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Abstract
In this paper, we present a new analogue of the Filbert and Lilbert matrices whose indices
have different asymmetric and nonlinear rules according to their row numbers. Explicit
formulæ are derived for the LU -decompositions, their inverses and the inverse of the main
matrix as well as its determinant. To prove the claimed results we use backward induction
method. The asymmetric variants of the Filbert and Lilbert matrices are obtained from
our results for a particular q value.
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1. Introduction
For n > 1, define the second order linear recurrences {Un, Vn} by

Un = pUn−1 + Un−2 and Vn = pVn−1 + Vn−2

with U0 = 0, U1 = 1 and V0 = 2, V1 = p, respectively. If p = 1, then Un = Fn (nth
Fibonacci number) and Vn = Ln (nth Lucas number).

The Binet forms are

Un = αn − βn

α − β
= αn−1 1 − qn

1 − q
and Vn = αn + βn = αn (1 + qn) ,

where α, β =
(
p ±

√
∆

)
/2 with q = β/α = −α−2 and ∆ = p2 + 4, so that α = i/√

q.

Nowadays interesting combinatorial matrices whose entries include q-binomial coeffi-
cients or well-known integer sequences such as natural numbers, Pochhammer symbol,
q-integers, Fibonacci and Lucas numbers have been studied by many authors. They have
found some algebraic properties of these matrices. For these studies, we refer to [1–15].

• Chu and Di Claudio [6] defined the matrix
[ (a)j+λi

(c)j+λi

]
0≤i,j≤n

, where a, c and {λi}n
i=0

are complex numbers. They also worked out some versions of the matrix above.
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• Filbert matrix Hn = (hi,j)n
i,j=1 is defined by hi,j = 1

Fi+j−1
as analogue of the

Hilbert matrix, where Fn is the nth Fibonacci number. It has been defined and
worked by Richardson [15].

• Fonseca and Anđelić [2] studied some results on the determinant of a pentadiagonal
Toeplitz matrix.

• The authors of [10] worked nonlinear generalizations of Filbert and Lilbert matrices
with entries

1
Uλ(i+r)k+µ(j+s)r+c

and 1
Vλ(i+r)k+µ(j+s)r+c

,

where Un and Vn are nth generalized Fibonacci and Lucas numbers, respectively.
This is the first study on nonlinear generalization of Filbert and Lilbert matrices.

• Kılıç and Ersanlı [11] constructed a combinatorial matrix whose row entries are
changed according to their row numbers as follows

T = [Tm,n] =


1

1 + xqam+bn
if m is odd,

1
1 + yqam+bn

if m is even,

where any reals q, x, y and arbitrary integers a, b such that 1 + xqam+bn 6= 0,
1 + yqam+bn 6= 0.

In the mentioned works above, some algebraic properties of these matrices such as ex-
plicit formulas for LU -decomposition, Cholesky decomposition, determinants and inverses
of them were evaluated. The authors of these works converted the entries of the matrices
into q-form and then used the q-Zeilberger algorithm to prove the claims. In cases where
the algorithm didn’t work, they used backward induction method.

In this work, inspired by the matrix defining idea of [11] and by transferring the idea
there to the powers of the shifted indices, by the index functions Φ and Ψ, we were able
to carry it to a very different non-linear analog structure. For any reals x, y, q, λ, µ, a, b,
p, r, v, w such that 1 + xqa+λ(m+p)v+µ(n+r)w

6= 0, 1 + yqb+λ(m+p)v+µ(n+r)w

6= 0, we define
the matrix G = [Gm,n]m,n>0 as follows

G = [Gm,n] =


1

1 + xqa+Φm+Ψn
if m is odd,

1
1 + yqb+Φm+Ψn

if m is even,

with
Φi := λ (i + p)v and Ψi := µ (i + r)w .

So consecutive row elements of G will have the forms of elements of the nonlinear and
asymmetric Filbert and Lilbert matrices with the choice of q; x and y. In this respect, the
matrix G has a very special and interesting harmony.

When x = y = ∓1, our results included the results of [10]. When also a = b = 0, Φm =
cm and Ψn = dn for arbitrary integers c, d such that 1 + xqcm+dn 6= 0, 1 + yqcm+dn 6= 0
we get the results of [11].

1.1. Our contribution
We will even see this harmony when we obtain the algebraic properties of the matrix.

Let’s briefly summarize what we will do:
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• We give explicit formulæ for L and U matrices and their inverses come from
LU -decomposition. Cholesky decomposition is not given as the inputs of G are
asymmetric. The size of G isn’t important, except for its determinant and in-
verse. We don’t need the dimension of G while deriving properties of G such as
LU -decomposition, L−1, U−1 as the formulæ for them are independent from the
dimension. Thus, the matrix G can be thought of as infinitely dimensional so that
we restrict it to the first N rows representing rows when needed, and use the GN

notation.
• While the results we need seem to be q-hypergeometric sums, the q-Zeilberger

algorithm doesn’t work as they aren’t Gosper summable. So we prove them by
backward induction. We prove only one claimed result as a showcase.

• By the q-forms of the Binet formulas of {Un, Vn}, according to the choice of any
real x and y, the matrix G have the forms of Filbert and Lilbert matrices. Clearly;

i. If x = y = −1, then the consecutive rows of matrix G are in the form of
elements of the Filbert matrix.

ii. If x = y = 1, then the entries of matrix G are in the form of elements of the
Lilbert matrix.

iii. If x = −y = −1, then the consecutive rows of matrix G are in the form of
Filbert-Lilbert, respectively.

iv. If x = −y = 1, then the consecutive rows of matrix G are in the form of
Lilbert-Filbert, respectively.

• All identities we will derive are valid for general q. Thus, as an application of our
results, we derive results for general Fibonacci and Lucas numbers by choosing q
specifically.

2. The main results
We will give the results related with the LU -decomposition of the matrix G and the

L−1, U−1 matrices and the inverse matrix G−1.
For LU -decomposition, we have the following results.

Theorem 2.1. Let 1 ≤ d ≤ n.
For odd n;
(i) if d is odd,

Ln,d =
d∏

t=1

1 + xqa+Φd+Ψt

1 + xqa+Φn+Ψt

(d−1)/2∏
t=1

(
1 − xy−1qa−b+Φn−Φ2t

) (
1 − qΦn−Φ2t−1

)
(1 − xy−1qa−b+Φd−Φ2t) (1 − qΦd−Φ2t−1) ,

(ii) if d is even,

Ln,d =
d∏

t=1

1 + yqb+Φd+Ψt

1 + xqa+Φn+Ψt

(d−2)/2∏
t=1

1 − xy−1qa−b+Φn−Φ2t

1 − qΦd−Φ2t

d/2∏
t=1

1 − qΦn−Φ2t−1

1 − x−1yqb−a+Φd−Φ2t−1
.

For even n;
(iii) if d is odd,

Ln,d =
d∏

t=1

1 + xqa+Φd+Ψt

1 + yqb+Φn+Ψt

(d−1)/2∏
t=1

(
1 − x−1yqb−a+Φn−Φ2t−1

) (
1 − qΦn−Φ2t

)
(1 − xy−1qa−b+Φd−Φ2t) (1 − qΦd−Φ2t−1) ,
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(iv) if d is even,

Ln,d =
d∏

t=1

1 + yqb+Φd+Ψt

1 + yqb+Φn+Ψt

d/2∏
t=1

1 − x−1yqb−a+Φn−Φ2t−1

1 − x−1yqb−a+Φd−Φ2t−1

(d−2)/2∏
t=1

1 − qΦn−Φ2t

1 − qΦd−Φ2t
.

Theorem 2.2. Let 1 ≤ d ≤ n;
(i) if d is odd,

Ud,n =

(
xqa+Φd

)d−1

1 + xqa+Φd+Ψn

d−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φd+Ψt

×
(d−1)/2∏

t=1

(
1 − x−1yqb−a+Φ2t−Φd

) (
1 − qΦ2t−1−Φd

)
(1 + yqb+Φ2t+Ψn) (1 + xqa+Φ2t−1+Ψn) ,

(ii) if d is even,

Ud,n =
(
yqb+Φd

)d−1 d−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + yqb+Φd+Ψt

×
d/2∏
t=1

1 − xy−1qa−b+Φ2t−1−Φd

(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn)

(d−2)/2∏
t=1

(
1 − qΦ2t−Φd

)
.

Now we will present formulations for L−1 and U−1.
For later use we recall the Iverson notation defined as

[P ] =
{

1 if P is true,
0 otherwise.

Theorem 2.3. Let 1 ≤ d ≤ n.
For odd n;
(i) if d is odd,

L−1
n,d = (−1)[n 6=d]

(n−1)/2∏
t=1

1 − xy−1qa−b+Φn−Φ2t

1 − xy−1qa−b+Φd−Φ2t

×
(n−1)/2∏

t=1
t6=(d+1)/2

1 − qΦn−Φ2t−1

1 − qΦd−Φ2t−1

n−1∏
t=1

1 + xqa+Φd+Ψt

1 + xqa+Φn+Ψt

with L−1
n,d = 0 for n < d,

(ii) if d is even,

L−1
n,d = −

(n−1)/2∏
t=1

1 − qΦn−Φ2t−1

1 − x−1yqb−a+Φd−Φ2t−1

×
(n−1)/2∏

t=1
t6=d/2

1 − qΦd−Φ2t

1 − xy−1qa−b+Φn−Φd

n−1∏
t=1

1 + yqb+Φd+Ψt

1 + xqa+Φn+Ψt

with L−1
n,d = 0 for n < d.

For even n;
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(iii) if d is odd,

L−1
n,d = −

(n−2)/2∏
t=1

1 − qΦn−Φ2t

1 − xy−1qa−b+Φd−Φ2t

×
n/2∏
t=1

t6=(d+1)/2

1 − x−1yqb−a+Φn−Φ2t−1

1 − qΦd−Φ2t−1

n−1∏
t=1

1 + xqa+Φd+Ψt

1 + yqb+Φn+Ψt

with L−1
n,d = 0 for n < d,

(iv) if d is even,

L−1
n,d = (−1)[n6=d]

n/2∏
t=1

1 − x−1yqb−a+Φn−Φ2t−1

1 − x−1yqb−a+Φd−Φ2t−1

×
(n−2)/2∏

t=1
t6=d/2

1 − qΦn−Φ2t

1 − qΦd−Φ2t

n−1∏
t=1

1 + yqb+Φn+Ψt

1 + yqb+Φd+Ψt

with L−1
n,d = 0 for n < d.

Theorem 2.4. Let 1 ≤ d ≤ n;
(i) if n is odd,

U−1
d,n = (−1)d+1q(d−n)Ψd

(xqa+Φn)n−1

n∏
t=1

(
1 + xqa+Φn+Ψt

)
n−d∏
t=1

(1 − qΨt+d−Ψd)
d−1∏
t=1

qΨt(1 − qΨd−Ψt)

×
(n−1)/2∏

t=1

(
1 + xqa+Φ2t−1+Ψd

) (
1 + yqb+Φ2t+Ψd

)
(1 − qΦ2t−1−Φn)(1 − x−1yqb−a+Φ2t−Φn)

with U−1
d,n = 0 for n < d,

(ii) if n is even,

U−1
d,n = (−1)dq(d−n)Ψd

(yqb+Φn)n−1

n∏
t=1

(
1 + yqb+Φn+Ψt

)
n−d∏
t=1

(1 − qΨt+d−Ψd)
d−1∏
t=1

qΨt(1 − qΨd−Ψt)

×
(n−2)/2∏

t=1

1 + yqb+Φ2t+Ψd

1 − qΦ2t−Φn

n/2∏
t=1

1 + xqa+Φ2t−1+Ψd

1 − xy−1qa−b+Φ2t−1−Φn

with U−1
d,n = 0 for n < d.

Now we compute the inverse of G which depends on its dimension N .

Theorem 2.5. For 1 ≤ m, n ≤ N ;
(i) if n is odd,

(GN )−1
m,n = (−1)N+1

(xqa+Φn+Ψm)N−1

N∏
t=1
t6=m

1 + xqa+Φn+Ψt

1 − qΨt−Ψm

b(N+1)/2c∏
t=1

t6=(n+1)/2

1
1 − qΦ2t−1−Φn

×
bN/2c∏

t=1

1 + yqb+Φ2t+Ψm

1 − x−1yqb−a+Φ2t−Φn

b(N+1)/2c∏
t=1

(
1 + xqa+Φ2t−1+Ψm

)
,
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(ii) if n is even,

(GN )−1
m,n = (−1)N+1

(yqb+Φn+Ψm)N−1

N∏
t=1
t6=m

1 + yqb+Φn+Ψt

1 − qΨt−Ψm

bN/2c∏
t=1

t6=n/2

1
1 − qΦ2t−Φn

×
b(N+1)/2c∏

t=1

1 + xqa+Φ2t−1+Ψm

1 − xy−1qa−b+Φ2t−1−Φn

bN/2c∏
t=1

(
1 + yqb+Φ2t+Ψm

)
.

Now we present our last result for computing the determinant of GN which is evaluated
as the product of the diagonal entries of the matrix U .

Theorem 2.6. For N ≥ 1;

detGN = (−1)bN/4c
(
yqb

)(bN/2c
2 ) b(N−1)/2c∏

t=1

b(N−1)/2c∏
k=t

qΦ2t−1
(
1 − qΦ2k+1−Φ2t−1

)

×
N−1∏
t=1

N−1∏
k=t

qΨt

(
1 − qΨk+1−Ψt

) b(N−2)/2c∏
t=1

b(N−2)/2c∏
k=t

qΦ2t

(
1 − qΦ2k+2−Φ2t

)

×
b(N+1)/2c∏

t=1

N∏
k=1

1
1 + xqa+Φ2t−1+Ψk

bN/2c∏
t=1

N∏
k=1

1
1 + yqb+Φ2t+Ψk

×
bN/2c∏

t=1

b(N+1)/2c∏
k=1

qΦ2k−1
(
1 − x−1yqb−a+Φ2t−Φ2k−1

)

×

 (xqa)3((N+1)/2
2 ) if N is odd,

(−1)N/2 (xqa)(
3N/2

2 )/3 if N is even.

3. Proofs
Although our results look like q-hypergeometric summations, the q-Zeilberger’s algo-

rithm doesn’t work as they aren’t Gosper summable. For this reason, we prove the claimed
results by the backward induction method. Since the operations in this method are long
and time consuming, we only give a proof for LU -decomposition of G. The proofs of other
results can be done in a similar way.

For the LU -decomposition of G, we need to prove that∑
1≤d≤min(m,n)

Lm,dUd,n = Gm,n.

Here, since two consecutive rows and columns of L are defined by four different formula
and U are defined by two different formula we must consider four cases to prove the LU -
decomposition of G. Before this, we will consider more general case. We can assume
without loss of generality that m ≥ n, and also prove a general formula depending on an
extra variable K:

SUMK :=
∑

K≤d≤n

Lm,dUd,n. (3.1)

To prove the claimed result for the LU -decomposition of G, we need the case K = 1 in
the above sum or SUM1. Before this, we have to consider parities of m and K. There are
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four subcases of SUMK as follows

∑
K≤d≤n

Lm,dUd,n =



SUM(1)
K if m and n are odd,

SUM(2)
K if m is even and n is odd,

SUM(3)
K if m is odd and n is even,

SUM(4)
K if m and n are even,

where,
(i) For m and K are odd,

SUM(1)
K :=

min(m,n)∑
d=K

(
xqa+Φm

)d−1 (
1 + xqa+Φd+Ψd

)
(1 + xqa+Φd+Ψn) (1 + xqa+Φm+Ψd)

×
d−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φm+Ψt

bd/2c∏
t=1

(
1 − qΦ2t−1−Φm

) (
1 − x−1yqb−a+Φ2t−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn) ,

(ii) For m is even and K is odd,

SUM(2)
K :=

min(m,n)∑
d=K

(
yqb+Φm

)d−1 (
1 + xqa+Φd+Ψd

)
(1 + xqa+Φd+Ψn) (1 + yqb+Φm+Ψd)

×
d−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + yqb+Φm+Ψt

bd/2c∏
t=1

(
1 − qΦ2t−Φm

) (
1 − xy−1qa−b+Φ2t−1−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn) ,

(iii) For m is odd and K is even,

SUM(3)
K :=

min(m,n)∑
d=K

(xqa+Φm)d−1
(
1 + yqb+Φd+Ψd

)
(1 + xqa+Φm+Ψd) (1 − x−1yqb−a+Φd−Φm)

×
d−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φm+Ψt

bd/2c∏
t=1

(
1 − qΦ2t−1−Φm

) (
1 − x−1yqb−a+Φ2t−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn) ,

(iv) For m and K are even,

SUM(4)
K :=

min(m,n)∑
d=K

(
yqb+Φm

)d−1 (
1 + yqb+Φd+Ψd

)
1 + yqb+Φm+Ψd

d−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + yqb+Φm+Ψt

×
bd/2c∏
t=1

1 − xy−1qa−b+Φ2t−1−Φm

(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn)

b(d−1)/2c∏
t=1

(
1 − qΦ2t−Φm

)
.

Now we present the following Lemma to evaluate SUM(i)
K for 1 ≤ i ≤ 4.

Lemma 3.1. (i) For both odd m, K,

SUM(1)
K =

(
xqa+Φm

)K−1

1 + xqa+Φm+Ψn

K−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φm+Ψt

×
(K−1)/2∏

t=1

(
1 − qΦ2t−1−Φm

) (
1 − x−1yqb−a+Φ2t−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn) . (3.2)
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(ii) For even m, odd K,

SUM(2)
K =

(
yqb+Φm

)K−1

1 + yqb+Φm+Ψn

K−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + yqb+Φm+Ψt

×
(K−1)/2∏

t=1

(
1 − qΦ2t−Φm

) (
1 − xy−1qa−b+Φ2t−1−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn) . (3.3)

(iii) For odd m, even K,

SUM(3)
K =

(xqa+Φm)K−1
(
1 + yqb+ΦK+Ψn

)
(1 + xqa+Φm+Ψn) (1 − x−1yqb−a+ΦK−Φm)

K−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φm+Ψt

×
K/2∏
t=1

(
1 − qΦ2t−1−Φm

) (
1 − x−1yqb−a+Φ2t−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn) . (3.4)

(iv) For both even m, K,

SUM(4)
K =

(
yqb+Φm

)K−1 (
1 + yqb+ΦK+Ψn

)
1 + yqb+Φm+Ψn

K−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + yqb+Φm+Ψt

×
K/2∏
t=1

1 − xy−1qa−b+Φ2t−1−Φm

(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn)

(K−2)/2∏
t=1

(
1 − qΦ2t−Φm

)
. (3.5)

Proof. To prove these results, we consider odd or even cases of both m and K. First
when m is odd, consider the results given in (3.2) and (3.4) as these two results will be
thought together. Similarly, for the case m is even, the results in (3.3) and (3.5) will be
considered together.

For the case m and K are odd, we have to prove that

SUM(3)
K−1 = SUM (1)

K + S
(3)
K−1,

where S
(t)
d is the summand of SUM(t)

K (1 ≤ t ≤ 4).
Now we prove the following equation in which these two relations are common in the

case where m is odd. In general we assume that m ≥ n because the case n > m is similar.
Note the claim is obvious when K = n. Since K − 1 is even, the backward induction step
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amounts to show that

SUM(3)
K−1 = SUM(1)

K + S
(3)
K−1

=

(
xqa+Φm

)K−1

1 + xqa+Φm+Ψn

K−1∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φm+Ψt

×
(K−1)/2∏

t=1

(
1 − qΦ2t−1−Φm

) (
1 − x−1yqb−a+Φ2t−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn)

+
(xqa+Φm)K−2

(
1 + yqb+ΦK−1+ΨK−1

)
(
1 + xqa+Φm+ΨK−1

) (
1 − x−1yqb−a+ΦK−1−Φm

) K−2∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φm+Ψt

×
(K−1)/2∏

t=1

(
1 − qΦ2t−1−Φm

) (
1 − x−1yqb−a+Φ2t−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn)

= (xqa+Φm)K−2

1 + xqa+Φm+ΨK−1

K−2∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φm+Ψt

×
(K−1)/2∏

t=1

(
1 − qΦ2t−1−Φm

) (
1 − x−1yqb−a+Φ2t−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn)

×

xqa+Φm+ΨK−1
(
1 − qΨn−ΨK−1

)
1 + xqa+Φm+Ψn

+ 1 + yqb+ΦK−1+ΨK−1

1 − x−1yqb−a+ΦK−1−Φm

 .

After some simplifications, we get

SUM(3)
K−1 =

(xqa+Φm)K−2
(
1 + yqb+ΦK−1+Ψn

)
(1 + xqa+Φm+Ψn)

(
1 − x−1yqb−a+ΦK−1−Φm

) K−2∏
t=1

qΨt

(
1 − qΨn−Ψt

)
1 + xqa+Φm+Ψt

×
(K−1)/2∏

t=1

(
1 − qΦ2t−1−Φm

) (
1 − x−1yqb−a+Φ2t−Φm

)
(1 + xqa+Φ2t−1+Ψn) (1 + yqb+Φ2t+Ψn) ,

which completes the proof.
The remaining cases could be proven by a similar fashion. �

Especially, we derive the claimed results for the matrix G, we need. When K = 1 in
(3.2)-(3.4) and (3.3)-(3.5), we obtain the results for the LU -decomposition of G as shown

1
1 + xqa+Φm+Ψn

=
∑

1≤d≤min(m,n)
Lm,dUd,n =

{
SUM(1)

1 if n is odd,
SUM(3)

1 if n is even

and

1
1 + yqb+Φm+Ψn

=
∑

1≤d≤min(m,n)
Lm,dUd,n =

{
SUM(2)

1 if n is odd,
SUM(4)

1 if n is even.

The proofs of L−1 and U−1 may be done similarly. Also, we use the equation G−1
N =

U−1L−1 when proving the inverse of the G matrix. Finally the determinant of G is the
product of the main diagonal entries of the matrix U .



Nonlinear variant of the Filbert and Lilbert matrices 733

4. Applications
In this section, we will define the matrix H = [Hm,n] as shown

Hm,n =



1
Ua+λ(p+m)v+µ(r+n)w

if m is odd,

1
Vb+λ(p+m)v+µ(r+n)w

if m is even

or in closed form

Hm,n =


1

Ua+Φm+Ψn

if m is odd,

1
Vb+Φm+Ψn

if m is even,

where
Φi := λ (i + p)v and Ψi := µ (i + r)w

for arbitrary integers a, b, p, r, λ, µ, v, w.
For example, the matrix H of order 4 takes the form

H =


1

Ua+Φ1+Ψ1

1
Ua+Φ1+Ψ2

1
Ua+Φ1+Ψ3

1
Ua+Φ1+Ψ41

Vb+Φ2+Ψ1

1
Vb+Φ2+Ψ2

1
Vb+Φ2+Ψ3

1
Vb+Φ2+Ψ41

Ua+Φ3+Ψ1

1
Ua+Φ3+Ψ2

1
Ua+Φ3+Ψ3

1
Ua+Φ3+Ψ41

Vb+Φ4+Ψ1

1
Vb+Φ4+Ψ2

1
Vb+Φ4+Ψ3

1
Vb+Φ4+Ψ4

 .

By the Binet formulas of Un and Vn, we rewrite the matrix H as shown

Hm,n = 1
αΦm+Ψn


1 − q

αa−1
1

1 + xqa+Φm+Ψn
if m is odd,

α−b 1
1 + yqb+Φm+Ψn

if m is even,

where x = −1, y = 1, q = β/α and
Φi := λ (i + p)v and Ψi := µ (i + r)w .

Throughout this paper, in general, we already defined the matrix

G = [Gm,n] =


1

1 + xqa+Φm+Ψn
if m is odd,

1
1 + yqb+Φm+Ψn

if m is even,

and derived its some properties such that LU -decomposition, L−1,U−1, G−1 for arbitrary
reals x, y and q.

Note that the matrix H is a special case of the matrix G without the constant factors.
Therefore we could derive the properties (such as LU -decomposition, L−1,U−1, G−1) of H
from the main results of this paper given for G for the values y = −x = 1 and q = β/α.
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