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Abstract 

This study examines the controllability issue pertaining to the main road with a single 

on-ramp segment within the context of freeway traffic flow. In this regard, a finite-

dimensional nonlinear model is formulated by integrating variable speed limit (VSL) 

and ramp metering (RM) techniques with the controllability property of the system 

derived under continuous VSL and RM controllers. This allows us to simultaneously 

control the density of the main line and reduce the queue density of the merging 

sector.  In the numerical experiment, numerical simulations are conducted on  a 

sample model of a main road to investigate the null controllability of the system and 

validate the theoretical findings. The numerical findings suggest that it is possible to 

achieve a consistent queue length for the on-ramp section through the 

implementation of suitable VSL and RM controls. Therefore, the primary 

accomplishment of this study is to effectively regulate the traffic flow on the main 

road segment by managing the density of vehicles within a specified timeframe while 

also considering the queue density of the on-ramp section.  

 
 

 
1. Introduction 

 

Increasing mobility has been a challenging and 

interesting task in the last decade to provide service 

and maintenance in urban regions. Hence, with the 

growing needs of mobility, intelligent transportation 

systems (ITS) become an important topic in 

transportation research. The tools, together with 

applications such as dynamic traffic signaling, RM, 

VSL, vehicle navigation systems, cooperative 

driving, and so on, are the major parts of ITS that 

increase the quality of mobility and the level of safety. 

On the freeway, it is crucial to maintain the traffic 

flow without building unnecessary road structures 

like extra road lanes or ramps. For this reason, various 

constructions and techniques are provided for 

building effective control strategies to increase the 

safety factor and, on the other hand, decrease traffic 

on the road [1]. As an example, various coordinated 

RM approaches are investigated in [2]. Model-

predictive control approaches have also been 
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emerging for optimal coordination of VSL and RM. 

The integrated free-way traffic flow management 

scheme is applied in [3] by means of VSL to design 

an optimal model of controlling freeway traffic flow 

with minimum travel time in the network. Several RM 

algorithms have been used to manage the inputs to 

freeways from entry ramps in an effort to reduce 

peak-hour congestion on the roads. In [4], a freeway 

system made up of an entry/exit ramp and a highway 

segment is examined as a ramp control problem to 

reduce the overall system time on the freeway. 

Sometimes, VSLs and RM solutions frequently fall 

short of the anticipated outcomes when dealing with 

the merging zone of a freeway or managing heavy 

traffic demand due to poor traffic information transfer 

and the inability to actively control vehicles. An 

integrated technique for controlling traffic flow in the 

expressway merging region is suggested in order to 

increase traffic efficiency [5]. 

In a variety of traffic flow models, [6] uses ramp 

control frameworks via cell transmission. In recent 
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years, RM and VSL controls have been used for 

different purposes, such as robust control [7], 

feedback control [8], optimal control [9], and so on. 

In the context of the controllability of traffic models, 

we refer to [10] for studying the controllability 

problem of traffic network models from the optimal 

control point of view. The exact boundary 

controllability problem is considered in [11] for the 

class of non-local conservation laws that control the 

traffic flow of the given system. Moreover, a novel 

methodology is developed in [12] for investigating 

the problem of controllability on a free-way traffic 

model by means of knowledge of routing and arcs. A 

controllability problem is studied in [13] for complex 

networks under both propagation/spill-back dynamics 

and drivers’ behavior by means of route selection. 

In this work, we investigate the controllability 

problem of a main road with one on-ramp sector in 

the freeway traffic flow. Roughly speaking, the 

concept of controllability means investigating 

whether it is possible to derive the solution of the 

given control system to a desired final state at the final 

time by means of a control [14]. More precisely, if 

any given final target is exactly achieved by a suitable 

control, then the system becomes exactly 

controllable. On the other hand, there are two more 

concepts of controllability: the system becomes null 

controllable whenever the solution hits zero at the 

final time [15], [16], and the system becomes 

approximate controllable whenever the solution 

nearly achieves the given final input at the terminal 

time [17]. These notions coincide in finite-

dimensional space. This is because the only subspace 

that is dense in finite-dimensional space is the whole 

space itself. However, this is not the case in infinite-

dimensional spaces. Here, we study the finite-

dimensional controllability problem in freeway traffic 

flow with ramp dynamics. In this regard, we build a 

finite-dimensional control system via VSL control 

and RM control by applying the conservation law and 

Newtonian physics law on the main road as well as 

taking into account the ramp dynamics of the on-ramp 

sector. Once we establish the traffic model on the 

main road, we prove that the system is always 

controllable by means of continuous VSL and RM 

controllers. 

Hence, the main contributions of the study could be 

briefly highlighted as follows:  

 A road model is proposed, along with 

parameters and descriptions related to the 

mainstream and road dynamics. 

 Controllability property is obtained for the 

main road with one on-ramp segment in the 

freeway traffic flow.  

  A special case is regarded as a null 

controllability problem for controlling the 

mainstream density at critical levels and 

reducing the queue length of the on-ramp 

segment at any given final time by a 

continuous controller. 

 A consistent queue length for the on-ramp 

segment and a controlled mainstream density 

are determined through numerical 

simulations conducted on a sample model of 

a main road within a specified time frame.   

This study is presented as follows. Firstly, several 

notions and theorems are provided in section 2. In this 

part, the idea of controllability for finite-dimensional 

systems is explained, and the Kalman rank condition 

is given as a necessary and sufficient condition for the 

controllability property of linear finite-dimensional 

systems. Later, we state the problem in section 3, 

where the road model is proposed together with a 

nonlinear control system designed by means of VSL 

and RM controls. Here, the property of controllability 

is derived for the traffic model, and the existence of a 

continuous controller is proven for the system. In 

section 4, numerical experiments are conducted on a 

sample main road model, and the null controllability 

property of the system is numerically derived by 

means of VSL and RM controls. Finally, the paper 

concludes with further remarks and future work in 

section 5. 

 

2. Material and Method 

 

In this part, we provide several notions and theorems, 

some of which are novel in the context of matrix 

theory. Here, we mainly concentrate on the following 

control model: 

 

  𝑥′(𝑡)  =  𝐴𝑥(𝑡)  +  𝐵𝑢(𝑡)  +  𝑤(𝑡),                (1) 

with the standard assumption that 𝑤(𝑡) is continuous 

in [0, 𝑇] where 𝑇 >  0 stands for a final time and the 

linear part is provided by means of the real matrices 

𝐴, 𝐵 of reasonable dimensions 𝑛 ×  𝑛, 𝑛 ×  𝑚 with 

𝑛 ≥  𝑚.  
On the other hand, the control model (1) is the 

perturbed version of the following finite-dimensional 

control system: 

     𝑥′(𝑡)  =  𝐴𝑥(𝑡)  +  𝐵𝑢(𝑡).                               (2)  
Now, we define the notion of controllability for the 

model (1) in two directions:  

Definition 1. ( Exact Controllability)  

The system (1) is exactly controllable in finite time 

𝑇 if for each 𝑡0 ∈  [0, 𝑇] and arbitrary initial and 

final state 𝑥0, 𝑥1 ∈  ℝ𝑛, one can find a control input 

𝑢(·): [𝑡0, 𝑇] →  ℝ𝑚 in such a way that the solution 

𝑥(𝑡) hits the target at the given time 𝑇, i.e., 𝑥(𝑇) =
 𝑥1. 

 

Definition 2. ( Null Controllability)  
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The system (1) is null controllable in finite time 𝑇 if 

for each 𝑡0 ∈  [0, 𝑇] and arbitrary initial  𝑥0 ∈  ℝ𝑛,  

one can find a control input 𝑢(·): [𝑡0, 𝑇] →  ℝ𝑚 in 

such a way that the solution 𝑥(𝑡) satisfies 𝑥(𝑇) =  0. 

 

Theorem 1. (Duality of Controllability in ℝ𝑛)  

In ℝ𝑛, the concepts of null controllability and exact 

controllability are equivalent. 

 

The last theorem comes from the fact that the only 

affine subspace of ℝ𝑛 is the whole space itself. Next, 

we define Kalman rank criteria [18] for the linear 

control system (2):  

Theorem 2. (Kalman Rank Condition [18])  

The continuous time system (2) becomes 

controllable whenever the following rank condition 

satisfies  

𝑟𝑎𝑛𝑘[𝐵;  𝐴 𝐵; 𝐴2𝐵; · · · ;  𝐴𝑛−1𝐵] =  𝑛.            (3) 

 

Now, we provide the following result [19]: 

 

Theorem 3. (Controllability of Perturbed System 

[19]) 

The control system (1) is controllable if Kalman rank 

condition is satisfied and the function 𝑤(𝑡) is 

continuous and bounded in (0, 𝑇). More precisely, if 

𝑤(𝑡) is bounded and continuous in a given domain, 

then, the perturbed system (1) is controllable on that 

domain. In addition, we have the following result: 

 

Corollary 1. (Existence of Continuous Controller 

[19]) 

There exists a continuous controller that makes the 

perturbed control system (1) controllable. 

 

In the following sections, we investigate the problem 

of controllability on the main road with one on-ramp 

section to control the traffic flow in the mainstream. 

Since the concept of exact controllability coincides 

with the null controllability notion, we build the first-

order continuous time system on the traffic density of 

the main road and on-ramp section in order to control 

the traffic flow both ways. 

 
3. Controllability of Main Road with On-ramp 

Segment 

 

In this section, we study the freeway composed of the 

main road and an on-ramp segment. Firstly, we start 

by proposing the road model and all related 

parameters that would be used to build the first-order 

nonlinear continuous time system. Then, we derive 

the controllability result from that system by applying 

the Kalman rank condition. Lastly, we investigate an 

application of the main result. 

 

3.1. Road Model 

 

In this part, we study a road model with a main road 

and an on-ramp shown in Figure 1. In this road model, 

we assume that the flow from the on-ramp sector is 

continuous, which means that there is no traffic 

congestion on the on-ramp section. More precisely, 

the function is assumed to be continuous in time. 

 

Figure 1. The free-way consisting of the main road with 

an on-ramp sector. 

 

Define the following parameters for this road model: 

 𝜌(𝑡) as the density of the main road at the 

time 𝑡.  

  𝑞0(𝑡) and 𝑞𝑓  (𝑡) as the number of vehicles 

coming from the initial road segment (Start) 

into the main road and the main road into the 

final road segment (End) at a time 𝑡 

respectively.  

 ℓ(𝑡) as the queue length of the on-ramp 

segment at the time 𝑡.  
  𝑞𝑅𝑀(𝑡) as the number of vehicles entering 

from the on-ramp into the main road at the 

time 𝑡 respectively.  

  𝑟(𝑡) as the number of vehicles entering the 

on-ramp at a given time 𝑡.  

  𝐿 and 𝜆 as the length and the number of lines 

of the main road, respectively. 

From the conservation law, we have  

𝜌′(𝑡) =  
 𝑞0(𝑡)– 𝑞𝑓(𝑡) +  𝑞𝑅𝑀(𝑡)

𝜆 𝐿
  .                      (5) 

The linear car-following model is widely used in 

traffic flow models, which simply depend on 

Newtonian physics laws. In this regard, the speed and 

the density are related and represented as the 

following piecewise function [20]:  

𝑣(𝜌) = {

𝑣𝑓 ,                         𝜌 < 𝜌𝑐

𝐶(
1

𝜌
−  

1

𝜌𝑚
), 𝜌 ≥ 𝜌𝑐

 

where 𝜌𝑐 and 𝜌𝑚 represent critical density and 

maximum density of the traffic flow on the road, 
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respectively, and 𝐶 is a sensitive constant [20]. 

Hence, by using 𝑞(𝜌)  =  𝑣 𝜌, one can get the 

following flow-density relationship: 

𝑞(𝜌) = {

𝑣𝑓𝜌 ,                         𝜌 < 𝜌𝑐

𝐶(1 −  
𝜌

𝜌𝑚
), 𝜌 ≥ 𝜌𝑐

 

Define,  𝑒(𝑡)  =  𝜌(𝑡)  −  𝜌𝑐, then the flow dynamics 

for the congested state becomes 

    𝑞𝑓 = 𝐶 (1 −  
𝑒(𝑡)+ 𝜌𝑐 

𝜌𝑚
 )                                    (6) 

By using (5) and (6), we finally have the following 

first-order nonlinear differential system for the 

proposed road model: 

𝑒′(𝑡) =  
𝑞0(𝑡) +  𝑞𝑅𝑀(𝑡)

𝜆𝐿
 −  

𝐶

𝜆𝐿
 (1 −  

𝑒(𝑡)+ 𝜌𝑐 

𝜌𝑚
 )      (7) 

with the ramp dynamics 

                  ℓ′(𝑡)  =  𝑟(𝑡) − 𝑞𝑅𝑀(𝑡).                          (8) 

To control the solutions of (7) and (8) together, we 

utilize VSL control as well as RM control in the 

following sense: 

𝑢𝑉𝑆𝐿(𝑡) = 𝑞0(𝑡) − 𝐶(1 −  
𝜌𝑐

𝜌𝑚
), 

𝑢𝑅𝑀(𝑡) = 𝑞𝑅𝑀(𝑡). 

Now, we concentrate on the following finite-

dimensional control system:  

           𝑥′(𝑡) =  𝑨𝑥(𝑡) +  𝑩𝑢(𝑡) +  𝒘(𝑡),         (9) 

where 

𝑥(𝑡) =  (
𝑒(𝑡)

ℓ(𝑡)
) , 𝑢(𝑡) = (

𝑢𝑉𝑆𝐿(𝑡)

𝑢𝑅𝑀(𝑡)
) , 𝒘(𝑡) = (

0

𝑟(𝑡)
) 

𝑨 =  (

𝐶

𝜆𝐿𝜌𝑚
0

0 0

) ,     𝑩 =  (
1

𝜆𝐿

1

𝜆𝐿
0 −1

) 

In the following section, we investigate the problem 

of controllability on a nonlinear first-order system (9) 

and obtain the main result of this work. 

3.2. Controllability  

 

In this part, we study the controllability problem for 

the control system (9) as follows:  

Given any initial state 𝑥0 ∈  ℝ2 and final state 𝑥𝑓 ∈

 ℝ2 , is it possible to find a control input 𝑢(𝑡) ∈

 𝐶(𝑡0, 𝑡𝑓)
2
  that is the space of continuous functions 

defined in (𝑡0, 𝑡𝑓) such that the solution of the 

system (9), 𝑥(𝑡) satisfies 𝑥(𝑡𝑓) =  𝑥𝑓 . For this 

controllability problem, we prove the following main 

result of the paper: 

 

Theorem 4. (Main Result) 

The system (9) is exactly controllable with 

continuous controllers 𝑢𝑉𝑆𝐿(𝑡) and 𝑢𝑅𝑀(𝑡). 

Proof:  Since traffic flow on the on-ramp sector is 

continuous on time,  𝒘(𝑡) becomes continuous and 

bounded on time 𝑡, which provides that the 

controllability problem of the system (9) becomes the 

controllability problem of a perturbed version of the 

following linear control system:                

                 𝑥′(𝑡) =  𝑨𝑥(𝑡) +  𝑩𝑢(𝑡),                     (10) 

according to Theorem 3. Hence, it suffices to check 

the Kalman rank condition for the system (10) 

according to Teorem 2. Since,  

𝐴 × 𝐵 =  (
𝐶

𝜆2𝐿2𝜌𝑚

𝐶

𝜆2𝐿2𝜌𝑚

0 0
), 

which makes 

𝑑𝑒𝑡[𝐵 𝐴𝐵] = 𝑑𝑒𝑡 |
1

𝜆𝐿

1

𝜆𝐿
0 −1

   

𝐶

𝜆2𝐿2𝜌𝑚

𝐶

𝜆2𝐿2𝜌𝑚

0 0

| =

=  𝑑𝑒𝑡 |
1 0
0 1

   
0 0
0 0

|  =   2. 

Hence, the Kalman rank condition is satisfied for the 

system (10) which implies that the system (9) is 

exactly controllable. This concludes the proof.  

                                                                                  
3.3. An Application      

                                                                                                                 

As an application of Theorem 4, under any given 

initial data, this result provides 𝑒(𝑡𝑓) =  𝜌(𝑡𝑓)– 𝜌𝑐 =

 0 and ℓ(𝑡𝑓) =  0 under the suitable choice of 

continuous VSL control and RM control, which is 

simply the property of null controllability of the 

system as a result of Teorem 1. As a result,  the null 

controllability issue, which is the special class of 

exact controllability, provides a way to manage the 

mainstream density at a critical level and to reduce the 

queue length of the on-ramp segment by VSL and RM 

continuous controllers at any given final time.  

 

4. Numerical Results 

 

This section presents numerical simulations 

conducted on a sample road model in order to provide 

numerical validation for the primary finding of the 

study. In this regard, we consider the problem of null 

controllability on a main road with a length 𝐿 = 100 , 
consisting of  𝜆 = 4 number of lines. Moreover, we 

assume a sensitivity constant C = 800 and a maximum 

road density 𝜌𝑚 = 2.  Finally, we consider the 

number of vehicles entering the on-ramp at time 𝑡 as 

a nonlinear function, 𝑟(𝑡) = 𝑡2 . Hence, we have the 

following nonlinear system:                         (
�̇�(𝑡)

ℓ̇(𝑡)
)  = 

(
1 0
0 0

) (𝑒(𝑡)
ℓ(𝑡)

)  + 

+ (
1

400

1

400

0 −1
) (𝑢𝑉𝑆𝐿(𝑡)

𝑢𝑅𝑀(𝑡)
) + ( 0

𝑡2),                      (11) 

 

In the context of this particular system, we address the 

issue of null controllability pertaining to the road 

model within a time span of one hour as follows: 

given (𝑒(0)
ℓ(0)

) =  (𝑒−1
0

), find VSL and RM controls 
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(𝑢𝑉𝑆𝐿(𝑡)
𝑢𝑅𝑀(𝑡)

) such that the solution of the above system  

satisfies (𝑒(1)
ℓ(1)

) = (0
0
).  In this particular problem, the 

constant 𝑒 represents Euler's number, while the 

variable time 𝑡 is defined within the interval of 0 and 

1. Furthermore, we make the initial assumption that 

there is an absence of traffic congestion by letting 

ℓ(0) = 0.  

 

 

 
Figure 2. Five distinct VSL and RM control models 

numerically implemented to achieve the null 

controllability of the system (11) within a time span of 

one hour. 

 

According to Theorem 4, it can be deduced that the 

system (11) fulfills the Kalman rank condition, 

thereby establishing the theoretical basis for the null 

controllability of the system (11). On the other hand, 

in this study, we evaluate and conduct simulations on 

five distinct VSL and RM control models in order to 

ascertain their effectiveness in achieving the null 

controllability outcome, depicted in Figure 2 and 

Figure 3. These analyses are performed using the 

MATLAB R2021b version toolbox. 

 

 
Figure 3. The numerical  solutions of the system (11) 

under five different VSL and RM controls over a duration 

of one hour. 

 

Figure 2 depicts the computed numerical values of 

VSL and RM controls over the course of one hour. 

These parameters are numerically implemented in the 

system (11) and their corresponding solutions are 

shown in Figure 3 as traffic flow density 𝑒(𝑡) and 

queue length ℓ(𝑡) over the course of one hour.  

In these numerical simulations illustrated in Figure 2 

and Figure 3, we derive the fact that the green curves 

establish the null controllability of the system. In 

other words, numerical results show that the solution 

of the system (11) under the   𝑢𝑉𝑆𝐿
5  and 𝑢𝑅𝑀

5  controls 

 provides 𝑒(1) = 0 and ℓ(1) = 0 in the final round. 

This outcome signifies the null controllability of the 

system (11). 

 

5. Conclusion  

 

This study focuses on the issue of controllability 

within the traffic model, which comprises a single 

main road and an on-ramp sector. The controllability 

is achieved through the implementation of continuous 

VSL control and RM control strategies. This work 

demonstrates that by implementing appropriate VSL 
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and RM controls, it is possible to effectively manage 

the main road density at its critical level while 

simultaneously reducing the queue length in the on-

ramp segment. Theoretical findings are enhanced by 

conducting numerical simulations on a sample main 

road model. In this study, the concept of null 

controllability is derived through the implementation 

of VSL and RM controls. The numerical results 

indicate that it is feasible to maintain a constant queue 

length for the on-ramp segment by implementing 

appropriate VSL and RM controls. This can be 

achieved while also ensuring that the density of 

vehicles on the main road remains at the critical level 

within a specified time frame. As a future work, It 

would be an interesting and motivating attempt to 

focus on the controllability problem of a more general 

integrated traffic system where the road model 

consists of 𝑁 number of main roads with 𝑁 number 

of on-ramp segments for 𝑁 >  1. 
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