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Abstract
The main purpose of this paper is to introduce a notion of fuzzifying bornivorous sets of
fuzzifying bornological linear spaces. In particular, we provide an example of fuzzifying
bornivorous sets on a fuzzifying topological linear space with its von Neumann bornology.
Furthermore, the description of fuzzifying open sets of fuzzifying bornological linear spaces
is showed and its equivalent illustration is discussed as well. In addition, we study the dual
relationship of fuzzifying open and close sets. The fuzzifying topological space induced by
fuzzifying open sets is also discussed.
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1. Introduction
As the study of general topology began with the property of families of open balls in

metric spaces, the investigation of bounded sets in topological spaces has been somewhat
neglected. The axiomatization of the properties of bounded sets in metric spaces was
initially introduced by Hu [11, 12]. Hu’s pioneering work led to the introduction of the
concept of bornologies on a set. Hogle-Nled and Schaefar [10, 21] further developed the
theory of bornological spaces within the context of topological linear spaces. Meyer [16]
discussed the theory of smooth representations of locally compact groups on bornological
linear spaces, affirming the usefulness of this theory in representation studies. Based on
Almeida and Barreida’s [2] results on bornological linear spaces, Meson and Vericat [17]
investigated topological entropy. Later on, Beer and Levi [5] pointed out the potential
application of bornological vector space theory in optimization theory. Furthermore, the
theory of bornological spaces plays a fundamental role in other research fields such as
convergence structures on hyperspaces [3,4,15] and topologies on function spaces [6,8,9,18].

In 2011, Abel and Šostak [1] extended the theory of bornological spaces to fuzzy
sets. They introduced bornologies on complete lattices and defined the concept of an
L-bornology. In [1], it was demonstrated that the category L-Born of L-bornological
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spaces is a topological construct. Subsequently, Paseka et al. [19,20] provided a definition
of L-bornological vector spaces and identified the necessary and sufficient conditions on a
complete lattice for the category L-Born to be topological. In 2016, Šostak and UI̧jane
[22] proposed an alternative approach to the fuzzification of the concept of bornology and
developed a construction of an L-valued bornology on a set based on a family of crisp
bornologies on the same set. Additionally, UI̧jane and Šostak [24] extended L-valued
bornologies to a completely distributive lattice. In recent years, Jin and Yan [13, 14]
provided a specific description of fuzzifying bornological linear spaces and discussed the
necessary and sufficient conditions for fuzzifying bornologies to be compatible with lin-
ear structures. Moreover, they studied the characterizations of Mackey-convergence and
separation in fuzzifying bornological linear spaces.

Building upon [14], we continue to study the theory of fuzzifying bornological linear
spaces in this paper. Our objective is to extend the important concept of bornivorous sets
to fuzzifying bornological linear spaces and analyze some of its properties. The structure of
the paper is as follows: In Section 2, we introduce the necessary concepts and fundamental
results that will be employed throughout the paper. In Section 3, we provide an equiva-
lent description of fuzzifying bornivorous sets in fuzzifying bornological linear spaces and
present an illustrative example of fuzzifying bornivorous sets on a topological linear space
with its von Neumann bornology. We then establish the description of fuzzifying open
sets in fuzzifying bornological linear spaces and investigate its equivalent representation.
Finally, we examine the dual relationship between fuzzifying open and closed sets, as well
as the fuzzifying topological space induced by fuzzifying open sets.

2. Preliminaries
In this section, we recall some necessary notions and fundamental results which are used

in this paper.
Throughout this paper, X always denotes a universe of discourse. 2X and F (X) denote

the classes of all crisp and fuzzy subsets, respectively, of X. K represents a field of real or
complex numbers, the symbol θ denotes the neutral element of a linear space and ∗ means
the continuous t-norm.

Definition 2.1 ([26]). A fuzzifying topology is a mapping τ : 2X → [0, 1] such that
(FY1) τ (X) = τ (∅) = 1;

(FY2) τ (U ∩ V ) ≥ τ (U) ∧ τ (V ) for all U, V ∈ 2X ;

(FY3) τ

( ∪
j∈J

Uj

)
≥
∧

j∈J
τ (Uj) for every family {Uj |j ∈ J} ⊆ 2X .

F : (X, τ) → (Y, δ) is called continuous with respect to the two fuzzifying topologies τ
and δ if δ (V ) ≤ τ (F← (V )) holds for all V ∈ 2Y .

Definition 2.2 ([26]). Let (X, τ) be a fuzzifying topological space. For any x ∈ X,
Nx ∈ F

(
2X
)
, called a fuzzifying neighborhood system of x, is defined as follows. For any

A ∈ 2X ,
A ∈ Nx := (∃B ∈ 2X) ((x ∈ B ⊆ A) ∧ (B ∈ τ)).

According to the terminology adopted in [10], a subset B ⊆ X in a linear space X is
said to be balanced if λB ⊆ B whenever λ ∈ K and |λ| ≤ 1.

Theorem 2.3 ([25]). Let (X, τ) be a fuzzifying topological linear space on K and Nθ (·)
be its corresponding fuzzifying neighborhood system of the neutral element. Then it has
the following properties:
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(P1) Nθ (X) = 1;
(P2) ∀U ⊆ X, Nθ (U) > 0 ⇒ θ ∈ U ;
(P3) ∀U, V ⊆ X, Nθ (U ∩ V ) = Nθ (U) ∧ Nθ (V );
(P4) ∀W ⊆ X, Nθ (W ) ≤

∨
U+V⊆W

Nθ (U) ∧ Nθ (V );

(P5) ∀U ⊆ X, x ∈ X, Nθ (U) > 0 ⇒ ∃ε > 0 such that kx ∈ U for all |k| < ε;
(P6) ∀U ⊆ X, Nθ (U) > a implies there exists a balanced set V ⊆ U such that Nθ (V ) >

a.
Conversely, let X be a linear space over K and consider a function Nθ (·) : 2X →

[0, 1] which satisfies the conditions (P1)-(P6). Then there exists a fuzzifying topology τN

on X such that (X, τN ) be a fuzzifying topological linear space and Nθ (·) is a fuzzifying
neighborhood system of the neutral element.

Definition 2.4 ([7]). A cl-monoid is a tuple (L, ≤, ∧, ∨, ∗) where (L, ≤, ∧, ∨) is a complete
lattice and operation ∗ : L × L → L satisfies conditions:

(0t) ∗ is monotone: a ≤ b =⇒ a ∗ c ≤ b ∗ c for all c ∈ L,
(1t) ∗ is commutative: a ∗ b = b ∗ a for all a, b ∈ L,
(2t) ∗ is associative: a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a, b, c ∈ L,
(3t) a ∗ 1L = a, a ∗ 0L = 0L for all a ∈ L,
(4t) operation ∗ distributes over arbitrary joins: a ∗ (

∨
i∈Γ

bi) =
∨

i∈Γ
(a ∗ bi) for every

a ∈ L and for all {bi : i ∈ Γ} ⊆ L.

If the operation ∗ : L × L → L satisfies conditions (0t)-(3t), it ia also said to be
a triangular norm or t-norm on L. For a triangular norm ∗, an implication operator
determined by ∗ is denoted →∗, i.e., a →∗ b =

∨
{c ∈ L : a ∗ c ≤ b}, ∀ a, b ∈ L. Specially,

if we restrict triangular norm ∗ is Łukasiewicz norm, i.e., a ∗L b = max{a + b − 1, 0}, then
Łukasiewicz implication operator a →L b = min{1 − a + b, 1}.

According to the terminology [28], a triangular norm ∗ on a complete lattice L is
called left (right) continuous if and only if for each a ∈ L, {at}t∈Γ ⊆ L, a ∗ (

∨
t∈Γ

at) =∨
t∈Γ

(a∗at)(a∗(
∧

t∈Γ
at) =

∧
t∈Γ

(a∗at)). Moreover, a triangular norm ∗ is said to be continuous

if it is left continuous and right continuous. Specially, if L = [0, 1] and ∗ is a left continuous
on [0, 1], then

a ∗ b = a ∗
(∨

{bt : bt < b}
)

=
∨

{a ∗ bt : bt < b} for all a, b ∈ [0, 1].

Definition 2.5 ([23]). Let (X, τ) be a fuzzifying topological linear space. Then the
unary fuzzy predicates Bd ∈ F

(
2X
)
, called fuzzy boundedness, is defined in terms of

mathematical logics as follows:

Bd (A) :=
(
∀V ∈ 2X

)
(V ∈ Nθ →L (∃λ ∈ K) (A ⊆ λV ))

for any A ∈ 2X .

In our work we base on the Łukasiewicz fuzzy logic, and therefore this logical formula
actually means that degree to which A is bounded is

[Bd (A)] =
∧

U⊆X
{1 − Nθ (U) |∀λ ∈ K, A * λU} .

Definition 2.6 ([22]). Given a cl-monoid (L, ≤, ∧, ∨, ∗), an (L, ∗)-valued bornology on a
set X is a mapping B : 2X → L satisfying the following conditions:
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(B1) ∀x ∈ X ⇒ B({x}) = 1L;
(B2) If U ⊆ V ⊆ X then B(V ) ≤ B(U);
(B3) ∀U, V ⊂ X ⇒ B(U ∪ V ) ≥ B(U) ∗ B(V ).

Definition 2.7 ([22]). A mapping f : (X, BX) → (Y, BY ) of (L, ∗)-valued bornological
spaces is called bounded if BX(A) ≤ BY (f(A)) for every A ∈ 2X . The degree to which f
is bounded as

[Bd(f)] =
∧

A⊆X
(1 − BX (A) + BY (f→(A))).

for every A ∈ 2X . Where the notation f→(A) is the image of a set A.
If [Bd(f)] = 1, or equivalently, BX (A) ≤ BY (f→(A))) for all A ⊆ X, we say that f is

bounded.

Theorem 2.8 ([14]). Let (X, B) be a fuzzifying bornological space. Then (X, B) is a
fuzzifying bornological linear space if and only if B satisfies the following conditions:

(B4) B (U + V ) ≥ B (U) ∗ B (V );
(B5) B (λU) ≥ B (U), for all λ ∈ K;

(B6) B

( ∪
|α|≤1

αU

)
≥ B (U).

By Example 3.2 in [14], (X, Bd(·)) is a fuzzifying bornological linear space for any
fuzzifying topological linear space. As we have known, the family of all bounded sets in
classical topological linear spaces forms a linear bornology, and this linear bornology is
called von Neumann bornology [10]. According to the notation of ordinary bornological
linear spaces, we also say that Bd(·) is a fuzzifying von Neumann bornology.

Definition 2.9 ([14]). Let (X, B) be a fuzzifying bornological linear space and let {xn}
be a sequence in X. The degree to which xn converges bornologically to a point x ∈ X is

[xn
M→ x] =

∨
A∈Bal(X)

λn→0

{B (A) : ∀n ∈ N, xn − x ∈ λnA},

where Bal(X) means the family of all balanced sets on X.

In classical bornological linear spaces, bornological convergence of sequences is also
called Mackey convergence. In order to distinguish topological convergence from sequence,
throughout this paper, we always denote {xn} is convergent to x bornologically as xn

M→ x.

Definition 2.10 ([14]). Let (X, B) be a fuzzifying bornological linear space. Then a
unary predicate BC ∈ F (2X) called bornologically closed is defined as follows:

A ∈ BC := (∀{xn} ⊆ A)(xn
M→ x) →L (x ∈ A).

Where the notation →L means the Łukasiewicz residuum.

Intuitively, the logic formula of A ∈ BC actually means that the degree to which (X, B)
is bornologically closed is

[BC(A)] =
∧

{xn}⊆A
x/∈A

∧
B∈Bal(X)

λn→0

{1 − B (B) : ∀n ∈ N, xn − x ∈ λnB}.

Definition 2.11 ([14]). Let Σ be the family of all fuzzifying bornological linear spaces.
Then a unary predicate T ∈ F (Σ) called separation is defined in terms of mathematical
logics as follows:
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(X, B) ∈ T := (∀M ∈ Svec(X)) →L (M ∈ B) ∧ (M = {θ}),
where Svec(X) denotes the family of all linear subspaces of X and →L means the Łukasiewicz
residuum.

Intuitively, the logic formula of (X, B) ∈ T actually means that the degree to which
(X, B) is separated is

[T (X, B)] =
∧

M ̸={θ}
M∈Svec(X)

{1 − B (M)}.

Definition 2.12 ([27]). Let (X, τ) be a fuzzifying topological space. The value [CI(X, τ)] =∧
x∈X

∨
Ux⊢Nx

FC(Ux) is called the degree to which (X, τ) is first countable, where Ux ⊢ Nx

means that Ux is a mapping from 2X → [0, 1] satisfying Nx(U) =
∨

V⊆U
Ux(V ), and

FC(Ux) = 1 −
∧

{r | C((Ux)r)}, where (Ux)r = {A ⊆ X | Ux(A) > r} and the no-
tation C((Ux)r means that the set (Ux)r is at most countable.

3. Main results
The purpose of this section is to introduce the concept of fuzzifying bornivorous sets in

fuzzifying bornological linear spaces. We provide a comprehensive description of fuzzifying
open sets in such linear spaces and explore the dual relationship between fuzzifying open
and closed sets. Additionally, we delve into the discussion of the fuzzifying topological
space induced by fuzzifying open sets.

Definition 3.1. Let (X, B) be a fuzzifying bornological linear space. Then the mapping
BV : 2X → [0, 1] is called fuzzifying bornivorous if it defined as follows:

P ∈ BV := (∀A ⊆ X) (A ∈ B) →L (A ∈ Abs(P )) ,

where Abs(P ) = {A : ∃δ > 0, ∀λ ∈ K, |λ| ≥ δ, A ⊆ λP} and → means the Łukasiewicz
residuum.

Intuitively, the logic formula of P ∈ BV actually means that the degree to which P is
a bornivorous set is

BV (P ) =
∧

A⊆X

{1 − B (A) : A ̸∈ Abs(P )}.

Example 3.2. (Every neighborhood of θ of a fuzzifying topological linear space with its
von Neumann bornology is bornivorous) Let (X, τ) be a fuzzifying topological linear space
and (X, Bd) be a fuzzifying bornological linear space (see [14]). Suppose that Nθ(·) is
defined as Definition 2.2 and BV is given as Definition 3.1. Then

Nθ(U) ≤ BV (U)
for all U ⊆ X.

Proof. At first we may prove that
[Bd (A)] =

∧
V⊆X

{1 − Nθ (V ) |∀λ ∈ K, A * λV } =
∧

V⊆X
{1 − Nθ (V ) |A ̸∈ Abs(V )}.

In fact, let
∧

V⊆X
{1 − Nθ (V ) |A ̸∈ Abs(V )} < a, then we have V ⊆ X satisfying 1 −

Nθ (V ) < a and A ̸∈ Abs(V ). By Theorem 2.3 (P6), there exists a balanced set W ⊆ V
such that Nθ(W ) > 1 − a. This implies A * λW for all λ ∈ K. However, if A ⊆ λ0W
for some λ0 ∈ K, where λ0 ̸= 0, then we examine the case where A ⊆ 0W = θ. In this
scenario, we have [Bd (A)] = [Bd(θ)] = 1. Since Nθ (V ) > 1−a, it follows that Nθ (V ) ̸= 0.
According to Theorem 2.3 (P5), we conclude that θ ∈ V . This deduction implies A = θ ∈
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Abs(V ), which contradicts the fact that A ̸∈ Abs(V ). Let δ = |λ0| > 0, for all |λ| ≥ δ, λ ∈
K, it holds that A ⊆ λ0W ⊆ λW ⊆ λV . This signifies that A ∈ Abs(V ), which contradicts
the fact that A ̸∈ Abs(V ). Therefore [Bd (A)] =

∧
V⊆X

{1 − Nθ (V ) |∀λ ∈ K, A * λV } ≤

1 − Nθ(W ) < a. So,
[Bd (A)] =

∧
V⊆X

{1 − Nθ (V ) |∀λ ∈ K, A * λV } ≤
∧

V⊆X
{1 − Nθ (V ) |A ̸∈ Abs(V )}.

On the contrary, supposed that
∧

V⊆X
{1 − Nθ (V ) |∀λ ∈ K, A * λV } < a, then there

exists V ⊆ X such that 1 − Nθ(V ) < a with A * λV for all λ ∈ K. By Theorem 2.3
(P6), there is a balanced set W ⊆ V such that 1 − Nθ(W ) < a. In this case, it is easy to
prove that A ̸∈ Abs(W ). Thus,

∧
V⊆X

{1 − Nθ (V ) |A ̸∈ Abs(V )} ≤ 1 − Nθ(W ) < a. Hence∧
V⊆X

{1 − Nθ (V ) |A ̸∈ Abs(V )} ≤ [Bd(A)].

Finally, let BV (U) < t, then there exists A ⊆ X such that B(A) > 1 − t with A ̸∈
Abs(U). Thus, B(A) = [Bd (A)] =

∧
V⊆X

{1 − Nθ (V ) |A ̸∈ Abs(V )} > 1 − t. Therefore, we

have Nθ (V ) < t whenever A ̸∈ Abs(V ). Without loss of generality, let V = U . It deduces
that Nθ (U) < t and hence, Nθ (U) ≤ BV (U), which completes the proof. �
Theorem 3.3. Let (X, τ) be a fuzzifying topological linear space, B be a Von Neumann
fuzzifying bornology induced by τ . Then CI(X, τ) ∗L BV (P ) ≤ Nθ(P ) for any balanced set
P ⊆ X. Where ∗L denotes Łukasiewicz t-norm.
Proof. For any balanced set P ⊆ X, if there exists a ∈ (0, BV (P ) + [CI(X, τ)] − 1) such
that Nθ(P ) ≤ a. It follows that a + 1 − [CI(X, τ)] < BV (P ). Then there exist U ⊢ Nθ

such that a + 1 − FC(U ) < BV (P ). Let t ∈ (a +1 − FC(U ), BV (P )), by Definition 2.12,
we have a+

∧
{r : C((U )r)} < t. Thus there is r0 ∈ (0, 1) with a+r0 < t such that the set

{U ⊆ X : U (U) > r0} is at most countable. Further, the set {U ⊆ X : U (U) > a + r0}
is countable. We may assume that {U ⊆ X : U (U) > a + r0} = {U1, U2, · · · , } and
Un ⊇ Un+1. Clearly, the family of sets {Un} is a countable balanced neighborhood base
of θ in classical topological linear space (X, τa+r0), where τa+r0 denotes the topology
generated by the family of {U | τ(U) > a + r0} as a basis. Further, { 1

nUn} is also a
countable balanced neighborhood base of θ. It follows that 1

nUn ̸⊆ P for all n ∈ N. Then
there exists xn ∈ Un such that xn ̸∈ nP for all n ∈ N. Since P is a balanced set, we
have {xn} ̸∈ Abs(P ). It is easy to check the sequence {xn} converges to θ with respect
to τa+r0 . Thus {xn} is a bounded set in (X, τa+r0). So [Bd({xn})] ≥ 1 − (a + t0). Hence
BV (P ) =

∧
A⊆X

{1 − B (A) : A ̸∈ Abs(P )} ≤ 1 − B({xn}) ≤ a + r0 < t. It contradicts with

the assumption BV (P ) > t. Hence we have CI(X, τ) ∗L BV (P ) ≤ Nθ(P ). �
Theorem 3.4. Let (X, B) be a fuzzifying bornological linear space. For all P, Q ⊆ X,
the following statements holds:

(1) ∀P ∈ 2X , BV (P ) > 0 =⇒ θ ∈ P ;
(2) BV (P

∩
Q) ≥ BV (P ) ∧ BV (Q);

(3) if P ⊆ Q, then BV (P ) ≤ BV (Q);
(4) for all α ∈ K \ {0}, BV (αP ) = BV (P );

(5) BV

( ∪
|α|≤1

αP

)
≥ BV (P ).

Proof. (1) If θ ̸∈ P , then for all λ ̸= 0, {θ} ̸⊆ λP , which means P does not absorb
{θ}. Since B({θ}) = 1, it deduces that BV (P ) = 0. So we have the conclusion BV (P ) >
0 =⇒ θ ∈ P for all P ⊆ X.
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(2) Let BV (P
∩

Q) < t, then there exists A ⊆ X such that B(A) > 1 − t satisfying
A ̸∈ Abs(P

∩
Q), i.e., for all δ > 0, there exists |λ| ≥ δ such that A * λ(P

∩
Q). Therefore,

we obtain A * λP or A * λQ for above λ ∈ K. Hence, we have BV (P ) ∧ BV (Q) < t,
from which it follows that BV (P

∩
Q) ≥ BV (P ) ∧ BV (Q).

(3) Let BV (Q) < t. Then there exists A ⊆ X such that B(A) > 1− t and A ̸∈ Abs(Q).
Since P ⊆ Q, it is clear that A ̸∈ Abs(P ). Thus, we get BV (P ) < t, which means
BV (P ) ≤ BV (Q).

(4) Let BV (αP ) < t for all α ∈ K\{0}. Then there exists A ⊆ X such that B(A) > 1−t
and A ̸∈ Abs(αP ). It follows that A ̸∈ Abs(P ) and BV (P ) < t. So BV (αP ) ≥ BV (P ).
Similarly, the inequality BV (αP ) ≤ BV (P ) holds. This completes the proof.

(5) Let BV

( ∪
|α|≤1

αP

)
< t. Then there exists A ⊆ X such that B(A) > 1 − t and A ̸∈

Abs(
∪
|α|≤1

αP ). Clearly, A ̸∈ Abs(P ). It follows that BV (P ) < t and BV

( ∪
|α|≤1

αP

)
≥

BV (P ). �

Definition 3.5. Let (X, B) be a fuzzifying bornological linear space. Then the mapping
BO : 2X → [0, 1] is called bornologically open if it defined as follows:

P ∈ BO := (∀a ∈ P ) → (P − a ∈ BV ) ,

where P − a = {p − a : p ∈ P} and → means the Łukasiewicz residuum.

Intuitively, the logic formula of P ∈ BO actually means that the degree to which P is
bornologically open is

BO(P ) =
∧

a∈P

BV (P − a).

Theorem 3.6. Let (X, B) be a fuzzifying bornological linear space. Then the mapping
of fuzzifying bornological open is a fuzzifying topology.

Proof. By Definition 2.1 and Definition 3.5, we only need to show that the mapping
BO : 2X → [0, 1] satisfies the three conditions (FY1) to (FY3) in Definition 2.1.

(FY1) It is obvious that (FY1) holds since BO(X) = BO(∅) = 1.
(FY2) Let BO(U) ∧ BO(V ) > t. For any c ∈ U

∩
V , we have BV (U − c) > t and

BV (V − c) > t. From Theorem 3.4, BV (U ∩ V − c) ≥ BV (U − c) ∧ BV (V − c) > t. It
follows that BO(U ∧ V ) ≥ t. It deduces that BO(U) ∧ BO(V ) ≤ BO(U ∩ V ).

(FY3) Suppose that BO(
∪

j∈J
Uj) < t, there exists a ∈

∪
j∈J

Uj such that BV (
∪

j∈J
Uj −a) <

t. Further, there is j0 ∈ J , a ∈ Uj0 . By Theorem 3.4, BV (Uj0 − a) ≤ BV (
∪

j∈J
Uj − a) < t.

Thus ∧
j∈J

BO(Uj) ≤ BO(Uj0) =
∧

b∈Uj0

(BV (Uj0 − b)) ≤ BV (Uj0 − a) < t.

By the arbitrariness of t,
∧

j∈J
BO(Uj) ≤ BO(

∪
j∈J

Uj). The proof is completed. �

Remark 3.7. As a consequence of the (Theorem 3.6), the mapping of fuzzifying bornolog-
ical open BO : 2X → [0, 1] is a fuzzifying topology. It is called a fuzzifying topology
induced by fuzzifying bornology B. Here it is denoted by τB. We also call (X, τB) a
fuzzifying topological space.
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Theorem 3.8. Let (X, BX), (Y, BY ) be fuzzifying bornological linear spaces and a linear
mapping f : X → Y is bounded. Then the following inequality holds:

BVX(f←(P )) ≥ BVY (P ), for all P ⊆ Y.

Where the notation f←(P ) is the pre-image of a set P .

Proof. Let BVX(f←(P )) < t. Then there exists A ⊆ X such that BX(A) > 1−t and A ̸∈
Abs(f←(P )). Since f is bounded, it follows that 1 − t < BX(A) ≤ BY (f→(A)). Suppose
that f→(A) ∈ Abs(P ), then there exists δ > 0 such that f→(A) ⊆ λP for all |λ| ≥ δ. Thus
A ⊆ f←(f→(A)) ⊆ f←(λP ) ⊆ λf←(P ). It contradicts to the fact A ̸∈ Abs(f←(P )). So,
f→(A) ̸∈ Abs(P ), this implies that BVY (P ) < t, i.e., BVX(f←(P )) ≥ BVY (P ). �

Remark 3.9. For each A ∈ 2Y , noting that the following inequality:
τBY

(A) =
∧

a∈A
BVY (A − a) ≤

∧
a∈A

BVX(f←(A − a))

≤
∧

b∈f←(A)
BVX(f←(A) − b) = τBX

(f←(A)).

We may obtain f is continuous.

Theorem 3.10. Let (X, BX), (Y, BY ) be fuzzifying bornological linear spaces, f be a lin-
ear mapping from X to Y and BVX(P ) ≤ BY (f→(P )) for all P ∈ 2X . Then [T (Y, BY )] ≤
[f = θ], where the notation [f = θ] denotes the true value of f is trivial functional.

Proof. If [f = θ] = 1, then it is trivial. Suppose that [f = θ] = 0, then there exists
x0 ∈ X such that f(x0) ̸= θ. Since f is linear, it follows f→(X) is a linear subspace of
Y . Moreover, from Definition 3.1, we have BVX(X) = 1, it follows that BY (f→(X)) = 1.
Hence,

[T (Y, BY )] =
∧

M ̸={θ}
M∈Svec(Y )

{1 − B (M)} ≤ 1 − BY (f→(X)) = 0.

Thus [T (Y, BY )] ≤ [f = θ]. This completes the proof. �

Theorem 3.11. Let (X, B) be a fuzzifying bornological linear space. Then

P ∈ BV ⇐⇒ (∀{xn} ⊆ P c)(xn
M9 θ), (3.1)

where P c means the complement of P .

Proof. We need to show∧
A⊆X

{1 − B (A) : A ̸∈ Abs(P )} =
∧

{xn}⊆P c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA}.

Let
∧

A⊆X
{1 − B (A) : A ̸∈ Abs(P )} < t. Then there exists A ⊆ X such that 1 − B (A) < t

and A ̸∈ Abs(P ). By (B6) of Theorem 2.8, we may consider A ∈ Bal(X). Put δn = 1
n >

0, n ∈ N, there is λn ∈ K with |λn| ≤ δn such that λnA ̸⊆ P . Take yn ∈ A such that
λnyn ̸∈ P for all n ∈ N. Denote xn = λnyn and αn = λn. Clearly {xn} ⊆ P c, αn → 0 and
xn ∈ αnA for all n ∈ N. Thus∧

{xn}⊆P c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA} < t.

From which it follows that∧
A⊆X

{1 − B (A) : A ̸∈ Abs(P )} ≥
∧

{xn}⊆P c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA}.
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Conversely, let
∧

{xn}⊆P c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA} < t. Then there exists

{xn} ⊆ P c, A ∈ Bal(X) and αn → 0 such that 1 − B (A) < t and xn ∈ αnA for all
n ∈ N. Clearly, we obtain A * α−1

n P for all n ∈ N. It is claimed that A does not absorb
the set P . Otherwise, if there is λ0 ̸= 0 such that A ⊆ λ0P . Since αn → 0, we have
|αn0 | < 1

|λ0| . It follows that αn0A ⊆ 1
λ0

A ⊆ P . This deduces a contradiction. Hence∧
A⊆X

{1 − B (A) : A ̸∈ Abs(P )} < t, which means
∧

A⊆X
{1 − B (A) : A ̸∈ Abs(P )} ≤∧

{xn}⊆P c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA}. This completes the proof of the formula

(3.1). �
Theorem 3.12. Let (X, B) be a fuzzifying bornological vector space and BO is given by
Definition 3.5, then for all P ⊆ X,

P ∈ BO ⇐⇒
(

(∀a ∈ P )(∀{xn} ⊆ X)(xn
M→ a) → ({xn} ⊑ P )

)
. (3.2)

Where the notation → stands for the Łukasiewicz residuum, and the notation {xn} ⊑ P
means that {xn} “ almost in" P , that is, there is n0 ∈ N such that xn ∈ P for any n ≥ n0.
Proof. By Łukasiewicz fuzzy logic, the right side of formula (3.2) actually means that∧
a∈P

∧
{xn}⊆X

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ αnA, {xn} ̸⊑ P}. From Theorem 3.11,

Definition 2.10 and Definition 3.1, we only need to show∧
a∈P

∧
{xn}⊆(P−a)c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA}

=
∧

a∈P

∧
{xn}⊆X

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ αnA, {xn} ̸⊑ P}.

First, let the left side < t. Then there exist a ∈ P , {xn} ⊆ (P − a)c, A ∈ Bal(X) and
αn → 0 such that 1 − B (A) < t and xn ∈ αnA for all n ∈ N. Setting yn = xn + a. It is
clear that yn /∈ P and yn − a = xn ∈ αnA for all n ∈ N, from which int follows that

t >
∧

a∈P

∧
{xn}⊆(P−a)c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA}

≥
∧

a∈P

∧
{xn}⊆X

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ αnA, {xn} ̸⊑ P}.

Next, let the right side < t. Then there exit a ∈ P , {xn} ⊆ X, A ∈ Bal(X) and
αn → 0 such that 1 − B (A) < t, xn − a ∈ αnA and {xn} ̸⊑ P . Since {xn} ̸⊑ P , there is
a subsequence {xnk

} of {xn} such that xnk
̸∈ P for all k ∈ N. Setting znk

= xnk
− a. It

is obvious that {znk
} ⊆ (P − a)c and znk

∈ αnk
A for all k ∈ N, which leads to the result

that ∧
a∈P

∧
{xn}⊆(P−a)c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA} < t.

Hence ∧
a∈P

∧
{xn}⊆(P−a)c

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn ∈ αnA}

≤
∧

a∈P

∧
{xn}⊆X

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ αnA, {xn} ̸⊑ P}

.
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This completes the proof of the formula (3.2). �
Theorem 3.13. Let (X, B) be a fuzzifying bornological vector space and BC, BO given
by Definition 2.9 and Definition 3.5 respectively. Then for all P ⊆ X,

P ∈ BO ⇐⇒ P c ∈ BC. (3.3)

Proof. From Theorem 3.12, we only need to show∧
a∈P

∧
{xn}⊆X

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ αnA, {xn} ̸⊑ P}

=
∧

{xn}⊆P c

a/∈P c

∧
A∈Bal(X)

λn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ λnA}.

On one hand, let the left side < t. Then there exit a ∈ P , {xn} ⊆ X, A ∈ Bal(X) and
αn → 0 such that 1 − B (A) < t, xn − a ∈ αnA and {xn} ̸⊑ P . Thus we have {xnk

} ⊆ P c

and a ̸∈ P c. Therefore, it is clear that

t >
∧

a∈P

∧
{xn}⊆X

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ αnA, {xn} ̸⊑ P}

≥
∧

{xn}⊆P c

a/∈P c

∧
A∈Bal(X)

λn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ λnA}.

Similarly, we can get∧
a∈P

∧
{xn}⊆X

∧
A∈Bal(X)

αn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ αnA, {xn} ̸⊑ P}

≤
∧

{xn}⊆P c

a/∈P c

∧
A∈Bal(X)

λn→0

{1 − B (A) : ∀n ∈ N, xn − a ∈ λnA}

< t,

which completes the proof of the equivalent relation (3.3). �

4. Conclusion
Motivated by [14], this paper introduces a notion of fuzzifying bornivorous sets in fuzzi-

fying bornological linear spaces. An example of fuzzifying bornivorous sets on a fuzzifying
topological linear space is presented, along with its von Neumann bornology. Additionally,
the paper examines the description and equivalent representation of fuzzifying open sets
in fuzzifying bornological linear spaces. Furthermore, the dual relationship between fuzzi-
fying open and closed sets is studied. The paper also discusses the fuzzifying topological
space induced by fuzzifying open sets.

In future research, we will explore the following aspects of fuzzifying bornivorous sets
and fuzzifying bornological linear spaces:

1. The Mackey-completeness of fuzzifying bornological linear spaces and their interac-
tion with fuzzifying bornivorous sets.

2. The duality between fuzzifying bornologies and fuzzifying topologies.
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