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Abstract—Data security and secure communication is one of the most important issues of today. In this study, a quantum-based

method for secure communication is proposed. In the proposed method, the necessary secret key in communication is generated

locally by each participant through quantum gates. The quantum gates are taught by using quantum reinforcement learning (QRL).

The proposed study is simulated using the Qiskit library for Python. The proposed study performs the learning action with an

accuracy of 87.95% for 195 gates, 85.47% for 128 gates, 83.59% for 64 gates, 76.25% for 32 gates. As the key size increases,

the performance of the method increases. The participants do not share the secret key in the presented method. Thus, the

communication becomes more secure. In the study, the method is also examined in terms of security. Security analysis shows

that the proposed method provides secure communication.

Keywords—quantum reinforcement learning, key generation, quantum key distribution, quantum cryptography

1. Introduction

Data security and secure communication is one
of the most important issues of today. The secret
keys are used to encrypt and decrypt any message
in encryption methods. Different secret keys must be
used for each communication. Sharing the secret key
used in communication can cause security problems.
Generating secret keys locally with the machine
learning (ML) methods will offer a solution to

security threats from key sharing.

There are three types of learning methods for
machine learning such as supervised, unsupervised
and reinforced learning (RL). The input and output
data pairs are used in supervised learning; unsuper-
vised learning uses only input data. The RL uses
a scalar value called a reward to evaluate input-
output data pairs [1]. The quantum version of RL,
quantum reinforcement learning (QRL), is used in
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many fields and to improve the performance of the
Quantum Key Distribution (QKD) methods. There
are many studies in the literature that use QKD for
classification. Ren et al. [2] utilised the Random
Forest classification method in QKD. Zhang et al.[3]
suggested a supporting machine learning MDI-QKD
system. Chin et al. [4] developed a machine learn-
ing method based on Bayesian inference for the
estimation of phase noise in CV-QKD systems.
Giordano and Martin-Delgado [5] proposed an ar-
tificial intelligence algorithm with RL to generate
an entangled state. There are few studies on QRL
in the literature [6], [7], [8]. Albarr´an-Arriagada
et al.[9] designed a measurement-based adaptation
protocol with QRL. A fair comparison of RL and
QRL is given in references. [10], [11].

In this study, a method using QRL is proposed
to generate the secret key locally. The quantum
gates used in secret key generation are taught by
any participant to another participant using QRL.
The learning action is performed by selecting from
the quantum gates Identity (I), Not (X) and CNOT.
These quantum gates are used to generate the key.
Both participants apply the same quantum gates to
the quantum state. They perform a quantum mea-
surement operation on the quantum state to obtain
the secret key. It is a prerequisite for the method
that the participants know which quantum gates to
apply. In order for the secret key to occur in both
participants, the participants must apply the same
quantum gates to the quantum state. The quantum
measurement is performed on the quantum state to
obtain the secret key. The participants need to know
in advance which quantum gates they will imple-
ment before key generation, and the quantum gates
are learned using by QRL. One of the participants
teaches the quantum gates applied to the other using
the QRL method. The learning is achieved via the
quantum channel based on the principles of quantum

mechanics. Some quantum gates may be incorrect
due to the superposition principle of the quantum
mechanics. The quantum gates are applied for two
different error correction operations, and then, the
incorrect quantum gates are ignored. After error
correction operations and ignored gates, the same
quantum gates will be obtained in both participants.
Secure communication is provided when the quan-
tum gates of both parties are the same.

The rest of the paper is organised as follows:
Section 2 presents preliminary information about the
rotation gates. The Key Generation with Quantum
Reinforcement Learning algorithm for secret key
transmission is described in Section 3. The proposed
secure communication method is presented in Sec-
tion 4. Section 5 discusses the security analysis of
the proposed method. Finally, Section 6 provides a
conclusion.

2. Preliminaries

In this section, preliminary information about
the quantum rotation gates is given. The quantum
rotation gates are used to prepare the superposition
of the quantum state and reobtain the initial state.
The Ry gate is a single qubit rotation around the y
axis. The Ry gate is shown as follows:
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Let us show the superposition state by applying the
Ry
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Let us obtain the initial state by applying the
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3. Key Generation with Quantum Rein-
forcement Learning

The QRL consists of three main elements, agent,
state space and reward, as in conventional RL.
Factors in the Markov Decision Process (MDP) to
create a QRL system are represented through the
principles of quantum mechanics. States and actions
in RL algorithms are represented as orthogonal
bases in QRL. In the QRL, they are called eigen
states and eigen actions[1]. In our study, according
to MDP, state space S is represented by two qubits.
Action space A is represented by gates {Identity
(I), NOT (X) and CNOT}, and r is represented by
reward function {0,1}. Each choice is independent
and does not affect another. Two qubit states are
used to learn one gate. Therefore, the 2n-qubit states
are used to learn n gates.

This study utilises a secure quantum channel
for data transmission between two parties. It is
assumed that there is no data loss in the quantum
channel. We will call the sending party initiating the
communication, ”Alice”; the receiving party, ”Bob”;

and the third party intervening and listening to the
communication, ”Eve”.

Alice and Bob follow the steps bellow for the
QRL (Figure 1). The algorithm works as follows:

Step 1: Alice prepares 2n quantum states, selects
n gates, and determines 2n angles for rotation.

Step 2: Alice applies the rotation gate to the
quantum state using a different angle for each qubit.
Alice sends the superposition of quantum state to
Bob (Figure 1a).

Step 3: Bob selects n candidate gates and applies
the gates to the quantum state that Alice sends.
(Figure 1b).

Step 4: Alice applies her gates to the quantum
state. The qubits in which Bob and Alice apply the
same gate become the quantum state in Fig. 1a. If
a gate is applied to the quantum state twice, the
quantum state turns back to the initial state. (Figure
1c).

Step 5: Alice applies the rotation gate with nega-
tive angles to the quantum state. The qubits to which
Bob and Alice apply the same gate become as they
were initially prepared (Figure 1d).

Step 6: After Alice measures the quantum state,
she compares the measurement result with the data
set she used to create the quantum state. According
to the measurement result, the reward is determined
(Figure 1e).

3.1. Teaching the gates required for Key Gen-
eration

In this section, the gates used to generate the
secret key, are taught to Bob with QRL by Alice.
Each gate is taught independently of the others.
There are n different learning actions for n gates.
Alice determines the n gates she will use to generate
the secret key from the {I, X, CNOT} gates. The
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Figure 1. a. Application of rotation gates to quantum states by Alice, b. Bob's application of
candidate gates to quantum states sent by Alice. c. Alice's application of her gates to quantum
states sent after being modified by Bob, d. Application of rotation gates with negative angles to
quantum states by Alice, e. Measurement of quantum states by Alice.

gates can be shown as follows:

UAlice
i = u0, u1, .., un−1 ; i = 1...n− 1

ui ∈ {I,X,CNOT}
(6)

Bob randomly selects n candidate gates from {I, X,
CNOT} gates. The gates can be shown as follows:

UBob
i = ub0, u

b
1, . . . , u

b
n−1 ; i = 1...n− 1

ui ∈ {I,X,CNOT}
(7)

Alice prepares a 2n qubit quantum state for the n
gates as follows:

S = s0s1 . . . s2n−1 ; si ∈ {0, 1} ; i = 0...2n− 1

|ψ⟩ = |s0s1s2s3 . . . s2n−2s2n−1⟩
(8)

Alice obtains the superposition state with different
amplitudes by applying 2n Rotation gates at differ-

ent angles to the quantum state as follows:

|ψ′⟩ = Ry(θ) |ψ⟩ =
⊗ 2n−1

i=0
Ry (θi) |si⟩

= Ry (θ0) |s0⟩
⊗

Ry (θ1) |s1⟩
⊗

...
⊗

Ry (θ2n−1) |s2n−1⟩

= |s′0s
′

1s
′

2...s
′

2n−1⟩ s
′
= α |0⟩+ β |1⟩

(9)

Alice sends the obtained quantum state |ψ′⟩ to
Bob. When a superposition quantum state as in
Equation (9) is measured, the measurement result is
either 0 or 1. If Eve or Bob measures state |ψ′⟩, they
cannot obtain state |ψ⟩ as in Equation (8). Hence the
data security is ensured.
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Bob applies the candidate gates to the
quantum state |ψ′⟩ as in Equation (10).
|s′0⟩ , |s

′
2⟩ , . . . , |s

′
2n−2⟩ qubits are defined as control

qubits. |s′1⟩ , |s
′
3⟩ , . . . , |s

′
2n−1⟩ qubits are defined as

target qubits. Since the control qubit will not be
used for the I and X gates, the gates are applied as
I
⊗

I and I
⊗

X to the 2-qubit state.

Bob sends the obtained quantum state |ψ′′⟩ to
Alice. Alice applies her own gates to the quantum
state |ψ′′⟩ as follows:

|ψ′′′⟩ = UAlice
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Alice obtains the quantum state |ψ′′′⟩ as in Equa-
tion (11). Quantum gates are reversible gates. By
applying the same gate to a quantum state twice,
we can bring the quantum state to its initial state.
When the same gates are selected by Alice and
Bob, the quantum states will become as in Equation
(9). Selecting different gates means that a different
quantum state will occur than in Equation (9). In
other words, if s′′′1 is equal to s

′
1, the same gate

is used. If s′′′1 is not equal to s
′
1, a different gate

is used. In the next step, Alice applies the rotation
gate with negative angles to the quantum state |ψ′′′⟩

as follows:
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When the rotation gate is applied with a negative
of the angle in Equation (9), the quantum state
becomes a non-superposition state. However, since
the amplitudes of the qubits to which Alice and Bob
applied different gates are distorted, these qubits are
in superposition. When the superpositioned qubit is
measured, it will return 0 or 1. In the next step,
Alice measures the quantum state in Equation (12).
Through this measurement, a classical data of 2n
bits is obtained by Alice. She compares the 2n
bits classical data in Equation (12) with the 2n bit
classical data in Equation (8). For bits of the same
value, she marks the reward value as ”1”, and ”0”
for bits of different value. She sends the reward
value to Bob. Then she creates a new quantum state
|ψ⟩ and repeats the steps. Bob does not change
the gates for qubits with a reward value of ”1”

for the new quantum state. He changes the gate
which applies to qubits with a reward value of ”0”.
He chooses a different gate than the one he chose
earlier. This algorithm repeats until all reward values
are ”1”. When all reward values are ”1”, the steps
are repeated by applying the NOT gate to the control
qubit. If all of the reward values remain as ”1”, error
checks are started. Otherwise, iteration continues for
bits with a reward value of 0.

In each iteration, Alice announces 50% of the
gates which have a reward value of ”0”. Alice and
Bob certainly do not choose the same gate when the
reward value is ”0”. If they chose the same gate, the
reward value would be ”1” with 100% probability.
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Bob compares the gate that Alice announced to his
own. If the two gates are the same, Bob announces
the presence of Eve. This will be further discussed
in the security analysis (Section 5).

Let us exemplify the above steps for the value of
n=4 as follows:

Step 1 Alice has four gates: UAlice
i =

{X,CNOT, I,X} . She creates 8 qubits quantum
states for 4 gates, like |ψ⟩ = |01101011⟩.

Step 2: Alice applies the rotation gate with a dif-
ferent angle for each qubit. In our example we apply
the rotation gate with all qubits π

3
. Ry

(
π
3

)
|0⟩ =√

3
2
|0⟩+ 1

2
|1⟩ , Ry

(
π
3

)
|1⟩ = −1

2
|0⟩+

√
3
2
|1⟩

Alice applies the rotation gate to the quantum state
as follows:

|ψ′⟩ =
⊗ 2n−1

i=0
Ry

(π
3

)
|01101011⟩

=

(√
3

2
|0⟩+ 1

2
|1⟩

)⊗(
−1

2
|0⟩+

√
3

2
|1⟩

)
⊗(

−1

2
|0⟩+

√
3

2
|1⟩

)⊗(√
3

2
|0⟩+ 1

2
|1⟩

)
⊗(

−1

2
|0⟩+

√
3

2
|1⟩

)⊗(√
3

2
|0⟩+ 1

2
|1⟩

)
⊗(

−1

2
|0⟩+

√
3

2
|1⟩

)⊗(
−1

2
|0⟩+

√
3

2
|1⟩

)

=

(
−
√
3

4
|00⟩+ 3

4
|01⟩ − 1

4
|10⟩+

√
3

4
|11⟩

)
⊗(

−
√
3

4
|00⟩ − 1

4
|01⟩+ 3

4
|10⟩+

√
3

4
|11⟩

)
⊗(

−
√
3

4
|00⟩ − 1

4
|01⟩+ 3

4
|10⟩+

√
3

4
|11⟩

)
⊗(

1

4
|00⟩ −

√
3

4
|01⟩ −

√
3

4
|10⟩+ 3

4
|11⟩

)

Step 3: Bob selects n candidate gates and applies

the gates to the quantum state as follows:
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Step 4: Alice applies her gates to the quantum state
as follows:
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i = {X,CNOT, I,X}
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This example demonstrates that the qubits for

which Alice and Bob apply the same gate, return
to their form in Step 2. For the first two qubits,
they apply different gates. The initial value of the
first two qubits is |01⟩. After they apply their gates
respectively, the first two qubits become different
from Step 2. The amplitude of the first two qubits
changes. Now let us apply a rotation gate with neg-
ative angle. Quantum states where Alice and Bob
choose the same gate become non-superposition
states.

Step 5: Alice applies the rotation gate with nega-
tive angles to the quantum state as follows:
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|10⟩+ 3 + 2

√
3

8
|11⟩

)
⊗

|1⟩
⊗

|0⟩
⊗

|1⟩
⊗

|0⟩
⊗

|1⟩
⊗

|1⟩

|ψ′′′′⟩ =

(
3

8
|00⟩ − 2− 3

√
3

8
|01⟩

−
√
3

4
|10⟩+ 3 + 2

√
3

8
|11⟩

)⊗
|101011⟩

Qubits with the same gates applied are in non-
superposition states. However, the first two qubits
in our example are in a superposition state.

Step 6: Alice measures the quantum state in Step
5.
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Alice has |ψ′′′′⟩. After the measurment of |ψ′′′′⟩,
Alice has ”00101011”, ”01101011”, ”10101011”

or ”11101011”. Alice has an initial value of
”01101011”.

Assuming that the measurement result is
”00101011”, let us compare ”01101011” to
”00101011”. It is clear that the bit used to prepare
the second qubit has changed from ”1” to ”0”.
Alice marks the reward for the second qubit as
”0”. Since the bits used to prepare the other qubits
have not changed, Alice marks them as ”1”. She
sends Bob the reward value ”10111111”. Since
the reward value of the second qubit is ”0”, she
creates a new quantum state |ψ⟩ and repeats the
steps. Bob does not change the gates which apply
to qubits with a reward value of ”1” for the new
quantum state. He changes the gate which applies
to qubits with a reward value of ”0”. He chooses
a different gate than the one he chose earlier. He
chooses the CNOT gate for the first two qubits in
the first iteration. For this reason, he chooses either
gate I or X in the second iteration. Alice and Bob
repeat the steps until all reward values are ”1”.

Assuming that the measurement result is
”01101011”, let us compare ”01101011” to
”01101011”. Since both data are the same, Alice
marks all of the reward values as ”1”. Table 1
shows that the reward value can be ”1” even if
different gates are selected. Alice repeats the steps
after applying the NOT gate to the control qubits
in the quantum state |ψ⟩. In this case, since Alice
and Bob use different gates, the reward value is
expected to be ”0”. Bob changes the gate which
applies to qubits with a reward value of ”0”.
However, since the rotation gate is applied, the
quantum state is in superposition. Therefore, as in
our example, the reward value can be ”1”. In our
example for the first two qubits, Alice chooses gate
X and Bob chooses gate CNOT. While the reward

value is expected to be 0, it takes the value 1 due to
superposition. Repeating the steps by applying the
NOT gate to the control qubit, Alice's gate CNOT
behaves like Bob's gate X. The reward value will
be ”1” with 100% probability. The superposition
principle of quantum states caused Bob to accept
the incorrect gate. When accepted incorrect gates
are detected through the error checks in Section 3.2,
the detected gates are then cancelled.

Table 1.
Situations where Alice and Bob choose

different gates.

First
Quantum

State*

Bob’s
gate

The
Transmitted

Quantum
State

Alice’s
gate

Last
Quantum

State

Re-
ward

|00⟩ I |00⟩ CNOT |00⟩ 1
|01⟩ I |01⟩ CNOT |01⟩ 1
|10⟩ I |10⟩ CNOT |11⟩ 0
|11⟩ I |11⟩ CNOT |10⟩ 0
|00⟩ X |01⟩ CNOT |01⟩ 0
|01⟩ X |00⟩ CNOT |00⟩ 0
|10⟩ X |11⟩ CNOT |10⟩ 1
|11⟩ X |10⟩ CNOT |11⟩ 1
∗ |q0q1⟩ , q0 : Control qubit q1 : Target qubit

3.2. Error Corrections for Key

The previous section reveals that Bob may ac-
cept incorrect gates. The reason for this error is
that different gates are chosen by Alice and Bob.
Two parties must detect and cancel incorrect gates.
Therefore, two different error checks are required.
The first of these error checks detects situations
where one party selects the ”Identity” gate and
the other selects the ”NOT” gate. The other error
check detects situations where one party selects the
”CNOT” gate and the other selects the ”Identity” or
”NOT” gate.
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3.2.1 Identity-NOT Error Check

This error check method is for situations where
one of the parties selects the ”Identity” and the other
selects the ”NOT” gate. Both parties generate the
secret key with Quantum computing. This secret
key is used to encrypt the message by XOR op-
eration. Both parties exchange encrypted messages
and detect incorrect gates. Then, incorrect gates are
cancelled by participants.

Alice and Bob's gates are as follows:

UAlice
i = u0, u1, .., un−1 ;ui ∈ {I,X,CNOT} ;

UBob
i = ub0, u

b
1, . . . , u

b
n−1 ;ubi ∈ {I,X,CNOT} ;

i = 1...n− 1

Algorithm for Identity-NOT error check works as
follows:

Step 1: Alice prepares 2n qubits'quantum state to
generate the secret key as follows:

S = s0s1 . . . s2n−1 ; si ∈ {0, 1} ; i = 0...2n− 1

|ψ⟩ = |s0s1s2s3 . . . s2n−2s2n−1⟩
Control Qubits : s0, s2, . . . , s2n−2 ;

Target Qubits : s1, s3, . . . , s2n−1

(13)

Step 2: Accepting the s0, s2, . . . , s2n−2 qubits are
control qubits, Alice applies her own gates to |ψ⟩
as follows:

|ψ′⟩ = UAlice
i |ψ⟩ =

⊗ n−1

i=0
ui |s2is2i+1⟩

= u0 |s0s1⟩
⊗

u1 |s2s3⟩
⊗

...
⊗

un−1 |s2n−2s2n−1⟩

= |s0s
′

1s2s
′

3..s2n−2s
′

2n−1⟩

(14)

Step 3: Alice measures the target qubits in the
quantum state and obtains secret key as follows:

KAlice = k0k1 . . . kn−1 ; ki ∈ {0, 1} ; i = 0...n− 1

(15)

Step 4: Alice reconstructs the same quantum state
she used to create the secret key. Then she sends it
to Bob. Accepting the s0, s2, . . . , s2n−2 qubits are
control qubits, Bob applies his own gates to |ψ⟩ as
follows:

|ψ′⟩ = UBob
i |ψ⟩ =

⊗ n−1

i=0
ubi |s2is2i+1⟩

= ub0 |s0s1⟩
⊗

ub1 |s2s3⟩
⊗

...
⊗

ubn−1 |s2n−2s2n−1⟩

= |s0s
′′

1s2s
′′

3 ..s2n−2s
′′

2n−1⟩

(16)

Step 5: Bob measures the quantum state. Bob
keeps the measurement results of the target qubits
as a secret key. Bob keeps the measurement results
of the Control qubits in the ControlBits array as
follows:

KBob = kBob
0 kBob

1 . . . kBob
n−1 ; kBob

i ∈ {0, 1} ;
ControlBitsBob = s0, s2, . . . , s2n−2 ;

s2i ∈ {0, 1} ; i = 0..n− 1

(17)

Both Alice and Bob generate a key by applying
their gates to the quantum state. If both have the
same gates, the generated key must be same. If
both have the same key, the encrypted text can be
decrypted by the other. Both use XOR on classical
bits to encrypt and decrypt the message.

Step 6: Alice prepares n-bit classical data as
follows:

M = m0m1 . . .mn−1 ; mi ∈ {0, 1} ; i = 0...n− 1

(18)

Step 7: Alice applies the ”XOR” operation to the
message in Equation (18) and the key in Equation
(15). The encrypted message is generated as fol-
lows:

C =
(
k0
⊕

m0

)(
k1
⊕

m1

)
. . .
(
kn−1

⊕
mn−1

)
C = c0c1 . . . cn−1 ; ci ∈ {0, 1} ; i = 0...n− 1

(19)
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Step 8: She sends the encrypted message to Bob.
Our expectation is that Bob reaches the original
message using his own key. Then Bob applies
the ”XOR” operation to the encrypted message in
Equation (19) and the key in Equation (17). Thus,
the decrypted message is created as follows:

M
′
=
(
kBob
0

⊕
c0

)(
kBob
1

⊕
c1

)
. . .
(
kBob
n−1

⊕
cn−1

)
M

′
= m

′

0m
′

1 . . .m
′

n−1 ; m
′

i ∈ {0, 1} ; i = 0...n− 1
(20)

Step 9: Bob uses the ControlBits array in Equation
(17) as the control qubit, the M ′ message in Equa-
tion (20) as the target qubit and prepares a quantum
state. He applies his own gates to the quantum state
as follows:

|ϕ⟩ = |s0m
′

0s2m
′

1 . . . s2n−2m
′

n−1⟩ ; s2i ∈ {0, 1} ;
m

′

i ∈ {0, 1} ; i = 0..n− 1

|ϕ′⟩ = UBob
i |ϕ⟩ =

⊗ n−1

i=0
ubi |s2im

′

i⟩

= ub0 |s0m
′

0⟩
⊗

ub1 |s2m
′

1⟩
⊗

...
⊗

ubn−1 |s2n−2m
′

n−1⟩

= |s0m
′′

0s2m
′′

1 . . . s2n−2m
′′

n−1⟩
(21)

Step 10: Bob measures the target qubits in the
quantum state in Equation (21) and obtains the
secret key as follows:

KBob
′

= kBob
′

0 kBob
′

1 . . . kBob
′

n−1 ; kBob
′

i ∈ {0, 1} ;
i = 0..n− 1

(22)

Step 11: Bob applies the ”XOR” operation to the
decrypted message in Equation (20) and the key in
Equation (22). Thus, the encrypted message is as

follows:

C
′
=
(
kBob

′

0

⊕
m

′

0

)(
kBob

′

1

⊕
m

′

1

)
. . .
(
kBob

′

n−1

⊕
m

′

n−1

)
C ′ = c

′

0c
′

1 . . . c
′

n−1 ; c
′

i ∈ {0, 1} ; i = 0...n− 1
(23)

Step 12: Then he sends the encrypted message in
Equation (23) to Alice. Alice prepares a quantum
state using the control qubits in Equation (13) and
the original message M in Equation (18). She ap-
plies her own gates to the quantum state as follows:

|Φ⟩ = |s0m0s2m1 . . . s2n−2mn−1⟩ ; s2i ∈ {0, 1} ;
mi ∈ {0, 1} ; i = 0..n− 1

|Φ′⟩ = UAlice
i |Φ⟩ =

⊗ n−1

i=0
ui |s2imi⟩

= u0 |s0m0⟩
⊗

u1 |s2m1⟩
⊗

...
⊗

un−1 |s2n−2mn−1⟩

= |s0m
′′′

0 s2m
′′′

1 . . . s2n−2m
′′′

n−1⟩
(24)

Step 13: Alice measures the target qubits in the
quantum state in Equation (24) and obtains the
secret key as follows:

KAlice
′

= k′0k
′
1 . . . k

′
n−1 ; k′i ∈ {0, 1} ;

i = 0...n− 1
(25)

Step 14: KBob
′

in Equation (22) and KAlice
′
in

Equation (25) have the same value. Alice applies
the ”XOR” operation to the encrypted message in
Equation (23) and the key in Equation (25). Thus,
the decrypted message is as follows:

M4 =
(
k

′

0

⊕
c
′

0

)(
k

′

1

⊕
c
′

1

)
. . .
(
k

′

n−1

⊕
c
′

n−1

)
M4 = m4

0m
4
1 . . .m

4
n−1 ; m4

i ∈ {0, 1} ; i = 0...n− 1
(26)

M ′ in Equation (20) and M4 in Equation (26)
have the same value. Alice has Bob's M ′ message.
Alice compares the original message M to message
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M4. Alice marks the gates of different bits as
incorrect gates. She informs Bob to cancel them.

Let us exemplify the above steps for the value of
n=4 as follows:

Alice and Bob's gates are as

UAlice
i = {X,CNOT, I,X}
UBob
i = {I, CNOT, I,X}

Step 1:
|ψ⟩ = |01110110⟩

Step 2:

|ψ′⟩ = UAlice
i |ψ⟩ = (I

⊗
X) |01⟩

⊗
CNOT |11⟩⊗

(I
⊗

I) |01⟩
⊗

(I
⊗

X) |10⟩

= |00⟩
⊗

|10⟩
⊗

|01⟩
⊗

|11⟩ = |00100111⟩

Step 3:
KAlice = 0011

Step 4:

|ψ′⟩ = UBob
i |ψ⟩ = (I

⊗
I) |01⟩

⊗
CNOT |11⟩⊗

(I
⊗

) |01⟩
⊗

(I
⊗

X) |10⟩

= |01⟩
⊗

|10⟩
⊗

|01⟩
⊗

|11⟩ = |01100111⟩

Step 5:

KBob = 1011, ControlBitsBob = 0101

Step 6:
M = 1011

Step 7:

KAlice = 0011,M = 1011

C = (0
⊕

1)(0
⊕

0)(1
⊕

1)(1
⊕

1) = 1000

Step 8:

KBob = 1011 , C = 1000

M
′
= (1

⊕
1)(0

⊕
0)(1

⊕
0)(1

⊕
0) = 0011

Let us compare Alice's original message in Step
6 to Bob's decrypted message in Step 8. It is clear
that the first bits are different. This means that the
first bits in the keys of two parties differ. The gate
that generates this key bit needs to be cancelled.
Both Alice and Bob cannot make a decision about
this cancellation because they cannot know what
the other’s message is. Alice has the M = 1011

message. Bob has the M ′
= 0011 message. To make

a decision, one of the parties must have both the M
and M

′ message. We will ensure that Bob sends
the M ′ message to Alice correctly. Therefore, Bob
and Alice must have the same key. In our example,
when we compare Alice’s key at Step 3 to Bob’s
key at Step 5, we see that the first bits of the keys
differ. Bob applies his gate to the target qubit that
he prepared with the first bit of the M ′ message as
follows:

M
′
= 0011 , UBob

i = {I, CNOT, I,X}
I |0⟩ = |0⟩

If Bob measures the |0⟩ state, he finds ”0”. Alice
applies her gate to the target qubit she prepared with
the first bit of the M message as follows:

M = 1011, UAlice
i = {X,CNOT, I,X}

X |1⟩ = |0⟩

If Alice measures the |0⟩ state, she finds ”0”.
Alice and Bob generated the same bit value. Alice
and Bob can generate the same key if they use
the message (M , M ′) that they have as their target
qubit.

Step 9:

ControlBitsBob = 0101 ; M
′
= 0011

UBob
i = {I, CNOT, I,X}

|ϕ⟩ = |00100111⟩
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|ϕ′⟩ = UBob
i |ϕ⟩ = (I

⊗
I) |00⟩

⊗
CNOT |10⟩⊗

(I
⊗

I) |01⟩ (I
⊗

X) |11⟩

= |00⟩
⊗

|11⟩
⊗

|01⟩
⊗

|10⟩ = |00110110⟩

Step 10:

KBob
′

= 0110

Step 11:

M
′
= 0011 ; KBob

′

= 0110

C ′ = (0
⊕

0)(1
⊕

0)(1
⊕

1)(0
⊕

1) = 0101

Step 12:

ControlBitsAlice = 0101 ; M = 1011 ;

|Φ⟩ = |01100111⟩
UAlice
i = {X,CNOT, I,X}

|Φ′⟩ = UAlice
i |Φ⟩

= (I
⊗

X) |01⟩
⊗

CNOT |10⟩⊗
(I
⊗

I) |01⟩
⊗

(I
⊗

X) |11⟩

= |00⟩
⊗

|11⟩
⊗

|01⟩
⊗

|10⟩ = |00110110⟩

Step 13:

KAlice
′

= 0110

Step 14:

C
′
= 0101 ; KAlice

′

= 0110

M4 = (0
⊕

0)(1
⊕

1)(1
⊕

0)(0
⊕

1) = 0011

M
′
= 0011 in Step 8 and M4 = 0011 in Step 14

have the same value. Alice has Bob's M ′
= 0011

message. Alice compares the original message M =

1011 to message M4 = 0011. Alice marks the gates
of different bits as incorrect gates. She informs Bob
to cancel them.

3.2.2 CNOT-(Identity/NOT) Error Check

This error method is for situations where one of
the two parties selects the ”CNOT” and the other
the ”Identity” or ”NOT” gate. Alice prepares 3 n-
bit datasets and shares them with Bob. The first n-bit
data set is the control bit, and the other two data sets
are the target bits. Bob generates two different keys
by using these datasets. By applying these keys to
the message, he obtains two encrypted messages. He
sends the encrypted messages to Alice. Alice gener-
ates two different keys by using these datasets. By
applying these keys to the encrypted message, she
obtains two decrypted messages. Then she compares
the first decrypted message to the second decrypted
message. She marks the gates of different bits as
incorrect gates. She informs Bob to cancel them.

Alice and Bob's gates are as follows:

UAlice
i = u0, u1, .., un−1 ;ui ∈ {I,X,CNOT} ;

i = 1...n− 1

UBob
i = ub0, u

b
1, . . . , u

b
n−1 ;ubi ∈ {I,X,CNOT} ;

i = 1...n− 1

Algorithm for CNOT-(Identity/NOT) error check
works as follows:

Step 1: Alice shares the following 3 n-bit classical
data with Bob as follows:

S1 = s10s
1
1 . . . s

1
n−1 ; s1i ∈ {0, 1} ; i = 0...n− 1

(27)
S2 = s20s

2
1 . . . s

2
n−1 ; s2i ∈ {0, 1} ; i = 0...n− 1

(28)
S3 = s30s

3
1 . . . s

3
n−1 ; s3i ∈ {0, 1} ; i = 0...n− 1

(29)

Step 2: Both parties prepare the first quantum state
using the control bits in Equation (27) and the target
bits in Equation (28) as follows:

|ψ1⟩ = |s10s20s11s21 . . . s1n−1s
2
n−1⟩ ;

|s1i s2i ⟩ ∈ {0, 1} ; i = 0...n− 1
(30)
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Step 3: Both prepare the second quantum state
using the target bits in Equation (29) and the NOT
applied version of the control bits in Equation (27):

|ψ2⟩
= |NOT

(
s10
)
s30NOT

(
s11
)
s31 . . . NOT

(
s1n−1

)
s3n−1⟩

|s1i s3i ⟩ ∈ {0, 1} ; i = 0...n− 1
(31)

Step 4: Alice applies her own gates to the quantum
state in Equation (30) and the quantum state in
Equation (31) as follows:

|ψAlice
1 ⟩ = UAlice

i |ψ1⟩ =
⊗ n−1

i=0
ui |s1i s2i ⟩

= u0 |s10s20⟩
⊗

u1 |s11s21⟩
⊗

...
⊗

un−1 |s1n−1s
2
n−1⟩

= |s10s2
′

0 s
1
1s

2
′

1 . . . s
1
n−1s

2
′

n−1⟩
(32)

|ψAlice
2 ⟩ = UAlice

i |ψ2⟩

=
⊗ n−1

i=0
ui |NOT

(
s1i
)
s3i ⟩

= u0 |NOT
(
s10
)
s30⟩
⊗

u1 |NOT
(
s11
)
s31⟩
⊗

...
⊗

un−1 |NOT
(
s1n−1

)
s3n−1⟩

= |NOT
(
s10
)
s3

′

0 ...NOT
(
s1n−1

)
s3

′

n−1⟩
(33)

Step 5: Bob applies his own gates to the quantum
state in Equation (30) and the quantum state in
Equation (31) as follows:

|ψBob
1 ⟩ = UBob

i |ψ1⟩ =
⊗ n−1

i=0
ubi |s1i s2i ⟩

= ub0 |s10s20⟩
⊗

ub1 |s11s21⟩
⊗

...
⊗

ubn−1 |s1n−1s
2
n−1⟩

= |s10s2
′

0 s
1
1s

2
′

1 . . . s
1
n−1s

2
′

n−1⟩
(34)

|ψBob
2 ⟩ = UBob

i |ψ2⟩ =
⊗ n−1

i=0
ubi |NOT

(
s1i
)
s3i ⟩

= ub0 |NOT
(
s10
)
s30⟩
⊗

ub1 |NOT
(
s11
)
s31⟩
⊗

...
⊗

ubn−1 |NOT
(
s1n−1

)
s3n−1⟩

= |NOT
(
s10
)
s3

′

0 . . . NOT
(
s1n−1

)
s3

′

n−1⟩
(35)

Step 6: Alice measures the target qubits in the
quantum state in Equation (32) and obtains the

secret key as follows:

KAlice1 = kAlice1
0 kAlice1

1 . . . kAlice1
n−1 ;

kAlice1
i ∈ {0, 1} ; i = 0..n− 1

(36)

Step 7: Alice measures the target qubits at the
quantum state in Equation (33) and obtains the
secret key as follows:

KAlice2 = kAlice2
0 kAlice2

1 . . . kAlice2
n−1 ;

kAlice2
i ∈ {0, 1} ; i = 0..n− 1

(37)

Step 8: Bob measures the target qubits at the
quantum state in Equation (34) and obtains the
secret key as follows:

KBob1 = kBob1
0 kBob1

1 . . . kBob1
n−1 ;

kBob1
i ∈ {0, 1} ; i = 0..n− 1

(38)

Step 9: Bob measures the target qubits at the
quantum state in Equation (35) and obtains the
secret key as follows:

KBob2 = kBob2
0 kBob2

1 . . . kBob2
n−1 ;

kBob2
i ∈ {0, 1} ; i = 0..n− 1

(39)

Step 10: One of Bob's keys has the same value
as Alice's key but the other has a different value.
So, one of Bob’s keys is valid and the other is
invalid. Encrypting message with both keys sepa-
rately he creates two encrypted messages. Then he
sends these encrypted messages to Alice. If Alice
decrypts the encrypted message using her own keys,
she obtains two different messages. She can detect
incorrect gates by comparing messages. Now let us
show how Bob prepares a message as follows:

M = m0m1 . . .mn−1 ; mi ∈ {0, 1} ; i = 0...n− 1

(40)

Step 11: Bob applies the ”XOR” operation to the
message in Equation (40) and the key in Equation
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(38). Thus, the encrypted message is created as
follows:

C1 =
(
kBob1
0

⊕
m0

)(
kBob1
1

⊕
m1

)
. . .
(
kBob1
n−1

⊕
mn−1

)
C1 = c10c

1
1 . . . c

1
n−1 ; c1i ∈ {0, 1} ; i = 0...n− 1

(41)

Step 12: Bob applies the ”XOR” operation to the
message in Equation (40) and the key in Equation
(39). Thus, the encrypted message is created as
follows:

C2 =
(
kBob2
0

⊕
m0

)(
kBob2
1

⊕
m1

)
. . .
(
kBob2
n−1

⊕
mn−1

)
C2 = c20c

2
1 . . . c

2
n−1 ; c2i ∈ {0, 1} ; i = 0...n− 1

(42)

Step 13: Then Bob sends encrypted messages C1

and C2to Alice. Alice applies the ”XOR” operation
to the encrypted message in Equation (41) and the
key in Equation (36). Thus, the decrypted message
is created as follows:

M1 =
(
kAlice1
0

⊕
c10

)(
kAlice1
1

⊕
c11

)
. . .
(
kAlice1
n−1

⊕
c1n−1

)
M1 = m1

0m
1
1 . . .m

1
n−1 ; m1

i ∈ {0, 1} ;
i = 0...n− 1

(43)

Step 14: Alice applies the ”XOR” operation to
the encrypted message in Equation (42) and the key
in Equation (37). Thus, the decrypted message is
created as follows:

M2 =
(
kAlice2
0

⊕
c20

)(
kAlice2
1

⊕
c21

)
. . .
(
kAlice2
n−1

⊕
c2n−1

)
M2 = m2

0m
2
1 . . .m

2
n−1 ; m2

i ∈ {0, 1} ;
i = 0...n− 1

(44)

Alice has two decrypted messages created from
the same message. As proved above, upon choosing

the incorrect gates, Bob will have the incorrect key
and encrypt the message incorrectly. Alice will not
be able to retrieve the original message for the
incorrect state. Therefore, one of Alice's messages
has a different content from the original message
because of Bob's incorrect gate choice. The other
will have the same content as the original message.
Alice compares M1 message to M2 message. Alice
marks the gates of different bits as incorrect gates.
She informs Bob to cancel them.

The gates selected differently are removed from
the system through error checks. In this way, it
is ensured that both parties have the same gates.
After this, both parties will have the information to
generate the same key.

Let us exemplify the above steps for the value of
n=4 as follows:

Alice and Bob's gates are as

UAlice
i = {X,CNOT, I,X}

UBob
i = {CNOT,CNOT, I,X}

Step 1:

S1 = 1001 ; S2 = 0111 ; S3 = 1100

Step 2:

|ψ1⟩ = |10010111⟩

Step 3:

|ψ2⟩ = |01111000⟩

Step 4:

|ψAlice
1 ⟩ = UAlice

i |10010111⟩

= (I
⊗

X) |10⟩
⊗

CNOT |01⟩⊗
(I
⊗

I) |01⟩
⊗

(I
⊗

X) |11⟩

= |11⟩
⊗

|01⟩
⊗

|01⟩
⊗

|10⟩ = |11010110⟩
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|ψAlice
2 ⟩ = UAlice

i |01111000⟩

= (I
⊗

X) |01⟩
⊗

CNOT |11⟩⊗
(I
⊗

I) |10⟩
⊗

(I
⊗

X) |00⟩

= |00⟩
⊗

|10⟩
⊗

|10⟩
⊗

|01⟩ = |00101001⟩

Step 5:

|ψBob
1 ⟩ = UBob

i |10010111⟩

= CNOT |10⟩
⊗

CNOT |01⟩
⊗

(I
⊗

I) |01⟩
⊗

(I
⊗

X) |11⟩

= |11⟩
⊗

|01⟩
⊗

|01⟩
⊗

|10⟩ = |11010110⟩

|ψBob
2 ⟩ = UBob

i |01111000⟩

= CNOT |01⟩
⊗

CNOT |11⟩
⊗

(I
⊗

I) |10⟩
⊗

(I
⊗

X) |00⟩

= |01⟩
⊗

|10⟩
⊗

|10⟩
⊗

|01⟩ = |01101001⟩

Step 6:

|ψAlice
1 ⟩ = |11010110⟩ ; KAlice1 = 1110

Step 7:

|ψAlice
2 ⟩ = |00101001⟩ ; KAlice2 = 0001

Step 8:

|ψBob
1 ⟩ = |11010110⟩ ; KBob1 = 1110

Step 9:

|ψBob
2 ⟩ = |01101001⟩ ; KBob2 = 1001

Step 10:

M = 1100

Step 11:

KBob1 = 1110 ; M = 1100

C1 = (1
⊕

1)(1
⊕

1)(1
⊕

0)(0
⊕

0) = 0010

Step 12:

KBob2 = 1001 ; M = 1100

C2 = (1
⊕

1)(0
⊕

1)(0
⊕

0)(1
⊕

0) = 0101

Step 13:

KAlice1 = 1110 ; C1 = 0010

M1 = (1
⊕

0)(1
⊕

0)(1
⊕

1)(0
⊕

0) = 1100

Step 14:

KAlice2 = 0001 ; C2 = 0101

M2 = (0
⊕

0)(0
⊕

1)(0
⊕

0)(1
⊕

1) = 0100

Alice compares the M1 = 1100 to M2 = 0100

messages. Then she marks the gates of different bits
as incorrect gates. She informs Bob to cancel them.
In our example, the first gate will be cancelled. Alice
and Bob's gates will be the same, as follows:

UAlice
i = {CNOT, I,X} ; UBob

i = {CNOT, I,X}

3.3. Key Generation

This section will examine the key generation. The
keys are generated by quantum gates which are
taught by QRL as above (see Sections 3.1 and 3.2).

Alice and Bob have the same gates as follows:

UAlice
i = u0, u1, .., un−1 ;ui ∈ {I,X,CNOT} ;

UBob
i = u0, u1, .., un−1 ;ui ∈ {I,X,CNOT} ;

i = 1...n− 1

Step 1: Alice prepares the 2n-bit dataset as fol-
lows:

S = s0s1 . . . s2n−1 ; si ∈ {0, 1} ; i = 0...2n− 1

(45)

Alice sends the 2n-bit dataset in Equation (45) to
Bob.
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Step 2: Alice prepares a 2n qubit quantum state
with the 2n-bit dataset in Equation (45) as follows:

|ψ⟩ = |s0s1s2s3 . . . s2n−2s2n−1⟩ (46)

Step 3: She applies her own gates to the quantum
state as follows:

|ψ′⟩ = UAlice
i |ψ⟩ =

⊗ n−1

i=0
ui |s2is2i+1⟩

= u0 |s0s1⟩
⊗

u1 |s2s3⟩
⊗

...
⊗

un−1 |s2n−2s2n−1⟩

= |s0s
′

1s2s
′

3...s2n−2s
′

2n−1⟩
|q0q1⟩ , q0 : Control qubit q1 : Target qubit

(47)

Step 4: Alice measures the target qubits at the
quantum state and obtains the secret key as KAlice =

”s
′
1s

′
3s

′
5..s

′
2n−1”.

Step 5: Bob prepares a 2n qubit quantum state
with the 2n-bit dataset in Equation (45) as follows:

|ψ⟩ = |s0s1s2s3 . . . s2n−2s2n−1⟩ (48)

Step 6: Bob applies his gates to the quantum state
as follows:

|ψ′⟩ = UBob
i |ψ⟩ =

⊗ n−1

i=0
ui |s2is2i+1⟩

= u0 |s0s1⟩
⊗

u1 |s2s3⟩
⊗

...
⊗

un−1 |s2n−2s2n−1⟩

= |s0s
′

1s2s
′

3..s2n−2s
′

2n−1⟩

(49)

Step 7: Bob measures the target qubits at the
quantum state and obtains the secret key as KBob =

”s
′
1s

′
3s

′
5..s

′
2n−1”. Both parties creates the same secret

key locally. An example of key generation is shown
in Figure 2:

4. Secure Communication Method

In this section, it is explained how two parties
communicate securely. An example of this commu-
nication is shown in Figure 3.

Now that both parties can generate the same key,
we can focus on the achievement of secure commu-
nication. First, Alice prepares the 2n-bit dataset as
follows:

S = s0s1 . . . s2n−1 ; si ∈ {0, 1} ; i = 0...2n− 1

(50)

Alice sends it to Bob. Both parties prepare a
2n qubit quantum state with the 2n-bit dataset in
Equation (50) as follows:

|ψ⟩ = |s0s1s2s3 . . . s2n−2s2n−1⟩ (51)

Both parties apply their gates to the quantum state
in Equation (51) as follows:

|ψ′⟩ = Ui |ψ⟩ =
⊗ n−1

i=0
ui |s2is2i+1⟩

= u0 |s0s1⟩
⊗

u1 |s2s3⟩
⊗

...
⊗

un−1 |s2n−2s2n−1⟩

= |s0s
′

1s2s
′

3...s2n−2s
′

2n−1⟩

(52)

Both parties measure the target qubits at the
quantum state in Equation (52) and obtains the
secret key as follows:

K = k0k1 . . . kn−1 ; ki ∈ {0, 1} ; i = 0...n− 1

(53)

Both parties obtain the shift value by adding the
value of the bits in the key obtained in Equation
(53) as follows:

t = k0 + k1 + . . .+ kn−1 (54)

Both parties have the order of the gates by shifting
their gates based on the shift value in Equation (54)
as follows:

U ′ = u(0+t)%n, u(1+t)%n, .., u(n−1+t)%n ;

ui ∈ {I,X,CNOT} ; i = 1...n− 1

U ′ = u
′

0, u
′

1, .., u
′

n−1 ;

u
′

i ∈ {I,X,CNOT} ; i = 1...n− 1

(55)
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Figure 2. Example of key generation.

Figure 3. Example of secure communication.
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In this way, the keys used in each encryption
process are generated differently. Additionally each
application of the gates to the same bit will differ.
Thus, the eavesdroppers are also prevented from
creating a sample data set. If the same gate was
applied to the same bit over and over, the eaves-
droppers could create a dataset and try to obtain
the key information. In our method by changing the
gates applied each time, security is ensured.

Both parties apply organised gates at Equation
(55) to the quantum state in Equation (51) as
follows:

|ψ′⟩ = U
′

i |ψ⟩ =
⊗ n−1

i=0
u

′

i |s2is2i+1⟩

= u
′

0 |s0s1⟩
⊗

u
′

1 |s2s3⟩
⊗

...
⊗

u
′

n−1 |s2n−2s2n−1⟩

= |s0s
′′

1s2s
′′

3 ...s2n−2s
′′

2n−1⟩

(56)

Both parties measure the target qubits at the
quantum state in Equation (56) and obtains the
secret key as follows:

K ′ = k
′

0k
′

1 . . . k
′

n−1 ; k
′

i ∈ {0, 1} ; i = 0...n− 1

(57)

Alice prepares n-bit classical data as follows:

M = m0m1 . . .mn−1 ; mi ∈ {0, 1} ; i = 0...n− 1

(58)

Alice applies the ”XOR” operation to the message
in Equation (58) and the secret key in Equation (57).
Thus, the encrypted message is created as follows:

C =
(
k

′

0

⊕
m0

)(
k

′

1

⊕
m1

)
. . .
(
k

′

n−1

⊕
mn−1

)
C = c0c1 . . . cn−1 ; ci ∈ {0, 1} ; i = 0...n− 1

(59)

Then she sends the encrypted message C to Bob.
He applies the ”XOR” operation to the encrypted
message in Equation (59) and the secret key in

Equation (57). Thus, through decyrption, the origi-
nal message is obtained as follows:

M =
(
k

′

0

⊕
c0

)(
k

′

1

⊕
c1

)
. . .
(
k

′

n−1

⊕
cn−1

)
M = m0m1 . . .mn−1 ; mi ∈ {0, 1} ; i = 0...n− 1

(60)

5. Security Analysis

The security of the proposed study is generally as
follows. Since the gates applied to create the key are
not shared via any channel, the eavesdropper cannot
have information about the quantum gates used.

In the learning action, the superposition state with
different amplitude is used (see Equation (9)). Since
the eavesdropper has no idea at what angles it
is rotated and superpositioned, the quantum state
cannot recover from the superposition state. If the
eavesdropper measures the superposition state, she
will get random information. Let us assume that Eve
entangled the quantum state. Hence, Eve can have
Alice's measurement results and learning outputs,
but she cannot detect which gates are applied by
using this informations. She can only detect whether
Bob is learning successfully or not. The eavesdrop-
per may want to act as Bob to Alice and Alice to
Bob. To prevent this, Alice announces 50% of the
gates marked as ”0” in reward value. Bob compares
his own gates to the gates that Alice announced. If
there are same choices for the gates with equivalent
indices, Bob announces the presence of Eve. This
way, if Eve overhears the communications, she
can be detected. Therefore, the learning action is
terminated. We can exemplify this as follows:

Let us assume that Alice and Bob have gate X.

Step 1. Alice has bit ”0”. She prepares quantum
state |0⟩.

Step 2. She applies the rotation gate with θ angle
to the quantum state |0⟩ and obtains α |0⟩ + β |1⟩.
She sends state α |0⟩+ β |1⟩ to Bob.
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Step 3. Bob applies the X gate to α |0⟩+β |1⟩ and
he obtains α |1⟩+β |0⟩. He sends state α |1⟩+β |0⟩
to Alice.

Step 4. Alice applies the X gate to α |1⟩ + β |0⟩
and she obtains α |0⟩+ β |1⟩.

Step 5. Alice applies the rotation gate with θ angle
to α |0⟩+ β |1⟩ and she obtains |0⟩.

As shown, if both parties have the same gate,
Alice obtains the initial value at the end of the
learning action. In this case, Alice must mark the
reward value as ”1”. If the reward value is marked
as 0, we can realise that the quantum state has been
changed by Eve.

It is hard to learn which gates generate the key.
However, once learned, both parties can easily gen-
erate the same key locally. The communication is
secure because of non-sharing key. Thus, a one-time
pad key can be used for each communication. To ob-
tain the message encrypted with a 512-bit key by the
eavesdropper, there are 2512 possibilities that need
to be examined. In error corrections for key, gates
or message content are not shared openly. A key
is only used in encryption or decryption. Incorrect
gates are identified by comparisons. The messages
for use in comparisons are sent by encryption.

6. Conclusions

The proposed study is simulated using the Qiskit
[12] library for Python. The computer used for the
simulation has an i7-11800H processor and 16 GB
of RAM. The simulation could be run up to 195
gates with this hardware. The simulation results are
shown in Table 2. When examining the simulation
results, it should be noted that this study performed
”n” independent learning actions. Today, reinforce-
ment learning is widely preferred for determining
the best move in a game or in robotics applications.
Reinforcement learning seeks to find the optimal

path from one point to another; the next choice
depends on the previous choice. However, in our
study, the choices are independent.

Table 2.
Simulation results. The simulation was run 10
times for each key sizes and the average was

taken.

Key Sizes
(bits)

Correct
(bits)

Incorrect
(bits)

Time
(sec)

%

195 171.5 23.5 44.9 87.95
128 109.4 18.6 24.5 85.47
64 53.5 10.5 9.3 83.59
32 24.4 7.6 3 76.25

The proposed study performs the learning action
with an accuracy of 87.95% for 195 gates, 85.47%
for 128 gates, 83.59% for 64 gates, 76.25% for 32
gates. As the key size increases, the performance of
the method increases. When the key size increases,
the run duration increases. As can be seen from
figure 4, the performance and run duration of the
method increase directly proportional to the key
size.

Further, this study uses the principles of quantum
mechanics for the reinforcement learning and gen-
erating key. The classical XOR operation is used for
encrypting and decrypting the message. Since I, X,
and CNOT gates can be easily applied on classical
computers, error checks can also be performed
completely classically. Reinforced learning requires
a quantum channel. There are many studies on
quantum networking. When the quantum network is
widely used, this study can be actualised. Until then,
our method can be implemented using quantum
network simulations.

Finally when we compare our method to other key
distribution methods, we see that the other methods
need to securely share the secret key for each
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Figure 4. Simulation results. The simulation was
run 10 times for each key sizes and the average
was taken.

communication. However, our method prioritises
safety only in the reinforcement learning phase.
Instead of sending the secret key, the parties locally
generate the required secret keys for each commu-
nications. The secret key should only be protected
locally. As the secret key is not shared through any
network, the communication cannot be interrupted
by eavesdropping. This shows that the method we
proposed in this study is safe. As a result, this study
aims to bring a different perspective to quantum key
distribution methods.
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