

Türk Mühendislik Araştırma ve Eğitimi Dergisi

Turkish Journal of Engineering Research and Education
1(1), 1-7, (2022)

1

RESEARCH ARTICLE

Code Quality Analysis Engine with Codes Written in Typescript

TypeScript ile Yazılmış Kodlar için Kalite Analiz Motoru

Mehmet Göktürk*, Fatih Koç

Gebze Technical University, Faculty of Engineering, Mechanical Engineering, Kocaeli

Geliş / Received: 13.04.2022
Kabul / Accepted: 11.05.2022
*Corresponding Author: Mehmet Göktürk, gokturk@gtu.edu.tr

ABSTRACT: In this study, an automatic software based on basic known software quality parameters, which can apply

static code analysis on code files written with the new generation TypeScript programming language, which is made

available by Google instead of Javascript, measure compliance with the defined standards and as a result calculate a

quality index value for the code file. quality analysis engine has been developed.

The software developed as a web application, where users can perform the analysis process through the application

interface by making the necessary configuration changes, access the analysis results, the calculated quality index value

and the list of situations that cause this value to decrease, has been arranged.

In the study, it is aimed to help software developers using TypeScript language to work in accordance with quality code

development standards and to enable these standards to be followed more easily by embodying them with the help of

a measurable metric. For this purpose, a web-based software was developed using node.js and Angular libraries, rules

were defined for the TypeScript language in this software, and it was possible to calculate a quality index value

according to the results obtained by running these rules on the analyzed file with the help of the configuration

determined by the users.

As a result of the study, different scenarios of the rules were created and the TypeScript files of these scenarios were

tested with the developed web application and the performance criteria were evaluated. A success of 62% was achieved

in the first results obtained, and the developers evaluated that the system could be used.

Keywords: Code Quality Analysis, Typescript, Angular, Software Development, Software Quality

ÖZ: Bu çalışmada Google tarafından Javascript yerine kullanıma sunulan yeni nesil TypeScript programlama dili ile

yazılmış kod dosyaları üzerinde statik kod analizi uygulayabilen, tanımlanmış olan standartlara uygunluğun ölçülmesi

ve bunun sonucunda kod dosyası için bir kalite indeks değeri hesaplayan, temel bilinen yazılım kalite parametrelerini

temel alan otomatik bir yazılım kalite analiz motoru geliştirilmiştir.

Kullanıcıların gerekli konfigürasyon değişikliklerini yaparak uygulama arayüzü üzerinden analiz işlemini

gerçekleştirebildiği, analiz sonuçlarına, hesaplanan kalite indeks değerine ve bu değerin düşmesine yol açan

durumların listesine erişebildiği bir web uygulaması olarak geliştirilen yazılım düzenlenmiştir.

Çalışmada TypeScript dilini kullanan yazılım geliştiricilerinin kaliteli kod geliştirme standartlarına uygun şekilde

çalışmalarına yardımcı olmak ve bu standartların ölçülebilir bir metrik yardımı ile somutlaştırılarak daha kolay şekilde

takip edilmesini sağlamak amaçlanmıştır. Bu amaç doğrultusunda node.js ve Angular kütüphaneleri kullanılarak

hazırlanan bir web tabanlı yazılım geliştirilmiş, bu yazılımda TypeScript dili için kurallar tanımlanmış ve kullanıcıların

belirlediği konfigürasyon yardımı ile analiz edilen dosya üzerinde bu kurallar çalıştırılarak elde edilen sonuçlara göre

bir kalite indeks değeri hesaplanması mümkün olmuştur.

Çalışma sonucunda gerçekleştirilen kurallara ait farklı senaryolar oluşturulmuş ve bu senaryolara ait TypeScript

dosyaları geliştirilen web uygulaması ile test edilerek başarım kriterleri değerlendirilmiştir. Elde edilen ilk sonuçlarda

%62 düzeyinde bir başarı elde edilmiş, sistemin kullanılabilir olduğu geliştiriciler tarafından değerlendirilmiştir.

Anahtar Kelimeler: Kod Kalite Analizi, Typescript, Angular, Yazılım Geliştirme, Yazılım Kalitesi

Göktürk, Koç / TUR MUH. ARAS. VE EĞİT D. 1(1), 1-7, (2022)

2

1. INTRODUCTION

The Angular software development framework

system, popularized by Google, is an open source

project that can be freely used and modified by

anyone [1]. A more qualified language than

Javascript called TypeScript is used in this popular

framework, which is mostly created to develop web

applications. In this structure, frontend developers

work using frameworks such as Angular or React to

present and manipulate data efficiently.

The Typescript programming language offers a

work environment that can be easily managed by

large teams. Compared to the Javascript language

used with AngularJS, which was used in previous

software development framework, significant

advanced features have been provided to the

developers.

However, automatic examination of the developed

code is one of the important mechanisms that can

be put forward in the process of quality software

development, in order to ensure that software

developers, -who are observed to be able to

maintain old and bad habits and continue to make

various basic principle mistakes-, write quality

code.

In this study, a static code analysis was applied on

the code files written in TypeScript, which is the

programming language of the Angular framework

structure, to measure the compliance with the

predefined standards and quality guidelines, and as

a result, a system was developed that calculates a

quality index value for the code file entered into the

system.

Within the software development process, the

complexity of software projects increases as the

development process progresses, personnel

changes in software teams, the growth of project

scales and the growth in the source code base make

it difficult to maintain the code quality at acceptable

levels, and the cost of software development and

maintenance gradually increases due to the

decrease in quality [2].

With the system developed within the scope of the

study, it is aimed to help software developers using

TypeScript language to write code in accordance

with quality code development standards and to

follow these standards more easily by embodying

them with the help of measurable metrics. For this

purpose, a web-based static code analysis software

was developed using node.js and Angular libraries.

In the developed software, the number of rules for

the TypeScript language were defined and the

configuration parameters determined by the users

were created. With the help of this system, a final

quality index value was calculated according to the

results obtained by running the rules entered in the

system on the analyzed file. Furthermore new rules

can be added in a flexible structure with a

parametric approach.

In the following sections of the article, there are

literature review on the subject, the method and

material chosen for problem solving, the

technologies and tools used, the findings,

conclusion and discussion, and references sections.

2. LITERATURE REVIEW

Traditional code analysis and problem finding has

been a popular subject for software engineering

discipline. Several tools were emerged for thei

purpose. Eslint for example statically analyzes

written code to quickly find problems. It is built into

most text editors and you can run ESLint as part of

the continuous integration pipeline [3]. The primary

reason ESLint was created was to allow developers

to create their own linting rules. ESLint was

designed to have all rules completely pluggable

where customization was priority. ESLint,

especially working with IDE and text editors,

applies static code analysis on the codes written in

JavaScript language and aims to detect errors while

writing the code [4]. Since TypeScript language is

built on JavaScript, ESLint can also analyze

TypeScript files.

SonarQube, on the other hand, provides quality and

safety analysis for code written in more than 20

languages, and is added as an extra step to the

software development process, helping to analyze

the entire project before distribution [5,6].

SonarQube can perform analyzes with the help of

an extra module specially designed for TypeScript

language.

Apart from the popular applications mentioned,

there are also smaller scale examples of similar

Göktürk, Koç / TUR MUH. ARAS. VE EĞİT D. 1(1), 1-7, (2022)

3

static code analysis software distributed as NPM

packages.

3. METHOD AND MATERIAL

3.1 General Approach

Given the vast set of existing code quality analysis

tools, this study limited its focus to static code

analysis on TypeScript language only with high

speed generic evaluation as target pperformance

parameter.

Static code analysis approach has been followed in

this study. As described by Stefanovic et. al The

static code analysis process is useful both for

optimizing the operation of the compiler and

detecting irregularities and possible defects [7,8]

which can be used to evaluate quality as well.

Systems can be developed helping developers to

understand the behaviour of programs and to

identify various possible defects in those without

their execution performed. Static code analysis is

therefore performed by programs that explain the

behaviour of developed code.

3.2 Design

The project is designed as a web application. It is

divided into two main parts, the back-end and the

front-end. The back-end will share the results in

JSON format with the generated API by applying

static code analysis on the given TypeScript file and

checking the defined rules. The front-end part will

receive the result data via this API and visualize it

with a user-friendly interface. The backend part is

divided into 4 main parts:

 Data Processing Module: This module is

responsible from loading code file containing

TypeScript program and processes using a

typescript compiler.

 Rule Engine: It is the module where each rule to

be checked by evaluating the data of the

decoded file is applied.

 Configuration Module: It is used to create

configuration web application backend and

API services running on Node.js. It is the

module that enables the transfer of user

preferences such as file name and information

about the rules to the application.

 API: It is the module that is responsible from

calculating the Code Quality Index using the

results of the rules and allows these results to

be shared with the front-end of the system.

The system architecture showing dataflow that is

composed of these modules is shown in Figure 1.

Figure 1: System architecture

The analysis process on the back-end was triggered

after data was obtained from the user with the help

of front-end services.

Visualization and processing of this data and

making it user-friendly and intuitive are also done

in front-end section. A structure suitable for MVC

architecture has been utilized to develop entire

system.

3.3 Technology and Tools Used

Implementation of software, that works on

developer code requires combination of several

technologies. Significal amount of parsing and

string matching is required. In this section,

information about the purposes of using each

technology and tools in the design, development

and testing process of the system are given.

3.3.1 Technologies

As the subject language Typescript is focus of this

study, same environment is used in order to

develop the system. Therefore, along with the

Typescript language, Angular framework is used

for the development of the front-end application.

For certain sections, Javascript is also utilized for

some parts of back-end and front end development

phases. As a framework, Node.js has been used to

establish server structure of the back-end

application where Express.js is used to create web

application backend and API services running on

Node.js. HTML/CSS code processed and

Göktürk, Koç / TUR MUH. ARAS. VE EĞİT D. 1(1), 1-7, (2022)

4

Highcharts library was accomodated to draw

graphic results on user interface. Therefore a

complete multilayer web framework was

established to data processing and presentation.

For the data processing module, a typescript parser

(NPM Package) needed and therefore utilized.

Furthermore, “ts-file-parser” module was also used

to decode Typescript source code files successfully.

Figure 2 shows main user interface for uploading

the codefiles that is used in the study using ts-file-

parser module.

Figure 2: Code file upload interface

Usable interaction was one of the key challenges of

the study since developers are usually hesitant in

using such systems. In order to create user friendly

front-end user interface, Angular Material Design

npm package was installed along with the system,

where professional look and feel can be obtained

with relatively smaller amount of effort.

3.3.2 Tools

The system has been developed in Visual Studio

Code development environment. In order to draw

diagrams during design pahase, draw.io package

was used to draw diagrams where the functionality

in the main canvas can be controlled by tha main

application. Draw io libraries, the menus, the

toolbar, the default colours, the storage location, can

all be changed by the programmer. Furthermore,

tabulation and word processing tools were also

used to evaluate data obtained from the system.

3.4 General Structure

Once the typescript file becomes uploaded, the

back-end part of the system performs analysis of

source code file using the user preferences that are

stored in a 'config.json' file in directory. The file

path to be analyzed, the directory path where the

result files will be created, the defined rules, the

categories of the rules, the weights of the rules in the

code quality index and the preferences of these

rules are included in this configuration file along

with other necessary parameters. We have observed

similar approaches were used in previous studies

literature [9-11]. These quantity of these parameters

can later be extended for practical purposes. The

user is expected to make any changes and

modification before running the backend of the

application and restart the backend process after

any changes are made. For the study, there are only

certain rules that are tested. Since the main purpose

of the study is to test viability and workability of

such a technique, limited number of rules were

implemented. The rules that are included in

preferences file are given in Table 1. In Table 1, rule

names, categories and content of the rule is

summarized.

The initialization of system requires a backend

server to be started manually. After the backend

server is started, it will constantly listen to the

specified port and respond to incoming HTTP

requests for source file analysis processing task. The

analysis process is then started with the request

from the front end client per uploaded file. As the

analysis process starts, the file to be analyzed will

be read/parsed and this file will be analyzed in

different ways with the help of the 'typescript-

parser' and 'ts-file-parser' NPM packages used

within the system. In this way, asynhronous use of

parser and source code evaluator becomes possible

by multiple clients. It is expected that in large

software development teams, code quality check

service will be used frequently by the developer

IDE systems.

Through the decomposing process of input files,

data obtained as a result will be analyzed using the

implemented rules. In order to accomplish this task,

“rule checks” of this input source file are necessary.

The system then makes these rule checks. Each rule

is evaluated and an individual rank value is

obtained from the execution of each rule. Based on

the ranks obtained from each rule, a code quality

index is then calculated by the results from the

rules. Then all of the results will be collected in an

object in JSON format and sent as response to the

incoming request coming from the client computer

user interface.

Göktürk, Koç / TUR MUH. ARAS. VE EĞİT D. 1(1), 1-7, (2022)

5

Table 1: Defined rule set.

Rule Name Category Content

duplicatingLibraryNa

mes

Code

Quality

Checks for duplicate

libraries.

duplicatingSpecifiers
Code

Quality

Translation results

Checks for duplicate

library modules.

namingConvention
Code

Standards

Controls the naming

of defined variables

and function

parameters.

methodReturnType
Code

Quality

Controls the return

data types of

functions.

methodLOC
Code

Quality

Controls the line

count of functions.

methodArgumentTyp

e

Code

Quality

Controls the data

types of the

parameters of the

functions.

fieldType
Code

Quality

Checks the data

types of the variables

belonging to the

classes.

commentsForMethods
Code

Standards

Checks if there is a

descriptive comment

at the beginning of

the functions.

The response obtained from back end and

transferred to the the front-end side is interpreted

in various ways and visualization of the data is

provided using a graphics library. Charts were

created using the open source Highcharts library,

and the incoming data is plotted using these charts

and visualized [12]. Then it becomes possible to

access the code quality index obtained as a result of

the analysis and the existing exceptions via the user

interface. This will give a stimulating and criticizing

index value and graphics explanation for the

developer user interface.

4. RESULTS

Although the study is only to test the viability of the

methodology, it has been observed that the source

code analysis and quality assesment process works

successfully in general. It has been observed that file

parsing performance is a key factor in order to get

acceptable results. It has also been observed that the

defined rules can detect undesirable situations in

the file as expected. Therefore special exception

handlers are necessary in order to achieve more

clean and meaningful output. This, in turn is similar

to some other developer who has no domain

knowledge on subject of code, checking the source

code quality visually. It has been observed that the

“Code Quality Index” is calculated correctly, taking

into account the weights and error numbers given

by the user. This index has been manually checked,

and verified by the developer team and research

team.

It has been observed that the backend application

architecture prepared with Node.js and Express.js

works in relatively good performance for multiuser

application to be installed on a web server. With

multiuser client availability, a future system might

collect requests from IDE applications which

developers use for development. Then, quality

assesment tasks can be handled at the background

with consent of the developer.

In the study performed, some data is seemed

missing in several graphics drawings in the front-

end application prepared with Angular, therefore it

has been observed that improvements and bug fixes

were made in the front-end application to overcome

these issues. In Figure 3, parsed structures are

displayed with respect to their categories.

Figure 3: Analysis Display Graph 1 from interface

As for the results, for the test run, under 2 different

categories, 8 rules were implemented, the success

rate of 4 of checking these rules was observed to be

100%, and for 4 rules, it was observed that it

remained slightly below the success target of 85%.

Göktürk, Koç / TUR MUH. ARAS. VE EĞİT D. 1(1), 1-7, (2022)

6

Figure 4: Analysis Display Graph 2 from interface

Speed characteristics of the system performance is

also measured. It has been observed that the

analysis process of a 200-line TypeScript file took

less than 1 second, and it took around 500

milliseconds on average in the tests performed.

Code Quality Index values were given in Figure 4

along with individual analysis results. This index

was calculated as a mean value for all individual

indices. In Figure 5, each rule is displayed and

matching rules and violations were reported to

compute resulting scores for each parameter.

It was also observed that it was very hard to

pull/import a single file from the GIT system, and

GIT integration was therefore abandoned

temporarily because it was an efficient way to

download the entire project and analyze a single file

through it. Further elaborations are required in

order to address this problem for full integration

with GIT system to be used seamlessly as a GIT

plug-in.

Figure 5: Analysis Display List: Index Value

5. CONCLUSION

In this study, it was aimed to measure and assess

source code compliance with predefined standards

by applying static code analysis on code files

written in TypeScript programming language. Then

as a result, it was aimed to calculate a “Code Quality

Index” value for the file that was supplied.

With this study, the goal was to create a tool to help

software developers using TypeScript language to

work in accordance with quality code development

standards and to make these standards easier to

follow by embodying them with the help of a

measurable metric. This objective is demonstrated

in this study that it can be achieved with success.

The basic requirements within the scope of the

initial goals of study were fulfilled, and a Code

Quality Index was calculated for each file as a result

of this analysis by applying static code analysis.

There are further improvements that can be done in

various aspects of the stıdy and these are listed as

follows:

• Creating as many different test scenarios as

possible and continuing to develop existing

rules to improve success rates.

• Implementation of more rules, and

extendible rule library for better code

quality management

• Making user interface improvements to

enhance interaction.

• Having multiple uploads working for large

projects.

• Creating different user accounts for the

web application and keeping their

individual configurations in the database

and managing them through the interface.

• Creating more realistic results using

sophisticated methods and heuristic

additional methods for calculating the

Code Quality Index.

• Using machine learning algorithms to

create a second quality index using tagged

codebase as learning set.

Göktürk, Koç / TUR MUH. ARAS. VE EĞİT D. 1(1), 1-7, (2022)

7

Through the interviews, it has been seen that

developer personnel performance and motivastion

can be increased with the structure obtained as a

result of this study. Further gamification and

ranking approaches can also enhance this increase.

Having a server based code quality checking

system will enable development of a future self

learning code quality checking system which may

extract rules using uploaded and developed code

by the developers, slowly adapting to enterprise

coding behaviour and standards. This will be

studied in further research.

Today, developer satisfaction and performance are

of great importance for companies. Software

developers do not want to stay in institutions where

old approaches are preferred. For this reason, the

effect of increasing the motivation of software

developers to stay in the institution will be

significant.

6. REFERENCES

[1] Y. Fain and A. Moiseev, “Angular Development

with TypeScript,” 2nd. Manning, NY, 2018.

[2] R. Bellairs, “What Is Code Quality? And How to

Improve Code Quality.” perforce.com.

https://www.perforce.com/blog/sca/what-

code-quality-and-how-improve-code-quality

(accessed Apr 4 2022).

[3] V. Raychev, "Learning to Find Bugs and Code

Quality Problems-What Worked and What

not?." in 2021 International Conference on Code

Quality (ICCQ). IEEE, 2021, pp.1-5.

[4] “ESLint About.” eslint.org.

https://eslint.org/docs/about/ (accessed Apr 4

2022)

[5] “SonarQube Documentation.” sonarqube.org.

https://docs.sonarqube.org/latest/ (accessed

Apr 10. 2022)

[6] “First Line Outsourcing, Static Analysis of

JavaScript applications with SonarQube”

medium.com.

https://medium.com/firstlineoutsourcing/static

-analysis-of-javascript-applications-with-

sonarqube-1aacdf11d4ac (accessed Apr 5 2022)

[7] D. Stefanović, D. Nikolić, S. Havzi, T. Lolić and

D. Dakić, "Static Code Analysıs Tools: A

Systematic Literature Review." in Proc. of the

31st DAAAM International Symposium, B.

Katalinic(ed.) Published by DAAAM

International, 2020, pp. 565-573.

[8] E. Thoren and F. Brännlund Stål, "Usage of

Angular from developer’s perspective: Based

on a literature and empirical study." B.S.

Dissertation, Faculty of Computing Blekinge

Institute of Technology, Karlskrona, Sweden,

2017.

[9] S.H.Jensen, A. Møller and P. Thiemann, "Type

analysis for JavaScript," in Proc. International

Static Analysis Symposium, Springer, Berlin,

Heidelberg, 2009, pp. 238-255.

[10] Aseem Rastogi, N. Swamy, C. Fournet, G.

Bierman and P. Vekris, “Safe & efficient gradual

typing for TypeScript,” in Proc. of the 42Nd

Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages 2015,

pp. 167-180.

[11] J. Bogner, and M. Merkel, ”To Type or Not to

Type? A Systematic Comparison of the

Software Quality of JavaScript and TypeScript

Applications on GitHub,” Preprint, in Proc. Of

19th International Conference on Mining

Software Repositories MSR2022, Pittshburgh

PA, 2022.

[12] “High Charts Library Documentation,”

highcharts.com.

https://www.highcharts.com/docs/index

(accessed Apr 10 2022).

