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Abstract

Metaheuristic algorithms provide approximate or optimal solutions for optimization problems in a
reasonable time. With this feature, metaheuristic algorithms have become an impressive research area

Keywords for solving difficult optimization problems. Snake Optimizer is a population-based metaheuristic
Chaotic maps; algorithm inspired by the mating behavior of snakes. In this study, different chaotic maps were
Continuous integrated into the parameters of the algorithm instead of random number sequences to improve the
optimization; Snake performance of Snake Optimizer, and Snake Optimizer variants using four different chaotic mappings
optimizer; were proposed. The performances of these proposed variants for eight different chaotic maps were
Metaheuristic examined on classical and CEC2019 test functions. The results revealed that the proposed algorithms
algorithms contribute to the improvement of Snake Optimizer performance. In the comparison with the literature,

the proposed Chaotic Snake Optimizer algorithm found the best mean values in many functions and
took second place among the algorithms. As a result of the tests, Chaotic Snake Optimizer has been
shown to be a promising, successful, and preferable algorithm.

Kaotik Yilan Optimize Edici
0z

Metasezgisel algoritmalar, optimizasyon problemlerine makul bir siirede yaklagik veya optimal

¢Ozlimler sunar. Bu 6zelligi ile metasezgisel algoritmalar zor optimizasyon problemlerini ¢6zmek igin
etkileyici bir aragtirma alani haline gelmistir. Yilan Optimize Edici, yilanlarin giftlesme davraniglarindan
esinlenen populasyon tabanli bir metasezgisel algoritmadir. Bu ¢alismada, Yilan Optimize Edicinin

Anahtar kelimeler

Kaotik haritalar; Sturekli
performansini iyilestirmek igin rastgele sayi dizileri yerine algoritmanin parametrelerine farkl kaotik

haritalar entegre edilmis ve dort farkh kaotik haritalama kullanilarak Yilan Optimize Edici varyantlar
dnerilmistir. Onerilen bu varyantlarin sekiz farkli kaotik harita i¢in performanslari klasik ve CEC2019 test

optimizasyon; Yilan
optimize edici;
Metasezgisel

. fonksiyonlari Gzerinde incelenmistir. Sonuglar, ©nerilen algoritmalarin Yilan Optimize Edici
algoritmalar

performansinin iyilestiriimesine katkida bulundugunu ortaya koydu. Literatir ile karsilastirildiginda
Onerilen Kaotik Optimize Edici algoritmasi birgok fonksiyonda en iyi ortalama degerleri bulmus ve
algoritmalar arasinda ikinci sirada yer almistir. Yapilan testler sonucunda, Kaotik Yilan Optimize Edicinin
gelecek vadeden, basarili ve tercih edilebilir bir algoritma oldugu gorilmustdr.
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constrained to unconstrained (Dokeroglu et al.
1. Introduction 2019). Most of these problems are NP-hard

problems, which are a group of optimization

The term metaheuristic algorithm refers to higher- , L
problems that cannot be solved in polynomial time

level heuristics that can be used to solve many (Daliri et al. 2022). Solving these problems is often

different types of optimization roblems. _ .
P P P complex and not easy. Metaheuristic algorithms

Optimization problems solved by metaheuristic . . i . )
provide approximate or optimal solutions with

algorithms have a wide variety, from single to multi- . .
reasonable execution times for these

objective, from continuous to discrete, and from
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problems. With this feature, metaheuristics have
become an impressive field of research that is
improving day by day in solving NP-hard problems.
Since the first
proposed, great progress has been made, and many

metaheuristic algorithm was

new algorithms continue to be proposed every day.

There are five main categories of meta-heuristic
algorithms that are derived from natural sources.
These categories include evolution-based, swarm-
based, physics/chemistry-based, human-based, and
others. Swarm-based algorithms have modeled the
self-organization observed in swarm behavior
among social creatures in nature (Wang et al. 2022).
The Snake Optimizer algorithm, one of the recently
proposed metaheuristic algorithms, is a swarm-
based algorithm inspired by the mating behavior of
snakes. The algorithm has attracted attention since
the day it was proposed and has been used on
different problems. Klimov et al. (2020) used the
Snake Optimizer to optimize the frequencies at
logic gates are applied in
superconducting qubits. (Li et al.2022) proposed a

which quantum

new method with optimized variable mode
decomposition with snake optimization and a
double-threshold
eliminate ship-radiated noise. (Rawa 2022) used a

correlation  coefficient to
hybridization of snake optimizer and sine-cosine
algorithms for the transmission expansion planning
problem. (El-Saleh et al. 2023) introduced a Binary
Snake Optimizer-based feature selection approach
to improve the performance of intrusion detection
systems. (Dai et al. 2022) developed a model based
on snake optimization to improve the accuracy of
the thermal error estimation of a motorized spindle.
(Liu et al. 2023) proposed a chaotic gaussian snake
optimization  algorithm  for sensor node
optimization in soil monitoring wireless sensor
networks. (Fu et al. 2022) proposed a gas explosion
prediction model in which the improved snake
optimization algorithm is integrated. Sine chaos
mapping, spiral search strategy, and snake dynamic
adaptive weight were used in the snake optimizer to
increase the search capability. (Cheng et al.2022)
presented a neural network-based prediction model
for fingerprint indoor localization technology whose

weights and thresholds were adjusted using the

snake optimization technique. (Omran et al.2022)
used the snake optimizer for optimum sizing of a
complete green photovoltaic battery fast charging
station for electric vehicles. Yao et al. (2023)
proposed an improved SO with a new opposite
learning strategy and four new dynamic update
mechanisms, including tent-chaos logic, to improve
SO performance. (Vellingiri et al. 2023) proposed
the chaotic SO algorithm, a hybrid algorithm
combining chaotic maps with SO for the single diode
model. (Gong et al. 2023) proposed a multi-
objective clustering model for an industrial wireless
sensor network. A novel chaotic multilevel elite
clone snake optimization method is designed to
improve the optimal clustering mechanism in this
model.

In this study, different chaotic maps instead of
random number sequences are integrated into the
algorithm's parameters to improve the performance
of standard SO, and SO variants using four different
(CSO)
performances of these proposed algorithms for

chaotic mappings are proposed. The
eight different chaotic maps were examined on the
classical and CEC2019 test functions, and the results
were compared with those of the standard SO and
each other. There are not many studies in the
literature about chaotic map-based SO. This study
was conducted with the motivation to reveal the
chaotic map-based performance of the algorithm
and contribute to the literature on chaotic map-
based versions of SO and their performance. The
rest of the study is structured in the following
manner: The snake optimizer and chaotic maps are
explained in the material and method section in the
second section. In the third section, the proposed
chaotic snake optimizer is explained. In the fourth
section, the findings of the tests are discussed.
Finally, the fifth section includes the conclusion and
future work.

2. Materials and Methods

2.1. Snake Optimizer (SO)

Hashim and Hussien (2022) proposed the Snake
Optimizer (SO), a population-based metaheuristic
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algorithm, in 2022 to imitate snakes' mating
behavior. Snakes engage in their mating behavior
when it is cold outside and they can find food. SO is
initialized by generating a random population
according to Equation 1. The population is then
divided equally into two groups, male and female
(Equation 2).

x;j=Lbj+7*(Ubj—Lb;), i=12,...N j=

1,2,....,m (1)

N

Nfemale = 5 Npare = N — Nfemale (2)

where x; ; is the jth dimension of the ith snake, m
is the number of dimensions, N is the population
size, r is a random number in the range (0,1), and
Ub and Lb are the upper and lower bounds of the
jth dimension, respectively. In addition, Nfemaie
indicates the number of female snakes, while Ny, ;e
indicates the number of male snakes. The best
individual from each group (i.e. Fpest femate and

Fpest mate) is found in each iteration.

In the algorithm, temperature (T) and food quality
(FQ) are calculated according to Equations 3 and 4.
In these equations, t is the current iteration number
and t,,4y is the total number of iterations. ¢, is a
constant (c; = 0.5).

T = exp(;—) (3)

FQ = ¢y X exp(, ) (4)

The snakes select a random location to search for
food when FQ < Th (Th=Threshold= 0.25). Then they
update their position. The exploration behavior of
female  snakes s

male and expressed

mathematically in Equations 5 and 6, respectively.

x;j(t+1) = x3;(8) F ¢3 X Ajpmate(Ub — Lb) X 1y +

Lb), where A;mare = exp(%) (5)

imale
x;j(t+1) = x;(t + 1) F c3 X A femae (Ub — Lb) X

r+ Lb), where Ai,female = exp(_Fhfemale (6)

Fi,female

In these equations, k is a random integer in the

N .
range (1,;), Xk, is a randomly selected

male/female snake from the male/female snake

population, and r;and 1, are random numbers in the
range (0,1). Ajmaie and A;femare are the food-
finding abilities of male and female snakes,
respectively. F, 4. represents the fitness of a
previously chosen random male snake, while
Fy femate represents the fitness of a previously
chosen random female snake. F; ;410 and F; remate
are the ith male and female snake fitness,
respectively. The flag direction operator (+) scans
all possible directions randomly in the given search

space.

In the exploitation phase, the algorithm looks for
the best solutions under the following two
conditions:

If FQ>Th

e If the Temperature > Th (0.6) (hot), the
snakes will only move to the food according

to Equation 7.
xll](t+1) =Xf$C3XTXT'3X(Xf—x,:J(t)) (7)

where x; ; indicates where male and female snakes
are positioned, Xf denotes the best snakes, c3 is a
constant equal to 2, and 73 is a random number in
the range (0,1).

If FQ < Th (Th < 0.6) (cold), the snakes either fight or
mate.

e Figthing

The fighting ability of the male snake F ;. and
female snake Fremqre can be expressed as in
Equations 8 and 9.

X ;(t+1) = x;;(t) £ s X Fimgre X 14 X
(xbest,female — Ximale (t)) , Where Fimate =

exp (M) (8)

Fi
xi‘]’(t + 1) = xi_]-(t) i Cy X Fi,female X T'S X

(xbest,male - xi,female (t + 1)) ’ where Fi,female =

—Fpest,male
hestmale) (©)

exp(
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where x; ; indicates where male and female snakes
are positioned, Xpest, remate aNd Xpest,mate denotes
the positions of the best snakes in the female and
male groups, respectively. F;, 4. indicates male
snake-fighting ability, while F;fepmqe indicates
female snake-fighting ability. In addition, c4is a
constant equal to 2, and r,and r5 are random
numbers in the range (0,1).

e Mating

In mating, male and female snakes update their
positions as in Equation 10 and 11.

Ximale (t + 1) = xi,m(t) t Cs X Mi,male X 7T X

(FQ X xi,female — Ximale (t)) ) where Mi,male =

-fi,female) (10)

fi,male

exp(

xi,female(t +1) = xi,f(t) tcs X Mi,female X1, X

(FQ X Ximate — Xi female (t+ 1)) , where Mi,femule =

exp (ﬁ) (212)
where x; , and x; s are the ith positions of male
and female snakes, and M; pq10 and M; fomqie refer
to male and female mating ability. cs is a constant
equalto 2,and r; and r; are random numbersin the
range (0,1). If the egg hatches, choose the worst
male and female and replace them.

Xymate = Lb + 15 X (Ub — Lb) (12)
Xw, femate = Lb + 14 X (Ub — Lb) (13)
where X, mqie is the worst male snake while
Xw,female 1S the worst female snake. 7 is a random

number in the range (0,1). The pseudo-code of SO is
given in Figure 1.

Algorithm 1: Snake Optimizer (SO)

. Imitialize the population using Equation 1

1
2
3
4 while (t £ t,,,)

5. Find best male snake ( Fyosr.mate)

6. Find best female snake ( Fyecr, femate)

7. Identify T using Equation 3

9. Identify food quantity (FQ) using Equation 4
10.  if (FQ<0.25) then

12, else if (FQ > 0.6) then
13. Perform exploitation using Equation 7

22. end while

23. Display best solution.

. Initialize Parameters (Dimension, Ub, Lb, Population size(IN), Maximum iteration(t ., ), Current iteration (t)

. Divide the population two equal groups Ny;,,e and Ny, a1, Using Equation 2

11. Perform exploration using Equations 5 and 6

14, else

15 if (rand = 0.6) then

16. Snakes in Fighting mode using Equations 8 and 9

17. else

18. Snakes in Mating mode using Equations 10 and 11

19. Change the worst male and female using Equations 12 and 13
20. end if

21.  endif

Figure 1. The pseudo-code of SO

2.2. Chaotic maps

The randomness of a mathematically simple
deterministic dynamic system is represented by

chaotic maps, and the chaotic system can be
regarded as a source of randomness (Alatas et al.
2007). The convergence ability of SO may depend on
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random sequences of numbers applied to various
parameters during the run of the algorithm. There
are studies in the literature showing that the results
are very close but not equal when different random
sequences are used in metaheuristic algorithms
(Bingol and Alatas 2020, Varol Altay and Alatas
2020). Chaotic maps are used to generate chaotic
sequences in the process of metaheuristics. The
apply
perturbations to the candidate solutions in order to

main principle is to small chaotic
take advantage of the ergodic (i.e., a dynamic
system that behaves like the mean) property of
chaotic maps to enhance the performance of the
solution (Alatas et al. 2009, Bingol and Alatas 2020,
Wei et al. 2019). Equation 14 represents a chaotic

map as a dynamical system.

X1 =F(x), 0<x.<1, r=012,.. (14)

In this study, it has been investigated whether more
efficient results can be obtained from the SO
algorithm by using chaotic maps. Table 1 presents
the maps generating the chaotic numbers to be
used for the SO their
demonstrations.

parameters and

3. Chaotic Snake Optimizer (CSO)

As mentioned above, the numbers obtained from
chaotic maps have been used in many applications,
and their effect on performance has been
investigated. In this study, we aim to improve the
global convergence performance of the algorithm
by integrating chaotic maps into the formulas of the
search strategies of the standard SO. Chaotic maps
can be applied to all random values in the algorithm.
However, in this study, the formulas of the search
strategies, which are considered to contribute more
to performance, are preferred. In algorithms where
chaotic maps are used, random numbers are
generated by pushing the selected chaotic map one
step further. That is, when random number
generation is needed from the first iteration on, the
selected chaotic map is incrementally advanced
starting from the selected starting point.The new
CSOs proposed in this study are classified and

explained as follows:

e (CSO1:

CSO1 is obtained by taking the random values
(ry, ) in Equations 5 and 6 from the selected
chaotic map according to iterations. Accordingly, in
the proposed CSO1 algorithm, these equations are
replaced by Equations 15 and 16, respectively. Chy,
is the chaotic sequence obtained from the selected
chaotic map. The value of k indicates the type of
chaotic map, which can be Gauss, Tend, Logistic,
Sinusoidal, Circle, Iterative, Sine, or Piecewise.

xi‘j(t + 1) = xk_j(t) $ Cy X Ai,male((Ub - Lb) X
Chy(t+1) + Lb) (15)

xj(E+ 1) = x,;(t + 1) F 3 X A femare ((Ub — Lb) X
Chy(t+ 1)+ Lb) (16)

e (CSO2:

CS02 is obtained by taking the random value (r3) in
Equation 7 from the selected chaotic map according
to iterations. Accordingly, in the proposed CSO2
algorithm, this equation is replaced by Equation 17.
xi,j(t + 1) = X ¥ c3 X T X Chk(t + 1) X (xf -

x;,; (1)) (17)
e (CSO3:

CS03is obtained by taking the random values (14, 135)
in Equations 8 and 9 in fighting mode from the
selected chaotic map according to iterations.
Accordingly, in the proposed CSO3 algorithm, these
equations are replaced by Equations 18 and 19,
respectively.

xi‘j(t + 1) = xi,j(t) i Cy X Fi,male X Chk(t + 1) X
(xbest,female — Ximale (t)) (18)
xi‘j(t + 1) = xi,j(t) i Cy X Fi,female X Chk(t + 1) X

(xbest,male - xi,female (t + 1)) (19)
e (CSO4:

CSO4 is obtained by taking the random values
(r¢,77) in Equations 10 and 11 in mating mode from
the selected chaotic map according to iterations.
Accordingly, in the proposed CSO4 algorithm, these
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equations are replaced by Equations 20 and 21,
respectively.

xi,male(t + 1) = xi,m(t) i Cs X Mi,male X Chk(t + 1) X
(FQ X xi,female — Ximale (t)) (20)
xi,female(t + 1) = xi,f(t) t Cs X Mi,female X Chk(t +

1) X (FQ X Ximale — xi,female(t + 1)) (21)

4. Computational Experiments

In this section, the performance of the proposed
chaotic mapping SO variants (CSO1, CSO2, CSO3,
and CSO4) is examined. Two test function suites
have been chosen for this: the classic test functions
and the CEC2019 test functions. The classical test
functions used in this study are given in Table 2.
These functions consist of a total of twelve
functions, eight of which are unimodal and four of
which are multimodal. All of these functions are
minimization problems, and their optimal values are
given in the f;,,;, column of the table. The proposed
CS01, CS02, CSO3, and CSO4 algorithms were
tested on these test functions using eight different
chaotic maps (Gaussian, Tend, Logistic, Sinusoidal,
Circle, Iterative, Sine, and Piecewise). In this test
process, the problem dimension is 30, the number
of runs is 30, the maximum number of iterations is
1000, is 50.
Comparisons in test operations on classical test

and the snake population size

functions were made by taking into account the
mean of the values obtained from 30 independent
runs.

Accordingly, in Table 3, the results obtained by using
eight different chaotic maps in the CSO1 algorithm
are compared with the standard algorithm. In
addition to the mean values, the row named "R"
gives the order of the results obtained for each
function in the table. According to the results in the

table, although the best mean values were obtained
from different CSO1 variants, CSO1p;ocewise found
the best mean value in six of the twelve functions.
When the MR line showing the mean of the R values
obtained for each function was examined, it was
seen that the best rank mean was again obtained
from CSO1lpjecewise and that it was the most
successful variant. In addition, all CSO1 variants
outperformed the SO algorithm. The standard
algorithm, namely SO, took the last place in the MR
value ranking. According to the result, it can be said
that the performance of the SO algorithm has been
improved with the CSO1 algorithm.

Similarly, in Table 4, the results obtained by using
eight different chaotic maps in the CSO2 algorithm
are compared with the standard algorithm.
According to the results in the table, although the
best mean values were obtained from different
algorithms, SO found the best mean value in six of
the twelve functions. When the MR values were
examined, it was seen that the best mean rank was
again obtained from SO. So, it can be said that the
performance of the SO algorithm has not improved
with the CSO2 variants.
ineffective in improving SO performance.

CSO2 variants were

In Table 5, the results obtained by using eight
different chaotic maps in the CSO3 algorithm are
compared with the standard algorithm. When the
results were
CSO3piecewise
of the twelve functions. According to the MR values,

examined, it was seen that

found the best mean value in five

CSO3piecewise took the first place with a mean rank
value of 2.58. The worst MR value was obtained
from SO. All CSO3 variants are more successful than
the standard algorithm. Therefore, the CSO3

approach has improved SO performance.
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Table 1. Chaotic maps and their demonstration
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Table 2. Classical test functions

Unimodal Functions Range fmin Dim
n
=) x2 [~100,100] 0 30
L
i=1
n n
£200) = Y bl + [ [ [~10,10] 0 30
i=1 i=1
n i
£300) = Z(Z x)? [~100,100] 0 30
i=1 j=1
fa(x) =max{|x;|,1 <i<n} [-100,100] 0 30
n-1
£50) = D 1100 (i = x2)? + G = 177 [~30,30] 0 30
i=1
n
£6(x) = Z([x" +0.5])2 [~100,100] 0 30
i=1
n
F7(x) = Z ix? + rand[0,1) [~1.28,1.28] 0 30
i=1
d
78 = Z —x;sin(/TaD [~500,500] -418.982 xdim 30
L L
i=1
Multimodal Functions
d
f9= Z[xl-2 — 10 cos(2mx;) + 10] [-5.12,5.12] 0 30
i=1
n n 1 n
f10(x) = Z —20exp (—O.Z\EZ xf) —exp (—Z Cos(27txi)> +20+e [-32,32] 0 30
i=1 i=1 n i=1
1 - . X
F11(x) =~ x 1073 Z x?— 1_[ cosCL 4 1) [—600,600] 0 30
4 . ; Vi
i=1 i=1
n-1 n
s
f12(x) = ;[10 sin(my;) + Z(yi — 1?1 + 10sin*(ny; )] + (v, — 1)2] + Z u(x;,10,100,4)
=t =t
l l [-50,50] 0 30
k(x; —a)™  Egerx;>a
= xi+s u(x;, a,k,m) =3k(—x; —a)™ Egerx; < —a

0

diger
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In Table 6, the results obtained using eight different
chaotic maps in the CSO4 algorithm are compared
with the standard algorithm. When the results were
examined, it was seen that CSO4s;,usoidal found the
best mean value in six of the twelve functions.
According to the MR values, CSO4ginusoidal tOOK
first place with a mean rank value of 2.92. The worst
MR value was obtained from SO. All CSO4 variants
are more successful than the standard algorithm.
Therefore, the CSO4 approach has improved SO
performance. Finally, in order to make a general
evaluation, the most successful CSO variants were
selected and compared. (i.e., CSO1p;pcewise from
Table 3, SO from Table 4, CSO3pjecewise from Table
5, and CSO4ginusoidal from Table 6). In addition to
CS03piecewise and
variants in  the

these, the most successful
CSO4’Sinusoidal
comparisons were run together in the algorithm,

previous

and a new CSO3pjecewise T CSO4sinusoidal Variant
was created. The comparison results for all these
variants are given in Table 7.

According to the comparison results given in Table
7, the
created by combining the CSO3pjecewise and
CSO4ginusoidal Variants with similar performance

CS503pjecewise T CSO4sinusoidal Variant

found the best mean value in seven of the functions.
It also ranked first among the algorithms with an MR
value of 2.08. The standard algorithm took last place
with an MR value of 3.92. According to these results,
it was determined that all compared variants
improved SO performance, and the most successful
variant was CS03pjecewise T CSO4sinusoidal- IN
addition to these evaluations, the nonparametric
Wilcoxon signed rank test (Garcia et al. 2009) was
applied at the 0.005 significance level to determine
whether there was a significant difference between
the SO and CSO variants. The results are presented
in Table 8. In the table, 'Better’, 'Worse', and 'Equal’
denote the number of functions for which the CSO
variants found better, worse, and equal mean
values, respectively, compared to SO. The 'p-value'
denotes the level of statistical significance. A p-
value less than 0.05 indicates that there is a

significant difference between the algorithms;

otherwise, there is no significant difference.
Accordingly, when the results in Table 8 are
examined, it is found that there is a significant
difference between the CS03p;.cewise Variant and
SO, while there is no significant difference between

the other variants and SO.

Figure 2 shows the convergence graphics according
to the best value obtained by the CSO variants for
four randomly selected classical test functions (F1,
F4, F9, and F10). When the graphs are analyzed, it is
found that the CSO3piecewise T CSO4sinusoidal
variant converges faster in all functions except F9. In
the F9 function, the fastest converging variant is
CSO3piccewise- The slowest converging variant in all
functions is CSO1p;ecewise- Accordingly, it can be
said that the CSO3piccewise T
CSO4ginusoidal Variant is generally capable of
converging faster to a better or similar value.

Secondly, the performance of the most successful
variant was examined on the CEC2019 test functions
(Price et al. 2018). CEC2019 test functions and
features are given in Table 9. The mean and
standard deviation values obtained as a result of this
test process were compared with the algorithms in
the literature (Xu et al. 2022). These algorithms are
CSA (Hussien et al. 2020), BOA (Arora and Singh
2019), MFO (Mirjalili 2015), BA (Yang and He 2013),
WOA (Mirjalili and Lewis 2016), SCA (Mirjalili 2016),
PSOGSA (Mirjalili and Hashim 2010), AGWO (Qais et
al. 2018), OBSCA (Abd Elaziz et al. 2017), and EGWO
(Joshi and Arora 2017) algorithm. The comparison
results are given in Table 10. In Table 10, CSO refers
to the CSO3pjccewise +
CSO4ginusoidal in previous comparisons. Results for

best-performing

other algorithms are taken directly from the study
of Xu et al. (Xu et al. 2022). For a fair comparison,
the population size is 50 and the maximum iteration
is 10,000 in all algorithms. Each algorithm was run
independently 30 times, and the mean and standard
deviation values were found accordingly.

Table 3. Comparison results for SO and CSO1 variants on classical test functions
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SO CS01Gauss CSOlpeng  CSOliggisic  CSOlginusoidal  €SOlcirae  CSOlperative  €SOLgine  CSO1piecewise

F1  3.56E-195 2.40E-195 1.10E-195 2.73E-196 5.78E-194 2.16E-196  1.40E-195  3.67E-196 2.42E-196
R 8 7 5 3 9 1 6 4 2

F2 2.57E-97 2.45E-98 2.07E-98 9.17E-98 1.26E-98 1.37E-98 3.45E-98 2.28E-98 1.01E-98
R 9 6 4 8 2 3 7 5 1

F3  2.54E-128 1.14E-127 1.63E-123  2.93E-127 2.22E-128 1.05E-124  5.98E-125  1.06E-125 1.00E-127
R 2 4 9 5 1 8 7 6 3

F4 7.00E-87 7.01E-87 4.24E-87 8.38E-87 1.23E-86 5.58E-87 2.23E-87 6.91E-87 6.31E-87
R 6 7 2 8 9 3 1 5 4

F5 1.57E+01  1.52E+01  1.50E+01 1.57E+01 1.52E+01 1.43E+01 1.69E+01 1.46E+01 1.30E+01
R 7 5 4 7 5 2 9 3 1

F6 2.61E-02 1.31E-03 1.45E-03 5.25E-03 2.00E-02 1.91E-03 5.65E-03 2.22E-03 1.10E-03
R 9 2 3 6 8 4 7 5 1

F7 1.03E-04 9.17E-05 1.09E-04 1.04E-04 9.53E-05 1.21E-04 1.14E-04 1.04E-04 8.15E-05
R 4 2 7 5 3 9 8 5 1

F8 -1.25E+04 -1.26E+04 -1.26E+04 -1.25E+04 -1.26E+04 -1.26E+04  -1.25E+04  -1.25E+04 -1.26E+04
R 2 1 1 2 1 1 2 2 1

F9 4.73E-01 1.28E-01 9.09E-02 5.62E-01 9.05E-01 5.98E-01 1.15E+00 4.62E-01 6.70E-01
R 4 2 1 5 8 6 9 3 7

F10  4.09E-15 3.97E-15 3.97E-15 3.97E-15 4.09E-15 3.85E-15 3.85E-15 3.97E-15 3.61E-15
R 4 3 3 3 4 2 2 3 1

F11  8.10E-03 3.42E-03 1.21E-03 4.73E-03 1.13E-02 1.34E-03 4.22E-03 3.71E-03 1.50E-03
R 8 4 1 7 9 2 6 5 3

F12  2.09E-02 3.56E-02 2.15E-02 2.40E-02 3.67E-04 9.56E-03 4.30E-03 9.35E-03 3.22E-02
R 5 9 6 7 1 4 2 3 8

MR 5.67 4.33 3.83 5.50 5.00 3.75 5.50 4.08 2.75

Table 4. Comparison results for SO and CSO2 variants on classical test functions
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so CS02;ayss  CSO2rpng  CSO2y44istic  CSO2ginysoidal  CSO2¢irce  CSO2perative  CSO02sine  CSO02pigcenise
P 0 263 834E 476189 9956190 4778 5.51E-191 1.01E- 2.12E-190
195 190 191 189 189
R 1 5 3 8 6 9 2 7 4
F2  2.57E-97 4.22E-92 1.96E-92  2.83E-92 2.63E-92  1.45E-92  230E-92  6.20E-92  3.53E-92
R 1 8 3 6 5 2 4 9 7
| 229 3-96E- S10E- 60E-123 1436126 1.66E- 2.48E-124 7938 1.70E-126
128 126 127 126 123
R 1 6 2 8 3 4 7 9 5
FA  7.00E-87 5.60E-87 6.39E-87  3.07E-86 8.94E-87  3.50E-87  8.02E-87  4.96E-87  4.35E-86
R 5 3 4 8 7 1 6 2 9
F5 1576+01 141E+01 1.05E+01  1.53E+01  1.80E+01  1.58E+01  1.36E+01  1.31E+01  1.47E+01
R 7 4 1 6 9 8 3 2 5
F6  2.61E-02 7.87E-01 7.67E-01  1.08E+00 6.77E-01  7.45E-01  6.80E-01  9.87E-01  5.63E-01
R 1 7 6 9 3 5 4 8 2
F7  1.03E-04 1.11E-04 8.46E-05  1.09E-04 8.16E-05  9.93E-05  9.37E-05  9.40E-05  1.06E-04
R 6 9 2 8 1 5 3 4 7
F8 1.25;E+04 1.26;E+04 1.26;E+04 "1.25E+04 - -1.25E+04 1.25;E+04 125404 1.26;E+04 -1.26E+04
R 2 1 1 2 2 2 2 1 1
F9  4.73E-01 251E+00 2.25E+00  1.71E+00 9.02E-01  2.62E+00  2.62E+00  8.39E-01  6.18E-01
R 1 7 6 5 4 8 8 3 2
F1
o A0S 4MEIS  A44E1S 432ES 4.09E-15  4.44E-15  4.32E-15  4.32E-15  4.09E-15
R 1 3 3 2 1 3 2 2 1
Fll 8.10E-03  0.00E+00 O0.00E+00  0.00E+00  0.00E+00  2.24E-02  0.00E+00  0.00E+00  0.00E+00
R 2 1 1 1 1 3 1 1 1
F1
,  209E02  189E02 143E02  2.28E-02 1.18€-02  1.68E-02  1.00E-02  1.05E-01  1.07E-02
R 7 6 4 8 3 5 1 9 2
MR 2.92 5.00 3.00 5.92 3.75 4.58 3.58 4.75 3.83
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Table 5. Comparison results for SO and CSO3 variants on classical test functions

SO CSO3Guuss CSO3Tend CSOBLogistic CSOBSinusoidal Csogcircle Csoslterative Csossine CSOBPiecewise
3.56E- 3.94E- 1.69E- 1.42E- 2.25E-
F1 2.71E-208 7.39E-278 3.31E-174 3.06E-240
195 233 243 248 207
R 8 5 3 6 1 2 9 7 4
8.55E- 9.97E- 1.15E- 5.09E-
F2 2.57E-97 1.76E-107 8.28E-139 3.83E-92 7.60E-122
121 126 127 108
R 8 5 3 7 1 2 9 6 4
2.54E- 9.33E- 2.59E- 4.51E- 3.60E-
F3 1.18E-149 1.46E-224 1.96E-120 1.54E-182
128 174 186 194 148
R 8 5 3 6 1 2 9 7 4
8.62E- 2.91E- 2.62E-
F4 7.00E-87 8.78E-99 2.84E-127 4.75E-83 2.37E-98 5.99E-112
111 111 115
R 8 5 4 6 1 2 9 7 3
F5 1.57E+01 1.27E+01 1.87E+01 1.38E+01 1.68E+01 1.92E+01 1.27E+01 1.27E+01 9.56E+00
R 6 2 8 5 7 9 2 2 1
F6 2.61E-02 2.26E-02 1.34E-02 2.60E-02 1.22E-02 1.88E-02 1.81E-02 1.84E-02 1.28E-02
R 9 7 3 8 1 6 4 5 2
F7 1.03E-04 8.57E-05 6.45E-05 7.01E-05 7.56E-05 5.78E-05 1.06E-04 9.51E-05 5.70E-05
R 8 6 3 4 5 2 9 7 1
F8 ) ) ' -1.26E+04  -1.25E+04 ! -1.26E+04 ! -1.26E+04
1.25E+04  1.26E+04  1.26E+04 1.26E+04 1.26E+04
R 2 1 1 1 2 1 1 1 1
F9 4.73E-01 0.00E+00 0.00E+00 0.00E+00 1.20E-07 0.00E+00 7.66E-01 0.00E+00 0.00E+00
R 3 1 1 1 2 1 4 1 1
F1
0 4.09E-15 8.88E-16 8.88E-16 8.88E-16 1.13E-15 8.88E-16 8.88E-16 8.88E-16 8.88E-16
R 3 1 1 1 2 1 1 1 1
F1
1 8.10E-03 7.25E-03 1.06E-02 1.13E-02 5.02E-03 8.62E-03 1.01E-02 1.25E-02 9.64E-03
R 3 2 7 8 1 4 6 9 5
F1
2 2.09E-02 5.28E-03 4.70E-03 8.36E-03 9.72E-03 8.98E-03 9.22E-03 2.90E-03 7.56E-03
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R 9 3 2 5 8 6 7 1 4
MR 6.25 3.58 3.25 4.83 2.67 3.17 5.83 4.50 2.58
Table 6. Comparison results for SO and CSO4 variants on classical test functions
SO CSO4’Guuss CSO4'Tend C504’Logistic C504’Sinusoidal 6504Circle CSO4'lterative CSO4'Sine CS04Piecewise
3.56E- 9.33E- 5.28E- 2.22E- 5.90E-
F1 7.21E-213 3.91E-304 1.26E-171 4.50E-249
195 246 252 259 211
R 8 5 3 6 1 2 9 7 4
5.21E- 5.73E- 1.32E- 1.54E-
F2  2.57E-97 1.62E-110 1.81E-150 7.57E-90 2.41E-125
124 128 130 109
R 8 5 3 6 1 2 9 7 4
2.54E- 5.17E- 1.10E- 5.52E- 3.36E-
F3 1.10E-161 3.31E-229 2.64E-126 3.92E-197
128 196 201 214 162
R 8 5 3 7 1 2 9 6 4
2.38E- 5.29E- 1.16E- 4.74E-
F4  7.00E-87 4.73E-103 5.97E-139 3.67E-82 4.67E-118
115 120 123 102
R 8 5 3 6 1 2 9 7 4
F5 1.57E+01 1.46E+01 1.39E+01  1.33E+01 1.37E+01 1.34E+01  1.12E+01  1.06E+01 1.19E+01
R 9 8 7 4 6 5 2 1 3
F6 2.61E-02  9.92E-03  1.43E-02  1.15E-02 1.49E-02 2.11E-02 1.96E-02 2.26E-02 1.82E-02
R 9 1 3 2 4 7 6 8 5
F7 1.03E-04 7.94E-05 1.01E-04  8.71E-05 6.89E-05 8.27E-05 8.39E-05 1.06E-04 7.14E-05
R 8 3 7 6 1 4 5 9 2
F8 i i i -1.26E+04  -1.25E+04 i -1.26E+04 i -1.26E+04
1.25E+04 1.26E+04  1.26E+04 1.26E+04 1.26E+04
R 2 1 1 1 2 1 1 1 1
F9 4.73E-01 9.97E-01 1.00E+00 2.05E+00 2.37E+00 8.98E-01 7.69E-01 0.00E+00 5.23E-06
R 3 6 7 8 9 5 4 1 2
F1
0 4.09E-15 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16 8.88E-16
R 2 1 1 1 1 1 1 1 1
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8.10E-03  6.78E-03  1.12E-02  1.10E-02 9.63E-03 1.24E-02  6.71E-03  8.00E-03 7.83E-03
R 5 2 8 7 6 9 1 4 3
2.09E-02  1.22E-02  1.01E-02  2.12E-02 3.93E-03 1.386-02  2.82E-03  2.21E-02 1.42E-02
R 7 4 3 8 2 5 1 9 6
MR 6.42 3.83 4.08 5.17 2.92 3.75 4.75 5.08 3.25
Table 7. Comparison of successful CSO variants
SO CSOLpcemse  CSO3piccomse  CSOhsmuiaa ggpn
F1  3.56E-195  2.42E-196 3.06E-240 3.91E-304 0.00E+00
R 5 4 3 2 1
F2  2.57E-97 1.01E-98 7.60E-122 1.81E-150 6.65E-196
R 5 4 3 2 1
F3  2.54E-128  1.00E-127 1.54E-182 3.31E-229 0.00E+00
R 4 5 3 2 1
FA  7.00E-87 6.31E-87 5.99E-112 5.97E-139 3.15E-192
R 5 4 3 2 1
F5 1.57E+01 1.30E+01 9.56E+00 1.37E+01 1.71E+01
R 4 2 1 3 5
F6 2.61E-02 1.10E-03 1.28E-02 1.49E-02 1.99E-02
R 5 1 2 3 4
F7  1.03E-04 8.15E-05 5.70E-05 6.89E-05 5.83E-05
R 5 4 1 3 2
F8 -125E+04  -1.26E+04 -1.26E+04 -1.25E+04 -1.26E+04
R 2 1 1 2 1
F9  4.73E-01 6.70E-01 0.00E+00 2.37E+00 0.00E+00
R 3 4 1 2 1
F10  4.09E-15 3.61E-15 8.88E-16 8.88E-16 8.88E-16
R 3 2 1 1 1
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Value

F11  8.10E-03 1.50E-03 9.64E-03 9.63E-03 2.45E-02
R 2 1 4 3 5
F12  2.09E-02 3.22E-02 7.56E-03 3.93E-03 6.52E-03
R 4 5 3 1 2
MR 3.92 3.08 217 217 2.08
Table 8. Wilcoxon signed-rank test results
Algorithms Better Worse Equal p-value
SO - CSO1p;ocomise 9 3 0  0,136097
SO - CSO3piecowise 11 1 0  0,012063
SO - CSO4ginusoidal 9 2 1 0,154860
SO - CSO3piecewise +CS04sinusoidal 10 2 0  0,136097
e F1 e F4
10°
10"
10-2-33
107533
10° 10°
] F9 F10
10°
10° ]
10° ]
107"
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Figure 2. Convergence graphics of CSO variants

Table 9. CEC2019 test function

Functions fnin Dimension Range

Cl  Storn's Chebyshev Polynomial Fitting Problem 1 9 [-8192, 8192]
Cc2 Inverse Hilbert Matrix Problem 1 16 [-16384, 16384]
C3 Lennard-Jones Minimum Energy Cluster 1 18 [-4,4]

c4 Rastrigin’s Function 1 10 [-100,100]
Cc5 Griewangk’s Function 1 10 [-100,100]
cé6 Weierstrass Function 1 10 [-100,100]
c7 Modified Schwefel’s Function 1 10 [-100,100]
c8 Expanded Schaffer’s F6 Function 1 10 [-100,100]
C9 Happy Cat Function 1 10 [-100,100]
C10 Ackley Function 1 10 [-100,100]

According to the results in Table 10, the proposed
CSO in six of the compared functions, OFLCSA in
three, and OBSCA in one found the best mean.
When the ranking values given in Table 11 are
examined, it can be seen that the smallest mean
rank (MR) value was obtained by the OFLCSA
algorithm as 2.1. The CSO algorithm took second
place with an MR value of 2.9. BOA, on the other
hand, took last place with a mean rank of 11.8.
According to these results, it has been proved that
the CSO algorithm has a competitive and successful
performance when compared to the algorithms in
the literature.

In this study, the effect of using chaotic maps on SO
performance is investigated. Successful results are
obtained in the tests performed on classical and
CEC2019 test functions. In addition, the results
obtained have been a guide for researchers as they
reveal which chaotic map is used in which search
strategy of the algorithm contributes more to the
performance. As  encountered in  other
metaheuristic algorithms, a proposed algorithm
cannot be expected to excel in all optimization
problems. Therefore, some new modifications may
be needed if CSO is applied to different test suites
or real-world problems.

5. Conclusion and future works

In this study, SO variants using four different
chaotic mappings (CSO1, CSO1, CSO3, and CS04) are
proposed by integrating different chaotic maps into
the algorithm's search strategy parameters instead
of random number sequences to improve SO
performance. The performances of these proposed
algorithms for eight different chaotic maps were
evaluated for classical test functions. According to
the test results, the most successful algorithm
variants were CSO1pccewiser CSO3piccewise, and
CSO4sinusoigal- The CSO2 algorithms could not
contribute to the performance of SO. The most
successful CSO3pjecewise T CSO4sinusoidal Variant
was compared with the results of eleven different
algorithms selected from the literature for the
CEC2019 test functions. In this comparison, the
proposed algorithm took second place and proved
to be a successful algorithm.

The algorithm proposed as a future work can be
applied to different optimization problems, such as
engineering problems, large-scale optimization

problems, and multiobjective  optimization

problems.
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Table 10. Mean and standard deviation value comparison of CSO with algorithms in the literature on CEC2019

Function Algorithms
cso OFLCSA CSA AGWO BOA MFO BA WOA SCA PSOGSA OBSCA EGWO
C1 Mean  2.743E+03  1.621E+04  2.174E+05  1.159E+08  1.961E+11 5.464E+10 6.110E+12  3.286E+05  8.056E+07  1.341E+11  4.656E-02  3.902E+06
Std 1.159E+04 3.002E+04 3.340E+05  4.335E+08 1.566E+11 8.713E+10 3.375E+12 2.955E+09 2.514E+09 2.834E+11 7.678E-02 1.374E+07
C2 Mean  3.640E+01  1.028E+06  9.665E+05  4.072E+06  1.535E+08  1.331E+07  2.143E+08  7.471E+07  1.243E+07  1.724E+07  8.257E+04  6.801E+06
Std 1.214E+02 7.849E+05 4.234E+05 3.518E+06 6.924E+07 1.972E+07 5.880E+07 2.767E+07 8.182E+06 2.254E+07 2.661E+06 3.386E+06
Cc3 Mean 4.737E+00 3.819e-01 3.961E-01 2.052E+04 1.103E+05  4.613E+04 1.100E+05 9.987E-01 6.165E+04  2.342E+04  4.028E-01 5.185E+04
Std 2.402E+00  1.030E-01  7.474E-02  1.522E+04  4.542E-01  2.254E+04  5.345E-01  1.162E+04  1.546E+04  2.600E+04  3.320E-01  3.140E+04
c4 Mean 2.104E+01 1.875E+05 2.500E+05 1.927E+05 1.375E+06 2.549E+05 1.170E+06  4.182E+05 3.213E+05 3.879E+05 3.187E+05 3.861E+05
Std 7.400E+00  9.515E+04  9.690E+04  3.852E+04  2.091E+05  8.455E+04  2.075E+05  1.577E+05  4.030E+04  1.431E+05  7.141E+04  1.203E+05
c5 Mean  1.581E+00  1.575E-01  1.801E-01  1.572E+04  1.572E+06  1.841E-01 1.113E+06  8.418E-01  3.747E+04  3.575E+04  3.781E+04  1.051E+05
Std 8.257E-02 9.020E-02 1.142E-01 1.558E-01  4.026E+05 2.833E+04 3.521E+05 3.970E-01 1.128E+04  5.020E+04 1.099E+04 1.348E+05
[« Mean  6.251E+00  2.442E+04  2.980E+04  2.720E+04  1.415E+05  3.524E+04  1.241E+05  6.188E+04  4.756E+04  4.951E+04  4.753E+04  5.862E+04
Std 1.534E+00 1.517E+04 9.540E-01 9.112E-01 8.705E-01 1.526E+04 9.978E-01 1.780E+04  9.904E-01 2.094E+04  9.183E-01 1.605E+04
c7 Mean  6.354E+02  6.380E+06  1.024E+07  6.758E+06  2.487E+07  9.483E+06  2.382E+07  1.035E+07  1.083E+07  1.111E+07  9.305E+06  1.054E+07
Std 3.032E+02  3.088E+06  2.700E+06  2.022E+06  2.501E+06  3.385E+06  2.150E+06  2.641E+06  1.490E+06  3.578E+06  1.981E+06  2.946E+06
c8 Mean 3.709E+00 2.353E+04 2.464E+04 2.509E+04  4.359E+04 3.413E+04  4.275E+04 3.276E+04  2.902E+04  3.683E+04  3.284E+04  3.056E+04
Std 4.842E-01  5.070E-01  2.531E-01  4.513E-01  1.606E-01  3.721E-01  1.816E-01  4.300E-01  2.132E-01  3.660E-01  1.841E-01  4.531E-01
C9 Mean  1.277E+00  1.401E-01  1.687E-01  1.705E-01  4.328E+04  3.400E-01  3.604E+04  3.543E-01  3.650E-01  5.224E-01  3.258E-01  2.677E-01
Std 1.069E-01  5.726E-02  9.405E-02  6.300E-02  7.373E-01  1.542E-01  8.910E-01  1.941E-01  9.542E-02  2.990E-01  7.004E-02  1.205E-01
C10 Mean  2.131E+01  5.009E+04  1.100E+05  1.922E+05  2.102E+05  2.014E+05  2.089E+05  2.003E+05  1.965E+05  2.002E+05  1.519E+05  2.005E+05
Std 4.736E-02  7.002E+04  9.165E+04  2.432E+04  1.361E-01  1.174E-01  1.150E-01  7.832E-02  1.967E+04  8.225E-02  4.194E+04  5.806E-02
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Table 11. R-value comparison of CSO with algorithms in the literature on CEC2019

CSO OFLCSA CSA AGWO BOA MFO BA WOA SCA PSOGSA OBSCA EGWO
Cc1 3 4 5 8 11 9 12 2 7 10 1 6
Cc2 1 4 3 5 11 8 12 10 7 9 2 6
Cc3 5 1 2 6 12 8 11 4 10 7 3 9
c4 1 2 4 3 12 5 11 10 7 9 6 8
Cc5 5 1 2 6 12 3 11 4 8 7 9 10
Cé 1 2 4 3 12 5 11 10 7 8 6 9
c7 1 2 6 3 12 5 11 7 9 10 4 8
c8 1 2 3 4 12 9 11 7 5 10 8 6
c9 10 1 2 3 12 6 11 7 8 9 5 4
C10 1 2 3 5 12 10 11 8 6 7 4 9
MR 2.9 2.1 34 4.6 11.8 6.8 11.2 6.9 7.4 8.6 4.8 7.5
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