residuals and MSE are poor. These highlight
yet again that the regressions are less significant. The points form
an excess of high residuals signifying that the model explains little
of the variability of the response data around its mean. For LVPL,
CFP5 is totally rejected as all y-intercepts are negative.

RVPL and RPVG are better sites for monitoring. They give
higher values for their regressions throughout equated to LPVG
and LVPL. With regards RPVG for CFP1 to CFP7 and RMSSD they
are unreliable as they respond with positive or negative slopes
at all electrode depths. Yet, their mean is dependable with all
negative slopes. The slopes are steeper and are so are highly
responsive regarding electrode depths. The mean is consistent
in that it has all y-intercepts positive at all electrode depths. The
mean, however, only measures the datas’ magnitude and does
not assess its sequence as with the nonlinear dynamic techniques.
Therefore, it should be judged with caution.

For RVPL, RMSSD has high R-squared values at electrode loca-
tions M12 (66%) and M23 (56%) but at these locations they have
low slopes; so unresponsive and flat. Slopes are moderately steep
and consistently negative for CFP2. They are continually positive
and quite steep for CFP4 and CFP6. As their slopes are consistent
they are good locations to position electrodes since surgical preci-
sion is less critical. CFP2, CFP4 and CFP6 give positive values for
their y-intercepts throughout. Their regressions are CFP4 (55-80%)
and CFP6 (55-79%). These are the most significant regressions of
all of the locations. But, RVPL could be unduly significant as a
result of its low sample size.

We have demonstrated that the most statistically robust and
significant combinations are CFP4 and CFP6 for RVPL with re-
gressions significant at the level of about 55% to 80%. CFP1 and
CFP3 are usually the most robust and statistically significant when
applied to forward problems (Garner et al. 2019b, 2017; Wajnsztejn
et al. 2016). Yet, CFP6 is favoured as it has been confirmed to be
significant with forward and mathematical inverse problems, in
particular, as in Garner and Ling (2014) (Garner and Ling 2014).
Moreover, in 2021 with high spectral variants (Garner and Ling
2021). CFP6 is simple to implement and computationally fast.

Green et al in 2005 (Green et al. 2005) revealed that stimulation
in the rostral PVG/PAG can increase or decrease levels of arterial
blood pressure. This effect is contingent on the ventral/dorsal loca-
tion of the electrode. In this study, we revealed that with recordings
of RVPL, decreases in the blood pressure signal complexity can be
monitored in a similar manner. It is important to realize the study
by Green et al (Green et al. 2005) was considering BP whereas here
we are assessing BPV. Interestingly the neuromodulation of BP and
BPV are in different positions as revealed here. BPV neuromodu-
lation is unique and so different LFPs are measured in dissimilar
locations.

During some of the recorded LFPs time-series there were some
locations in a few of the subjects which experienced short sec-
tions of DBS. These stimulations were not elongated enough to
be measured for irregularities and chaotic responses. They are,
nevertheless, not overlooked in the analysis. There were 20 epochs
in the analysis which had a window of half of the entire time-series.
This sliding window progresses from start to finish and for some
zones or a few subjects this would have included short areas of
DBS stimulation. These affect the LFPs recordings at three depths
of electrode in the four areas of the brain. These were not excluded

as their effects would be minimal. They cannot be spliced online
which is the proposed format of the analysis. The LFPs would be
principally resting but the zones of stimulation would improve the
significance of the regressions by extending the statistical range of
the LFPs. Each regression was computed from 20 points from the
20 sections. Next, a mean regression was computed for all the four
locations. The number of subjects in the mean regression varied
from four (RVPL) to eight (RPVG). The mean regression was used
in the correlation of LFPs with BPV from the mean, RMSSD and
chaotic global metrics.

It is important to understand that the human subjects in this
study were all chronic pain patients. BP and BPV responses may
be altered by chronic pain. Correspondingly, we should consider
lateralisation (Hodgetts and Hausmann 2022; Hwang et al. 2022;
Srinivasan et al. 2022). This is the inclination of some neural func-
tions or cognitive processes to be located in one hemisphere of the
brain instead of the other. There is lateralisation in BPV autonomic
control.

If subjects experience Hypertension refractory to current phar-
macotherapies, DBS may be a potential alternative treatment. DBS
is a surgical procedure and as such cannot be performed without
substantial risk and unanticipated difficulties. Whilst DBS of the
PAG has been enforced to treat refractory Hypertension both in
the context of pain (Patel et al. 2011) and without (O’Callaghan
et al. 2017), its lack of use for this indication since our original con-
clusions in 2005 are possibly on account of this balance of risks. A
potential correlation between the LFPs and BPV would be advan-
tageous as it could be useful for developing adaptive forms of DBS
(or novel pharmacotherapies) to reduce BPV using closed-loop
feedback. The chaotic global sMTM (CFP6) could be a statistical
marker.

Additionally, it would be wise to consider alternative neuro-
modulator therapies such as carotid body stimulation or renal
sympathetic nerve ablation as they have lower risk. Both ther-
apies failed phase three trials (Simplicity and BAROSTIM NEO
Hypertension Pivotal Study ClinicalTrials.gov) for refractory Hy-
pertension, but the latter is currently undergoing reassessment
using specific patient cohorts and updated technology and tech-
niques (SPYRAL HTN-ON MED Study ClinicalTrials.gov).

Further work could be commenced. For instance, the parame-
ters for the MTM spectra could be adjusted. MTM was predomi-
nantly chosen as it has less spectral leakage. Yet, the manipulation
of DPSS and Thomson’s Multi-Taper settings have been repeatedly
shown to be trivial (Garner et al. 2019a). Other methods of monitor-
ing might be better. Levels of chaotic response could be assessed
alternatively by the fractal dimensions of Higuchi (Garner et al.
2018; Nogueira et al. 2017) or Katz (Garner et al. 2018). Approxi-
mate (Garner et al. 2021b; Pincus 1995) and Sample (Richman and
Moorman 2000) entropies could be computed. However, the latter
two are excessively reliant on their embedding dimensions and
tolerances. These cannot be attained in any systematic way which
maintains them undependable (Garner et al. 2021b,a, 2020b). Also,
they are usually enforced on the inter-beat intervals rather than
just the oscillating signal as with chaotic global metrics.

CONCLUSION

We revealed correlation (R-squared: up to 79%) in the RVPL site
for all electrode depths (deep to superficial) between the LFPs
gamma oscillations (30 to 100 Hz) and BPV for CFP6. This may
have clinical uses. Perhaps, therapy could be achieved pharmaco-
logically, surgically or otherwise by monitoring BPV using LFPs
and making adjustments. Yet, correlation of the LFPs does not
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inevitably predict its causation. There is no certainty that DBS in
these areas will be therapeutic. They have only been confirmed
for monitoring purposes with BPV. Further studies are suggested
to ascertain if DBS or novel therapies do reduce BPV and lessen
cardiovascular complications, potential morbidity and accordingly
mortality.
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