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Abstract 

 

This article is about examining the solutions of the (3 + 1) conformal time derivative generalized q-

deformed Sinh-Gordon equation. The integration method used to reach the solutions of the equation is the 

generalized exponential rational function method. In this article, the process of examining the solutions 

goes step by step, first the basic steps of the proposed method are given, then the reduction of the equation 

is examined, and then the solutions are obtained by applying the method. The obtained wave solutions 

include hyperbolic soliton solutions. In addition, dark and bright solitons have been obtained. To perceive 

the physical phenomena, 2D and 3D graphical patterns of some of solutions obtained in this study are 

plotted by using Maple programming. The worked-out solutions ascertained that the suggested method is 

effectual, simple and direct. 

 

Keywords: Conformal time derivative; The generalized exponential rational function method; The 

generalized q- deformed Sinh–Gordon equation. 

 

1. Introduction 

 

Fractional differential equations, which have attracted a 

lot of attention since they were discovered, have found 

many applications in fields such as physics, 

engineering, optics, biology, technology and so on. 

Theoretical models expressed in fractional analysis are 

more compatible with experimental data than models 

expressed in integer orders. When describing physical 

mechanical problems, the model expressed by fractional 

analysis has been revealed to have a clearer physical 

meaning and a simpler expression [1]. Thanks to these 

advantages, the models obtained using fractional order 

differentials attract a lot of attention, and researches and 

studies on this subject are increasing. Therefore, the 

solutions of these equations and the behavioral 

interpretations about them gain importance. Therefore, 

the solutions and behavioral interpretations of these 

equations gain importance. A soliton solution is a large 

amplitude, permanent pulse whose shape and velocity 

do not change due to collisions with other soliton 

waves, and is the exact solution of a nonlinear equation. 

The solitary wave was discovered experimentally by 

John Scott Russell in 1834.  Optical solitons are a type 

of solitary wave that have the ability to propagate waves 

long distance without scattering, i.e. retain their shape 

over a long distance, and optical  soliton models have  

 

found use in solitary wave-based communication links, 

amplifiers, optical pulse compressors, fiber optics, and 

some other mechanisms.Since soliton theory has a wide 

application area, direct and indirect methods that 

provide exact solutions of nonlinear differential 

equations have been brought to the literature by 

scientists. Some of these methods are the Jacobi elliptic 

function method [2], the (G’/G) method [3],   the Sardar 

subequation method [4],  the exponential rational 

function method [5,6], the Bernoulli sub-ODE method 

[7], the Hirota bilinear method [8], the new extended 

direct algebraic method [9], the Cole-Hopf 

transformation method [10], the local fractional 

generalized-exp function method [11], Kudryashov and 

exponential methods [12, 13], the variational direct 

method [14] and so on. 

 

The classical sinh-Gordon equation given as  

 

𝑢𝑡𝑡 − 𝑢𝑥𝑥 = sinh𝑢                            (1.1) 
 

is well-known equation and appears in integrable 

quantum field theory, kink dynamics, fluid dynamics, 

the propagation of fluxing in Josephson junctions (a 

junction between two superconductors), the motion of 

rigid pendulum attached to a stretched wire, and 

dislocations in crystals  and in many other scientific 
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applications [15-18]. The generalized q-deformed Sinh-

Gordon equation [19] described as  
 

𝜕2𝑢

𝜕𝑥2
−

𝜕2𝑢

𝜕𝑡2
= [sinh𝑞(𝐿

𝜃)]
𝑙
− 𝜔.                   (1.2) 

 

Definitions and basic properties of q-calculus are 

reviewed by Victor and Pokman [20]. The q-deformed 

function which is introduced by Arai [21]. When this 

function is included in the dynamic system, the 

symmetry of the system and the solution is broken. 

Symmetry breaking [22] is a fundamental phenomenon 

in particle physics. In its most basic form, spontaneous 

symmetry breaking happens when a dynamical system’s 

symmetry is not visible in its ground state or 

equilibrium state. Many classical and quantum systems 

have this property.  Alrebdi et al. investigated the (2+1)-

dimensional q-deformed Sinh-Gordon model given as 

[23] 

 
𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
−

𝜕2𝑢

𝜕𝑡2
= [sinh𝑞(𝐿

𝜃)]
𝑙
− 𝜔        (1.3) 

 

And the (G’/G,1/G) expansion and sine-Gordon 

expansion methods are applied. The Sinh-Gordon 

equation with conformal time derivative generalized q-

deformation has the following form:  
 

𝜕2𝑢

𝜕𝑥2
−

𝜕2𝛽𝑢

𝜕𝑡2𝛽
= [sinh𝑞(𝐿

𝜃)]
𝑙
−𝜔              (1.4) 

 

where 
𝜕𝛽𝑢

𝜕𝑡𝛽
 is the conformable derivative operator. The 

definition of conformable fractional derivative of order 

𝛽 ∈ (0,1) [24] defined as  

 
𝜕𝛽𝑓(𝑡)

𝜕𝑡𝛽
= lim

𝜖→0

𝑓(𝑡+𝜖𝑡1−𝛽)−𝑓(𝑡)

𝜖
, 𝑓: (0,∞) → ℝ    (1.5) 

 

Substituting 𝛽 = 1 in Eq. (1.4), Eq. (1.3) is obtained. In 

this study, we consider the three-dimensional conformal 

time derivative generalized q- deformed Sinh-Gordon 

equation [25] given as 

 
𝜕2𝐿

𝜕𝑥2
+

𝜕2𝐿

𝜕𝑦2
+

𝜕2𝐿

𝜕𝑧2
−

𝜕2𝛽𝐿

𝜕𝑡2𝛽
= [sinh𝑞(𝐿

𝜃)]
𝑙
− 𝜔     (1.6) 

 

The proposed equation has expanded modeling 

possibilities for complex processes with broken 

symmetry. To obtain optical soliton solutions of (1.6) 

we utilized the generalized exponential rational function 

method which was introduced by Ghanbari and Inc [26] 

in 2018. This method, which was reduced to the 

"exponential rational function" method in a special case, 

has been used many times since then. The following 

studies can be considered for the efficiency and 

effectiveness of the method [27-33].  

 

This paper is organized as follows: the second section is 

devoted to methodology. In the third section, the 

mathematical model is investigated. The fourth section 

contains the solutions. We provide several figures for 

solutions in the fifth section. We conclude in the last 

section. 

2. Materials and Methods 

2.1 The Generalized Exponential Rational Function 

Method (GERFM) 

 

This section is devoted to explain the basic steps of 

GERFM. For this, consider the following partial 

differential equation (PDE) 

 

𝑃(𝑢, 𝑢𝑡 , 𝑢𝑥, 𝑢𝑡𝑡 , 𝑢𝑥𝑡 , . . . ) = 0,              (2.1) 

 

where 𝑃 is a polynomial in dependent function 𝑢 and its 

partial derivatives with respect to 𝑥 and 𝑡. With the help 

of the traveling wave transformation 𝑢 = 𝑢(𝜉), 𝜉 =
𝑘(𝑥 − 𝑐𝑡), where 𝑐 is a constant, Eq. (2.1) is 

transformed to an ordinary differential equation (ODE)  

 

𝑄(𝑣, 𝑣′ , 𝑣′′, . . . ) = 0,             (2.2) 

 

where (. )′ =
𝑑

𝑑𝜉
(. ). 

 

Step 1. Exact solutions of the Eq. (2.2) can be 

constructed as [26, 34]: 

𝑣(𝜉) = 𝐴0 + ∑
𝑁
𝑘=1 𝐴𝑘𝜙(𝜉)

𝑘 +
∑𝑁𝑘=1 𝐵𝑘𝜙(𝜉)

−𝑘 ,(2.3) 

 

where 

 

𝜙(𝜉) =
𝑝1𝑒

𝑞1𝜉+𝑝2𝑒
𝑞2𝜉

𝑝3𝑒
𝑞3𝜉+𝑝4𝑒

𝑞4𝜉
.                      (2.4) 

 

Here 𝑝1, . . . , 𝑝4, 𝑞1, . . . , 𝑞4, 𝐴0, 𝐴𝑘 and 𝐵𝑘 (𝑘 = 1, . . . , 𝑁) 
are constants.  

 

Step 2. The positive integer 𝑁 is determined using the 

homogeneous balance principle. 

 

Step 3. An algebraic equation 

𝑇(𝜉, 𝑒𝑞1𝜉 , 𝑒𝑞2𝜉 , 𝑒𝑞3𝜉 , 𝑒𝑞4𝜉) = 0 is obtained inserting Eq. 

(2.3) into Eq. (2.2) and arranging all terms. 

 

Step 4. Equating coefficients of powers of 𝑇 to zero, a 

system with respect to   𝐴0, 𝐴𝑘 and 𝐵𝑘 and 𝑝1, . . . , 𝑝4, 

𝑞1, . . . , 𝑞4 is obtained. 

 

Step 5. Using the obtained values with solving the set of 

equations by use of a computer program, the soliton 

solutions of Eq. (2.1) is found. 

 

2.2 The Mathematical Model 

 

We must reduce Eq. (1.6) to an ODE to examine the 

soliton solutions of this equation with the proposed 

method. For this, the following transformation should 

be used.  

 

{
𝐿(𝑥, 𝑦, 𝑧, 𝑡) = 𝑉(𝜉),     

𝜉 = 𝜎𝑥 + 𝑣𝑦 + 𝑅𝑧 −
𝜅

𝛽
𝑡𝛽 . (2.5) 

https://www.sciencedirect.com/topics/mathematics/symmetry-breaking
https://www.sciencedirect.com/topics/mathematics/symmetry-breaking


 

              Celal Bayar University Journal of Science  
              Volume 19, Issue 3, 2023, p 219-229 

              Doi: 10.18466/cbayarfbe.1264314                                                                                     Y. Sağlam Özkan 

 

221 

Here, 𝜎, 𝑣, 𝑅 constants and 𝜅 shows the speed of 

traveling wave. Using (2.5), Eq. (1.6) can be converted 

into:  

 

(−𝜅2 + 𝑣2 + 𝜎2 + 𝑅2)𝑉′′ + 𝜔 −

[sinh𝑞(𝑉
𝜃)]

𝑙
= 0, (2.6) 

  

where (. )′ =
𝑑

𝑑𝜉
. There are two cases according to 

choice of 𝑙, 𝜃, 𝜔. 
 

Case one: 𝑙 = 𝜃 = 1, 𝜔 = 0. Therefore, Eq. (2.6) can 

be written as:  

 

(−𝜅2 + 𝑣2 + 𝜎2 + 𝑅2)𝑉′′ − sinh𝑞(𝑉) =

0.(2.7) 
 

If both sides of the above equation are multiplied by 𝑉′ 
and integrated with respect to 𝜉 once, the following 

equation is obtained.  

 

(−𝜅2 + 𝑣2 + 𝜎2 + 𝑅2)(𝑉′2 − cosh𝑞(𝑉)) −

2𝑀1 = 0,(2.8) 

 

where 𝑀1 is the integration constant. Now, if the 

transformation 𝑉 = ln(𝑢), 𝑢 = 𝑢(𝜉) is used, we get  

 

(𝜅2 − 𝑣2 − 𝜎2 − 𝑅2)𝑢′2 + 2𝑀1𝑢
2 + 𝑄𝑢 +

𝑢3 = 0.(2.9) 

 

Case two: 𝑙 = 2, 𝜃 = 1, 𝜔 = −
𝑄

2
. Eq. (2.6) can be 

rewritten as:  

 

(−𝜅2 + 𝑣2 + 𝜎2 + 𝑅2)𝑉′′ − (sinh𝑞(𝑉))
2
+

𝑄

2
= 0.(2.10) 

 

After simplifying Eq. (2.10) and using the 

transformation 𝑉 =
1

2
ln(𝑢), we get  

 

2(−𝜅2 + 𝑣2 + 𝜎2 + 𝑅2)𝑢′2 − 2(−𝜅2 + 𝑣2 + 𝜎2 +
𝑅2)𝑢𝑢′′ + 𝑄2𝑢 + 𝑢3 = 0. (2.11) 

 

2.3 Application of GERFM to (2.9) 

 

According to the homogeneous balance principle, it is 

clear to have 2𝑁 + 2 = 3𝑁,𝑁 = 2. Therefore, the 

solution can be written as follows:  

 

𝑢(𝜉) = 𝐴0 + 𝐴1𝜙(𝜉) +
𝐵1

𝜙(𝜉)
+ 𝐴2𝜙(𝜉)

2 +

𝐵2

𝜙(𝜉)2
.(2.12) 

 

Inserting (2.12) to (2.9), we obtain a system of algebraic 

equations made up of tedious and rather long equations. 

Solving this system with computer program, we get the 

following results: 

 

Group 1:   𝑝1 = −3, 𝑝2 = −2, 𝑝3 = 1, 𝑝4 = 1 and 𝑞1 =
1, 𝑞2 = 0, 𝑞3 = 1, 𝑞4 = 0 provides:  

 

𝜙(𝜉) = − 
5+sinh(𝜉)+5 cosh(𝜉)

2(cosh(𝜉)+1)
(2.13) 

 

Set 1.1: 

{
 
 

 
   𝐴0 =

25

4
𝐴2, 𝐴1 = 5𝐴2, 𝐵1 = 𝐵2 = 0,

  𝑀1 = −
𝐴2

4
 , 𝑄 =

𝐴2
2

16
  ,

𝑅 =  
√  𝐴2−4 𝜎

2+4 𝜅2−4 𝑣2

2
. }

 
 

 
 

(2.14) 

 

Placing values in Eqs. (2.12) and (2.13), yields the 

following solution  

 

𝑢1.1(𝜉) =
(cosh(𝜉)−1)𝐴2

4(cosh(𝜉)+1)
.  (2.15) 

 

Then we get the following dark soliton solution of Eq. 

(1.6): 

 

𝐿11.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln( 
(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
)−1)𝐴2

4(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
)+1)

).(2.16) 

 

Set 1.2:  

{
 
 

 
 𝐴0 =

25𝐵2

144
 , 𝐴1 = 𝐴2 = 0, 𝐵1 =

5

6
 𝐵2,

𝑀1 = −
1

144
 𝐵2, 𝑄 =

1

20736
 𝐵2

2,

𝑅 =  
√−144 𝑣2+𝐵2−144 𝜎

2+144 𝜅2

12
. }
 
 

 
 

(2.17) 

 

Inserting these values into Eq. (2.12), we have: 

 

𝑢1.2(𝜉) =
1

144
 
𝐵2 (5 sinh(𝜉)−12+13 cosh(𝜉))

5 sinh(𝜉)+12+13 cosh(𝜉)
.(2.18) 

 

Consequently, we get  

 

𝐿11.2(𝑥, 𝑦, 𝑧, 𝑡) =

ln(
1

144
 𝐵2  

5 sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
)−12+13 cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
)

5 sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
)+12+13 cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
)

).

(2.19) 
 

Group 2:   𝑝1 = 2, 𝑝2 = 0, 𝑝3 = 1, 𝑝4 = 1 and 𝑞1 =
−1, 𝑞2 = 0, 𝑞3 = 1, 𝑞4 = −1 provides:  

 

𝜙 =
cosh(𝜉)−sinh(𝜉)

cosh(𝜉)
.(2.20) 

 

Set 2.1: 

{
 
 

 
 𝐴0 = √𝑄, 𝐴1 = −2 √𝑄, 𝐴2 = √𝑄,

𝐵1 = 𝐵2 = 0,

𝑀1 = −√𝑄, 𝑅 =  
√√𝑄+4   𝜅2−4 𝜎2−4 𝑣2

2 }
 
 

 
 

(2.21) 
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The 𝑢(𝜉) in (2.12) can be written as following  

 

𝑢2.1(𝜉) =
√𝑄(sinh(𝜉))

2

(cosh(𝜉))
2 .(2.22) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿12.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln(√𝑄
(sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
))

2

(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
))

2).(2.23) 

 

Group 3:   𝑝1 = −3, 𝑝2 = −1, 𝑝3 = 1, 𝑝4 = 1 and 𝑞1 =
1, 𝑞2 = −1, 𝑞3 = 1, 𝑞4 = −1 provides: 

 

𝜙(𝜉) = −
2 cosh(𝜉)+sinh(𝜉)

cosh(𝜉)
.(2.24) 

 

Set 3.1: 

{
 
 

 
 𝐴0 =

4

9
 𝐵2, 𝐴1 = 0, 𝐴2 = 0, 𝐵1 =

4

3
 𝐵2,

𝑀1 = −
1

9
 𝐵2, 𝑄 =

1

81
   𝐵2

2,

𝑅 =  
√−36 𝜎2−36 𝑣2+𝐵2+36 𝜅

2

6
. }

 
 

 
 

 

(2.25) 
 

Inserting these values in Eqs. (2.12) and (2.24), we get  

 

𝑢3.1(𝜉) =

 
𝐵2 (4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))

2
−4)

9(4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))
2
−1)

(2.26) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿13.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln (  
𝐵2 (4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))

2
−4)

9(4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))
2
−1)

),(2.27) 

 

where 𝜉 = 𝜎 𝑥 + 𝑣𝑦 + 𝑅𝑧 −  
𝜅 𝑡𝛽

𝛽
. 

 

Group 4:   𝑝1 = 1, 𝑝2 = 1, 𝑝3 = −1, 𝑝4 = 1 and 𝑞1 =
1, 𝑞2 = −1, 𝑞3 = 1, 𝑞4 = −1 provides:  

 

𝜙(𝜉) = −
cosh(𝜉)

sinh(𝜉)
.                 (2.28) 

 

Set 4.1: 

{
 
 
 
 

 
 
 
 
𝐴0 = 8(−𝜅2 + 𝑣2 + 𝜎2 + 𝑅2),

𝐴1 = 0, 𝐵1 = 0,

𝐴2 = 4 (𝑣2 + 𝜎2 + 𝑅2 − 𝜅2),

𝑀1 = −16( 𝑣2 + 𝜎2 + 𝑅2 − 𝜅2),

𝐵2 = 4 (𝑣2 + 𝜎2 + 𝑅2 − 𝜅2), ,

𝑄 = 512(−𝑅2𝜅2 + 𝑅2𝜎2 − 𝑣2𝜅2

+𝑣2𝜎2 − 𝜅2𝜎2 + 𝑅2𝑣2)

+256(𝜅4 + 𝜎4 + 𝑅4 + 𝑣4). }
 
 
 
 

 
 
 
 

(2.29) 

 

Placing values in (2.29) into Eq. (2.12) and using Eq. 

(2.28), we achieve 

  

𝑢4.1(𝜉) =

4 
(4 (cosh(𝜉))

4
−4 (cosh(𝜉))

2
+1)(−𝜅2+𝑣2+𝜎2+𝑅2)

sinh(𝜉)2cosh(𝜉)2
. (2.30) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿14.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln

(

  
4(−𝜅2+𝑣2+𝜎2+𝑅2)(2 cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
)

2

−1)

2

(sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
))

2

(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
))

2

)

 ,(2.

31) 
 

where 𝜉 = 𝜎 𝑥 + 𝑣𝑦 + 𝑅𝑧 −  
𝜅 𝑡𝛽

𝛽
. 

 

Group 5:   𝑝1 = −1, 𝑝2 = 3, 𝑝3 = 1, 𝑝4 = −1 and 𝑞1 =
1, 𝑞2 = −1, 𝑞3 = 1, 𝑞4 = −1 provides:  

 

𝜙(𝜉) =
cosh(𝜉)−2 sinh(𝜉)

sinh(𝜉)
.(2.32) 

 

Set 5.1: 

{

𝐴0 = 4 𝐴2, 𝐴1 = 4 𝐴2, 𝐵1 = 𝐵2 = 0,

𝑀1 = −𝐴2, 𝑄 = 𝐴2
2,

𝑅 =  
√𝐴2−4 𝜎

2+4 𝜅2−4 𝑣2

2
.

}(2.33) 

 

Inserting values in Eqs. (2.12) and (2.32), we have  

 

𝑢5.1(𝜉) =
𝐴2 cosh(𝜉)

2

sinh(𝜉)2
.(2.34) 

 

Then we get the following bright soliton solution of Eq. 

(1.6): 

 

𝐿15.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln(
𝐴2 (cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
))

2

(sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
))

2 ).(2.35) 

 

Set 5.2: 

{
 
 

 
 𝐴0 =

4

9
𝐵2, 𝐴1 = 0, 𝐴2 = 0, 𝐵1 =

4𝐵2

3
 ,

𝑀1 = −
1

9
𝐵2, 𝑄 =

1

81
   𝐵2

2,

𝑅 =  
√−36 𝑣2+36 𝜅2+𝐵2−36 𝜎

2

6
. }

 
 

 
 

(2.36) 

 

Placing values in Eq. (2.12) and Eq. (2.32), we obtain  

 

𝑢5.2(𝜉) =

 
𝐵2 (−4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))

2
−1)

9(−4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))
2
−4)

(2.37) 
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Then we get the following solution of Eq. (1.6): 

 

𝐿15.2(𝑥, 𝑦, 𝑧, 𝑡) =

ln (
𝐵2 (−4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))

2
−1)

9(−4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))
2
−4)

),(2.38) 

 

where 𝜉 = 𝜎 𝑥 + 𝑣𝑦 + 𝑅𝑧 −  
𝜅 𝑡𝛽

𝛽
. 

 

Group 6:   𝑝1 = 1, 𝑝2 = 2, 𝑝3 = 1, 𝑝4 = 1 and 𝑞1 =
−1, 𝑞2 = 1, 𝑞3 = −1, 𝑞4 = 1 provides:  

 

𝜙(𝜉) =  
3 cosh(𝜉)+sinh(𝜉)

2cosh(𝜉)
.(2.39) 

 

Set 6.1: 

{
 
 

 
 𝐴0 =

9𝐵2

16
 , 𝐴1 = 𝐴2 = 0, 𝐵1 = −

3 𝐵2

2
,

𝑀1 = −
1

16
 𝐵2, 𝑄 =   

1

256
 𝐵2

2,

𝑅 =  
√−64 𝜎2+𝐵2+64 𝜅

2−64 𝑣2

8
. }

 
 

 
 

(2.40) 

 

Putting these results in Eqs. (2.12) and (2.39) leads to  

 

𝑢6.1(𝜉) =

 
𝐵2 (6 cosh(𝜉)sinh(𝜉)+10 (cosh(𝜉))

2
−9)

16(6 cosh(𝜉)sinh(𝜉)+10 (cosh(𝜉))
2
−1)

(2.41) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿16.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln (
𝐵2 (6 cosh(𝜉)sinh(𝜉)+10 (cosh(𝜉))

2
−9)

16(6 cosh(𝜉)sinh(𝜉)+10 (cosh(𝜉))
2
−1)
),(2.42) 

where 𝜉 = 𝜎 𝑥 + 𝑣𝑦 + 𝑅𝑧 −  
𝜅 𝑡𝛽

𝛽
. 

 

Group 7:   𝑝1 = −1, 𝑝2 = 0, 𝑝3 = 1, 𝑝4 = 1 

and 𝑞1 = 0, 𝑞2 = 0, 𝑞3 = 0, 𝑞4 = 1 provides:  

 

𝜙(𝜉) = −(1 + cosh(𝜉) + sinh(𝜉))
−1

(2.43) 

 

Set 7.1: 

  

{
 
 
 
 

 
 
 
 

𝐴0 = −𝜅2 + 𝑣2 + 𝜎2 + 𝑅2,

, 𝐴1 = 4 𝑅2 − 4 𝜅2 + 4 𝑣2 + 4 𝜎2,

𝐴2 = 4 𝑅2 − 4 𝜅2 + 4 𝑣2 + 4 𝜎2,

𝐵1 = 0, 𝐵2 = 0,

𝑀1 = 𝜅2 − 𝑣2 − 𝜎2 − 𝑅2,

𝑄 = 𝑅4 + 2 𝑅2𝑣2 + 2 𝑅2𝜎2

−2 𝜅2𝑣2 − 2 𝑅2  𝜅2 + 2 𝑣2𝜎2 + 𝜅4 +

+𝑣4 − 2 𝜅2𝜎2 + 𝜎4. }
 
 
 
 

 
 
 
 

(2.44) 

 

Substituting these results into Eq. (2.12) and (2.43), we 

get  

 

𝑢7.1(𝜉) =
(−1+cosh(𝜉))(−𝜅2+𝑣2+𝜎2+𝑅2)

1+cosh(𝜉)
. (2.45) 

Then we get the following solution of Eq. (1.6): 

 

𝐿17.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln(
(−𝜅2+𝑣2+𝜎2+𝑅2)(−1+cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
))

1+cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−  
𝜅 𝑡𝛽

𝛽
)

).(2.46) 

 

Group 8:   𝑝1 = −2, 𝑝2 = −1, 𝑝3 = 1, 𝑝4 = 1 and 𝑞1 =
0, 𝑞2 = 1, 𝑞3 = 0, 𝑞4 = 1 provides:  

 

𝜙(𝜉) = − 
3−sinh(𝜉)+3 cosh(𝜉)

2(1+cosh(𝜉))
. (2.47) 

 

Set 8.1: 

{
 
 

 
 𝐴0 =

9𝐵2

16
 , 𝐴1 = 0, 𝐴2 = 0, 𝐵1 =

3𝐵2

2
,

𝑀1 = −
1

16
 𝐵2, 𝑄 =   

1

256
 𝐵2

2,

𝑅 =  
√16 𝜅2+𝐵2−16 𝑣

2−16 𝜎2

4
. }

 
 

 
 

(2.48) 

 

Substituting these results into Eq. (2.12) and (2.47), we 

obtain  

 

𝑢8.1(𝜉) =  
𝐵2 (−3 sinh(𝜉)−4+5 cosh(𝜉))

16(−3 sinh(𝜉)+5 cosh(𝜉)+4)
.(2.49) 

 

Then we get the following solution of Eq. (1.6): 

𝐿18.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln ( 
𝐵2 (−3 sinh(𝜉)−4+5 cosh(𝜉))

16(−3 sinh(𝜉)+5 cosh(𝜉)+4)
).(2.50) 

 

where 𝜉 = 𝜎 𝑥 + 𝑣𝑦 + 𝑅𝑧 −  
𝜅 𝑡𝛽

𝛽
. 

 

 

2.4 Application of GERFM to (2.11) 

 

According to the homogeneous balance principle, it is 

clear to have 2𝑁 + 2 = 3𝑁,𝑁 = 2 for (2.11). 

Therefore, the solution can be written as follows:  

 

𝑤(𝜉) = 𝐴0 + 𝐴1𝜙(𝜉) +
𝐵1

𝜙(𝜉)
+ 𝐴2𝜙(𝜉)

2 +

𝐵2

𝜙(𝜉)2
.(2.51) 

 

Inserting (2.51) to (2.11), we obtain a system of 

algebraic equations made up of tedious and rather long 

equations. Solving this system with computer program, 

we get the following results: 

 

Using the values in Group 1 and (2.13) for Eq. (2.11) , 

we have 

 

Set 1.1: 

{
 
 

 
   𝐴0 =

25𝐴2

4
 , 𝐴1 = 5𝐴2, 𝐵1 = 0,

  𝐵2 = 0, 𝑄 =
1

4
𝑖  𝐴2,

𝑅 = 1/2 √4 𝜅2 − 4 𝑣2 − 4 𝜎2 + 𝐴2.}
 
 

 
 

(2.52) 
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Placing values in Eqs. (2.51) and (2.13), yields the 

following solution  

 

𝑤1.1(𝜉) =
1

4

(cosh(𝜉)−1)𝐴2

cosh(𝜉)+1
.(2.53) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿21.1(𝑥, 𝑦, 𝑧, 𝑡) =

1

2
ln (

(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
)−1)

(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
)+1)

  
𝐴2

4
).(2.54) 

 

Set 1.2: 

{
 
 

 
   𝐴0 =

25

144
   𝐵2, 𝐴1 = 0, 𝐴2 = 0,

𝐵1 =
5

6
  𝐵2 , 𝐵2 =  𝐵2, 𝑄 =

1

144
 𝑖  𝐵2,

𝑅 =  
√  𝐵2−144 𝑣

2−144 𝜎2+144 𝜅2

12
. }

 
 

 
 

(2.55) 

 

Placing values in Eqs. (2.51) and (2.13), yields the 

following solution  

 

𝑤1.2(𝜉) =
1

144
 
  𝐵2 (5 sinh(𝜉)−12+13 cosh(𝜉))

5 sinh(𝜉)+12+13 cosh(𝜉)
.(2.56) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿21.2(𝑥, 𝑦, 𝑧, 𝑡) =
1

2
ln (

1

144
   𝐵2  

(5 sinh(𝜉)−12+13 cosh(𝜉))

(5 sinh(𝜉)+12+13 cosh(𝜉))
)(2.57) 

 

where 𝜉 = 𝜎 𝑥 + 𝑣𝑦 + 𝑅𝑧 −  
𝜅 𝑡𝛽

𝛽
. 

 

Using the values in Group 2 and (2.20) for Eq. (2.11) , 

we have 

 

Set 2.1: 

{

𝐴0 = 𝑖𝑄, 𝐴1 = −2 𝑖𝑄, 𝐴2 = 𝑖𝑄,
𝐵1 = 0, 𝐵2 = 0,

𝑅 =
1

2
 √𝑖𝑄 − 4 𝜎2 − 4 𝑣2 + 4 𝜅2

}(2.58) 

 

Placing values in Eqs. (2.51) and (2.20), yields the 

following solution  

 

𝑤2.1(𝜉) =
𝑖𝑄(sinh(𝜉))

2

(cosh(𝜉))
2 . (2.59) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿22.1(𝑥, 𝑦, 𝑧, 𝑡) =

1

2
ln(

𝑖𝑄(sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
))

2

(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
))

2 ). (2.60) 

 

Using the values in Group 3 and (2.24) for Eq. (2.11) , 

we have 

Set 3.1: 

{
 
 

 
   𝐴0 = 𝐴1,, 𝐴2 =

1

4
 𝐴1, 𝐵1 = 0,

  𝐵2 = 0, 𝑄 =
1

4
𝑖  𝐴1,

𝑅 =  
√16 𝜅2+𝐴1−16 𝑣

2−16 𝜎2

4
. }
 
 

 
 

(2.61) 

 

Placing values in Eqs. (2.51) and (2.24), yields the 

following solution  

 

𝑤3.1(𝜉) =
  𝐴1 (sinh(𝜉))

2

4(cosh(𝜉))
2 . (2.62) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿23.1(𝑥, 𝑦, 𝑧, 𝑡) =

1

2
ln

(

 1
4
  𝐴1  

(sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−  
𝜅 𝑡𝛽

𝛽
))

(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
))

2

2

)

 .(2.63) 

 

Using the values in Group 5 and (2.32) for Eq. (2.11) , 

we have 

 

Set 5.1: 

{
 
 

 
   𝐴0 = 𝐴1, 𝐴2 =

1

4
  𝐴1,

𝐵1 = 0, 𝐵2 = 0, 𝑄 =
1

4
𝑖  𝐴1,

𝑅 =  
√−16 𝑣2+  𝐴1+16 𝜅

2−16 𝜎2

4
.}
 
 

 
 

(2.64) 

 

Placing values in Eqs. (2.51) and (2.32), yields the 

following solution  

𝑤5.1(𝜉) =
  𝐴1 (cosh(𝜉))

2

4(sinh(𝜉))
2 .(2.65) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿25.1(𝑥, 𝑦, 𝑧, 𝑡) =

1

2
ln( 

𝐴1

4
 
cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
)

2

sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
)

2).(2.66) 

 

Set 5.2: 

{
 
 

 
   𝐴0 =

4

9
 𝐵2 , 𝐴1 = 0, 𝐴2 = 0,

  𝐵1 =
4

3
𝐵2, 𝑄 =

1

9
𝑖  𝐵2,

𝑅 =
√36 𝜅2+𝐵2−36 𝜎

2−36 𝑣2

6
 . }
 
 

 
 

(2.67) 

 

Placing values in Eqs. (2.51) and (2.32), yields the 

following solution  

 

𝑤5.2(𝜉) =

1

9

  𝐵2 (−4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))
2
−1)

−4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))
2
−4

.(2.68) 

 

Then we get the following solution of Eq. (1.6): 
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𝐿25.2(𝑥, 𝑦, 𝑧, 𝑡) =

1

2
ln (   

𝐵2

9
 
−4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))

2
−1

−4 cosh(𝜉)sinh(𝜉)+5 (cosh(𝜉))
2
−4
).(2.69) 

 

where 𝜉 = 𝜎 𝑥 + 𝑣𝑦 + 𝑅𝑧 −  
𝜅 𝑡𝛽

𝛽
. 

 

Using the values in Group 6 and (2.39) for Eq. (2.11) , 

we have 

 

Set 6.1: 

{
 
 

 
   𝐴0 =

9

4
  𝐴2, 𝐴1 = −3   𝐴2, 𝐵1 = 0,

  𝐵2 = 0, 𝑄 =
1

4
𝑖  𝐴2,

𝑅 =
√  𝐴2−16 𝜎

2+16 𝜅2−16 𝑣2

4
 . }

 
 

 
 

(2.70) 

 

Placing values in Eqs. (2.51) and (2.39), yields the 

following solution  

 

𝑤6.1(𝜉) =
1

4
 
  𝐴2 (sinh(𝜉))

2

(cosh(𝜉))
2 .(2.71) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿26.1(𝑥, 𝑦, 𝑧, 𝑡) =

1

2
ln(

1

4
   𝐴2  

sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−  
𝜅 𝑡𝛽

𝛽
)

cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
)

2

2

).(2.72) 

 

Using the values in Group 7 and (2.43) for Eq. (2.11) , 

we have 

 

Set 7.1: 

{
 
 

 
 

𝐴0 = −𝜅2 + 𝑣2 + 𝜎2 + 𝑅2,

𝐴1 = 4 𝜎2 − 4 𝜅2 + 4 𝑣2 + 4 𝑅2,

𝐴2 = 4 𝜎2 − 4 𝜅2 + 4 𝑣2 + 4 𝑅2,

𝐵1 = 0, 𝐵2 = 0,

𝑄 = 𝑖(−𝜅2 + 𝑣2 + 𝜎2 + 𝑅2). }
 
 

 
 

(2.73) 

Placing values in Eqs. (2.51) and (2.43), yields the 

following solution   

 

𝑤7.1(𝜉) =
(cosh(𝜉)−1)(−𝜅2+𝑣2+𝜎2+𝑅2)

1+cosh(𝜉)
.(2.74) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿27.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln(
(−𝜅2+𝑣2+𝜎2+𝑅2)(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
)−1)

1+cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
)

).(2.75) 

 

Using the values in Group 8 and (2.47) for Eq. (2.11) , 

we have 

 

Set 8.1: 

{
 
 

 
 𝐴0 =

9

16
 𝐵2, 𝐴1 = 0, 𝐴2 = 0,

𝐵1 =
3

2
𝐵2, 𝐵2 = 𝐵2, 𝑄 =

1

16
𝑖𝐵2,

𝑅 =
√−16 𝜎2+𝐵2−16 𝑣

2+16 𝜅2

4
 . }
 
 

 
 

(2.76) 

 

Placing values in Eqs. (2.51) and (2.47), yields the 

following solution  

 

𝑤8.1(𝜉) = 1/16 
𝐵2 (−3 sinh(𝜉)−4+5 cosh(𝜉))

−3 sinh(𝜉)+5 cosh(𝜉)+4
(2.77) 

 

Then we get the following solution of Eq. (1.6): 

 

𝐿28.1(𝑥, 𝑦, 𝑧, 𝑡) =

ln ( 
𝐵2

16
 
(−3 sinh(𝜉)−4+5 cosh(𝜉))

(−3 sinh(𝜉)+5 cosh(𝜉)+4)
).(2.78) 

 

where 𝜉 = 𝜎 𝑥 + 𝑣𝑦 + 𝑅𝑧 −  
𝜅 𝑡𝛽

𝛽
. 

 

 
 

 

 

3. Results and Discussion 

3.1 Graphical Illustrations  
 

In this section, we show two-dimensional and three-

dimensional drawings for some solutions obtained by 

assigning appropriate values to the parameters, to help 

clarify the solutions we presented. In Figure 1, 3D plots 

of the solution 𝐿11.1 (2.16) with the parameters 𝐴2 =

0.4, 𝑅 = 0.2, 𝑣 = 0.1, 𝜅 = 0.2, 𝜎 = 0.3, 𝛽 = 0.5, 𝑦 = 1 

for different times, namely 𝑡 = 1,15,25, is given. If the 

3D graph is examined, the movement of the wave over 

time can be observed. Figure 2 shows that the density 

plot of 𝐿11.1  (2.16) with 𝐴2 = 0.4, 𝑅 = 0.2, 𝑣 = 0.1, 𝜅 =

0.2, 𝜎 = 0.3, 𝛽 = 0.5, 𝑦 = 1 for 𝑡 = 1. In Figure 3, 2D  

 

 

 

 
 

plot of the solution 𝐿11.1  (2.16) at 𝐴2 = 0.4, 𝑅 =

0.2, 𝑣 = 0.1, 𝜅 = 0.2, 𝜎 = 0.3, 𝑡 = 1, 𝑦 = 1, 𝑥 = 1. 

While drawing this 2D graph, different values of the 𝛽 

which is the conformable derivative’s order were taken 

into account. In Figure 4, 3D and density plots of 𝐿15.1  

(2.35) with 𝐴2 = 0.2, 𝑅 = 0.15, 𝑣 = 0.2, 𝜅 = 0.3, 𝜎 =
0.5, , 𝑡 = 1, 𝑦 = 1 for 𝛽 = 0.15 are given, respectively. 

Figure 5 demonstrate that 2D plot of 𝐿15.1 (2.35) with 

𝐴2 = 0.2, 𝑅 = 0.15, 𝑣 = 0.2, 𝜅 = 0.3, 𝜎 = 0.5, , 𝑡 =
1, 𝑦 = 1, 𝑥 = 1 for different values of 𝛽.  
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Figure 1. 3D plots of 𝐿11.1 (2.16) with 𝐴2 = 0.4, 𝑅 = 0.2, 𝑣 = 0.1, 𝜅 = 0.2, 𝜎 = 0.3, 𝛽 = 0.5, 𝑦 = 1 for 𝑡 =

1,15,25, respectively. 

 

 

 

Figure 2. Density plot of 𝐿11.1  (2.16) with 𝐴2 = 0.4, 𝑅 = 0.2, 𝑣 = 0.1, 𝜅 = 0.2, 𝜎 = 0.3, 𝛽 = 0.5, 𝑦 = 1 for 𝑡 = 1. 

 

 

Figure 3. 2D plot of 𝐿11.1  (2.16) with 𝐴2 = 0.4, 𝑅 = 0.2, 𝑣 = 0.1, 𝜅 = 0.2, 𝜎 = 0.3, 𝑡 = 1, 𝑦 = 1, 𝑥 = 1 for 𝛽 =

0.1,0.5,0.8. 

 

 

 

 

Figure 4. 3D and density plots of 𝐿15.1  (2.35) with 𝐴2 = 0.2, 𝑅 = 0.15, 𝑣 = 0.2, 𝜅 = 0.3, 𝜎 = 0.5, , 𝑡 = 1, 𝑦 = 1 for 

𝛽 = 0.15, respectively. 
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Figure 5. 2D plot of 𝐿15.1  (2.35) with 𝐴2 = 0.2, 𝑅 = 0.15, 𝑣 = 0.2, 𝜅 = 0.3, 𝜎 = 0.5, , 𝑡 = 1, 𝑦 = 1, 𝑥 = 1 for 𝛽 =

0.15,0.55,0.95, respectively.

 

3.2 Comparision  

 

In this section, we compare our performed solutions 

with Ali et al. [25], results for Eq. (2.6) for case one. 

Wherein Ali et al. [25] considered the (3 + 1) 

conformal time derivative generalized q-deformed Sinh-

Gordon equation by using 𝐺′/𝐺 expansion method. The 

comparison is ascertained as follows 

 

Table 1. Comparison of solutions 

Ali et al. [25]  Our solution  

 For 𝐻0 = −
√𝑞𝜎

2

√(𝜎2−4𝑣)2
, 𝐻1 = −

4√𝑞𝜎

√(𝜎2−4𝑣)2
,  For 𝐴0 = √𝑄, 𝐴1 = −2 √𝑄, 𝐴2 = √𝑄, 𝐵1 = 𝐵2 = 0,  

 𝐻2 = −
4√𝑞

√(𝜎2−4𝑣)2
, Υ = ±√𝜅2 −

√𝑞

√(𝜎2−4𝑣)2
− 𝑣2 − 𝜚2, 

 𝑀1 =
√𝑞(𝜎

2−4𝑣)

√(𝜎2−4𝑣)2
 and 𝜎2 − 4𝑣 > 0 the solution is  

 𝑀1 = −√𝑄, 𝑅 =  
√√𝑄+4   𝜅2−4 𝜎2−4 𝑣2

2
 the solution is  

   

𝐿1,2(𝑥, 𝑦, 𝑧, 𝜏) = ln(𝐻0 + 𝐻1 (
−𝜎

2
+

 
1

2
√𝜎2 − 4𝑣

𝑔1sinh
1

2
√𝜎2−4𝑣𝜍+𝑔2cosh

1

2
√𝜎2−4𝑣𝜍

𝑔1cosh
1

2
√𝜎2−4𝑣𝜍+𝑔2sinh

1

2
√𝜎2−4𝑣𝜍

) +

 𝐻2 (
−𝜎

2
+

 
1

2
√𝜎2 − 4𝑣

𝑔1sinh
1

2
√𝜎2−4𝑣𝜍+𝑔2cosh

1

2
√𝜎2−4𝑣𝜍

𝑔1cosh
1

2
√𝜎2−4𝑣𝜍+𝑔2sinh

1

2
√𝜎2−4𝑣𝜍

)

2

  

 𝐿12.1(𝑥, 𝑦, 𝑧, 𝑡) = ln(√𝑄
(sinh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−

𝜅 𝑡𝛽

𝛽
))

2

(cosh(𝜎 𝑥+𝑣𝑦+𝑅𝑧−
𝜅 𝑡𝛽

𝛽
))

2)  

 

When the solution obtained in [25] and the solution 

obtained in this study are compared, it is seen that the 

solutions are structurally similar if the parameters are 

selected appropriately. When other solutions are 

compared, it is seen that different solutions are obtained 

thanks to the method applied in this study. 

 

4. Conclusions 

 

In this paper, soliton solutions of the (3 + 1) conformal 

time derivative generalized q-deformed Sinh-Gordon 

equation are constructed using the generalized 

exponential rational function approach. The equation 

containing both the conformal time derivative and the 

generalized q-deformation was first converted to an 

ordinary differential equation. The GERFM, whose 

effectiveness and power has been proven by many 

studies, has been applied to the obtained ordinary 

differential equation and solutions have been found. 

Thus, the solutions of the original equation were 

obtained.  

 

 

 

These solutions are soliton solutions that have the 

extraordinary property of maintaining their uniformity 

in interaction with others. 3D and 2D drawings are 

given for some analytical solutions to show more 

features for the proposed model. The analytical 

solutions allow graphing soliton solutions of type dark 

and bright. In addition, the effectiveness of the applied 

method was emphasized with the Comparison section. 

We hope that the results obtained will be a guide for 

future research. 
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